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Abstract: The problem of unsteady boundary layer flow of a viscous, incompressible, electrically conducting 

fluid along a semi-infinite vertical permeable moving plate in the presence of a uniform transverse magnetic 

field, heat and mass transfer effects are considered. The plate is assumed to move with a constant velocity in the 

direction of fluid flow while the free stream velocity is assumed to follow the exponentially increasing and time-

dependent wall suction is assumed to occur at the permeable surface. The dimensionless governing equations for 

this investigation are solved numerically using finite element method. The evaluation of the numerical results is 

performed and some graphical results for the velocity, temperature and concentration profiles within the 

boundary layer and tabulated results for the skin-friction coefficient, Nusselt and the Sherwood numbers are 

presented and discussed.  
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1. Introduction: 

In recent years, the analysis of hydromagnetic convection flow involving heat and mass transfer in 

porous medium has attracted the attention of many scholars because of its possible applications in diverse fields 

of science and technology such as – soil sciences, astrophysics, geophysics, nuclear power reactors etc. In 

geophysics, it finds its applications in the design of MHD generators and accelerators, underground water 

energy storage system etc. It is worth-mentioning that MHD is now undergoing a stage of great enlargement and 

differentiation of subject matter. These new problems draw the attention of the researchers due to their varied 

significance, in liquid metals, electrolytes and ionized gases etc. Combined effects of Soret and Dufour effects 

on unsteady hydromagnetic mixed convective flow in an accelerated vertical wavy plate through a porous 

medium investigated by Aruna et al. [1]. Jithender Reddy and his co-workers ([2]-[9]) found the numerical 

solutions of heat and mass transfer fluid flow problems in presence of magnetic field using finite element 

technique. Anand Rao and Srinivasa Raju ([10]-[12]) studied the effects of Soret, Dufour, Hall Current and 

viscous dissipation on an unsteady free convective fluid flow problems in presence of magnetic field, heat and 

mass transfer along a porous plate using finite element technique. Anand Rao et al. ([13]-[20]) found the 

numerical solutions of unsteady free convective along a vertical and oscillatory plate embedded in porous 

medium in presence of heat and mass transfer, magnetic field, thermal radiation, Soret, Dufour, Hall current,  

rotation, heat source, heat absorption etc. Unsteady MHD free convection flow near on an infinite vertical plate 

embedded in a porous medium with Chemical reaction, Hall Current and Thermal radiation studied by Sarada et 

al. [21]. Sudhakar et al. ([22]-[24]) applied finite element technique on an unsteady magnetohydrodynamics free 

convective fluid flow along a vertical plate surrounded by porous medium in presence of chemical reaction, heat 

flux, Soret, Dufour, thermal radiation and viscous dissipation. Ramana Murthy et al. [25] studied heat and mass 

transfer effects on MHD natural convective flow past an infinite vertical porous plate with thermal radiation and 

Hall Current. Maddilety and Srinivasa Raju [26] found the numerical solutions of hall effect on an unsteady 
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MHD free convective Couette flow between two permeable plates using finite element technique. Ramya et al. 

([27]-[29]) studied the effects of velocity, thermal wall slips, chemical reaction, thermal radiation and heat 

generation/absorption on unsteady free convective nanofluid flow over a Nonlinearly Isothermal Stretching 

Sheet in presence of magnetic field, heat and mass transfer. Unsteady MHD mixed convection flow past a 

vertical porous plate in presence of radiation studied by Sivaiah et al. [30]. Sivaiah and Srinivasa Raju [31] 

found the numerical solutions of heat and mass transfer flow with hall current, heat source and viscous 

dissipation by applying finite element method. Simultaneous effects of thermal radiation and rotation effects on 

an unsteady MHD mixed convection flow through a porous medium with Hall current and Heat absorption 

investigated by Venkataramana et al. [32]. Sheri et al. [33] studied transient magnetohydrodynamic free 

convection flow past a porous vertical plate in presence of viscous dissipation. Rao et al. [34] studied the finite 

element analysis of thermal radiation and mass transfer flow past semi-infinite moving vertical plate with 

viscous dissipation. Dharmendar Reddy et al. ([35] and [36]) applied finite element technique on unsteady 

magnetohydrodynamic free convective flow past a vertical porous plate with hall current, chemical reaction, 

heat and mass transfer. 

