4-Total Geometric Mean Cordial Labelling of Some Disconnected Graphs

Main Article Content

L. Vennila, Dr. P. Vidhyarani

Abstract

Let G be a (p, q) graph. Let f : V(G)  {1, 2, 3,…, k} be a function where kN and k1. For each edge uv, assign the label f (uv) =   . f is called k-Total geometric mean cordial labeling of G if  tmf (i) – tmf (j)  ≤ 1, for all i, j{1, 2, 3,…, k} where tmf (x) denotes the total number of vertices and edges labeled with x, x{1, 2, 3,…, k}. A graph that admits the ktotal geometric mean cordial labeling is called k-total geometric mean cordial graph.


         In this paper we investigate 4- Total geometric mean cordiality of graphs like Pn  Cn, Pn


K1,n , Pn  Bn,n , Cn  Cn , Cn  K1,n , Cn  Bn,n , Pn  Yn, Pn  Pn ʘ K1, Cn  Pn ʘ K1.

Article Details

Section
Articles