Motivated by the above reference work and the numerous possible industrial applications of the 

problem, it is of paramount interest in this study to investigate the effects of heat and mass transfer on an 

unsteady MHD flow along a porous flat plate. In this study, the effects of different flow parameters encountered 

in the equations are also studied. The problem is solved numerically using the finite element method, which is 

more economical from the computational view point. 

2. Mathematical formulation: 

 Consider unsteady two-dimensional flow of a laminar, incompressible, viscous, electrically conducting 

fluid past a semi-infinite vertical permeable moving plate embedded in a uniform porous medium and subjected 

to a uniform transverse magnetic field in the presence of Soret and Dufour effects. It is assumed that there is no 

applied voltage which implies the absence of an electrical field. The transversely applied magnetic field and 

magnetic Reynolds number are assumed to be very small so that the induced magnetic field and the Hall effect 

are negligible. Similarly, in this work, Soret and Dufour effects are also negligible. A consequence of the small 

magnetic Reynolds number is the uncoupling of the Navier-Stokes equations from Maxwell’s equations. The 

governing equations for this investigation are based on the balances of mass, linear momentum, energy and 

concentration species. The magnetic and viscous dissipations are neglected in this study. The third and fourth 

terms on the RHS of the momentum equation (2) denote the thermal and concentration buoyancy effects, 

respectively. It is assumed that the permeable plate moves with a constant velocity in the direction of fluid flow, 

and the free stream velocity follows the exponentially increasing. In addition, it is assumed that the temperature 

and the concentration at the wall as well as the suction velocity are exponentially varying with time. Taking into 

consideration the assumptions made above, these equations can be written in Cartesian frame of reference as 

follows: 

Equation of Continuity: 
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Energy Equation: 
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Species Diffusion Equation: 
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The appropriate boundary conditions for the velocity, temperature and concentration fields are 
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It is clear from equation (1) that the suction velocity at the plate surface is a function of time only. Assuming 

that it takes the following exponential form: 
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(6) 

Where A   is a real positive constant,   and A  are small less than unity, and 0V  is a scale of suction velocity 

which has non-zero positive constant. Outside the boundary layer, equation (2) gives 
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It is convenient to employ the following dimensionless variables: 
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In view of equations (6)-(8) and equations (2)-(4) reduce to the following dimensionless form: 

( ) ( )uUNGcGr
y

u

dt

dU

y

u
Ae

t

u nt −+++



+=




+−






 
2

2

1                                                                                                                                            

(9) 

( )
2

2

Pr

1
1

yy
Ae

t

nt




=




+−



 



                                                                                                                                

(10) 



Tuijin Jishu/Journal of Propulsion Technology 

ISSN: 1001-4055 

Vol. 46 No. 2 (2025) 

__________________________________________________________________________________ 

1256 

( )
2

21
1

yScy
Ae

t

nt




=




+−



 



                                                                                                                                            

(11) 

The dimensionless form of the boundary conditions (5) and (6) become 
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The Skin-friction coefficient, the Nusselt number (Rate of heat transfer) and the Sherwood numbers (Rate of 

mass transfer) are important physical parameters for this type of boundary layer flow. These parameters can be 

defined and determined as follows:    
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Where 
v

xVo
x =Re is the local Reynolds number. 

3. Numerical Solutions By Finite Element Method: 

Finite Element Technique: The finite element procedure (FEM) is a numerical and computer based method of 

solving a collection of practical engineering problems that happen in different fields such as, in heat transfer, 

fluid mechanics ([37]-[54]) and many other fields. It is recognized by developers and consumers as one of the 

most influential numerical analysis tools ever devised to analyze complex problems of engineering. The 

superiority of the method, its accuracy, simplicity, and computability all make it a widely used apparatus in the 

engineering modeling and design process. It has been applied to a number of substantial mathematical models, 

whose differential equations are solved by converting them into a matrix equation. The primary feature of FEM 

([55] and [56]) is its ability to describe the geometry or the media of the problem being analyzed with huge 

flexibility. This is because the discretization of the region of the problem is performed using highly flexible 

uniform or non uniform pieces or elements that can easily describe complex shapes. The method essentially 

consists in assuming the piecewise continuous function for the results and getting the parameters of the 

functions in a manner that reduces the fault in the solution. The steps occupied in the finite element analysis 

areas follows. 

Step 1: Discretization of the Domain The fundamental concept of the FEM is to divide the region of the 

problem into small connected pieces, called finite elements. The group of elements is called the finite element 
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mesh. These finite elements are associated in a non overlapping manner, such that they completely cover the 

entire space of the problem. 

Step 2: Invention of the Element Equations 

i) A representative element is secluded from the mesh and the variational formulation of the given problem is 

created over the typical element. 

ii) Over an element, an approximate solution of the variational problem is invented, and by surrogating this in the 

system, the element equations are generated. 

iii) The element matrix, which is also known as stiffness matrix, is erected by using the element interpolation 

functions. 

Step 3: Assembly of the Element Equations The algebraic equations so achieved are assembled by imposing 

the inter element continuity conditions. This yields a large number of mathematical equations known as the 

global finite element model, which governs the whole domain. 

Step 4: Imposition of the Boundary Conditions On the accumulated equations, the Dirichlet's and Neumann 

boundary conditions (12) are imposed. 

Step 5: Solution of Assembled Equations The assembled equations so obtained can be solved by any of the 

numerical methods, namely, Gauss elimination technique, LU decomposition technique, and the final matrix 

equation can be solved by iterative technique. For computational purposes, the coordinate y  is varied from 0  

to 9max =y , where maxy  represents infinity .,.ei external to the momentum, energy and concentration edge 

layers.  

 In one-dimensional space, linear and quadratic elements, or element of higher order can be taken. The 

entire flow province is divided into 11000 quadratic elements of equal size. Each element is three-noded, and 

therefore the whole domain contains 21001 nodes. At each node, four functions are to be evaluated; hence, after 

assembly of the element equations, we acquire a system of 81004 equations which are nonlinear. Therefore, an 

iterative scheme must be developed in the solution. After striking the boundary conditions, a system of 

equations has been obtained which is solved mathematically by the Gauss elimination method while maintaining 

a correctness of 0.00001. A convergence criterion based on the relative difference between the present and 

preceding iterations is employed. When these differences satisfy the desired correctness, the solution is assumed 

to have been congregated and iterative process is terminated. The Gaussian quadrature is applied for solving the 

integrations. The computer cryptogram of the algorithm has been performed in MATLAB running on a PC. 

Excellent convergence was completed for all the results. 

4. Results and Discussions: 

 The similarity equations (9), (10) and (11) were solved numerically subject to the boundary conditions 

given by (12). Graphical representations of the numerical results are illustrated in Figure (1) through Figure (8) 

to show the influences of different numbers on the boundary layer flow. In this study, we investigate the 

influence of the effects of material parameters such as Prandtl number, Schmidt number, Hartmann number, 

Grashof number, Modified Grashof number and Permeability parameter
 
separately in order to clearly observe 

their respective effects on the velocity, temperature and concentration profiles of the flow. Also Skin-friction 

coefficient, Rate of heat and mass transfer coefficients in terms of Nusselt number and Sherwood number 

respectively have been observed through graphically. During the course of numerical calculations of the 

velocity, temperature
 
and concentration, the values of the Prandtl number are chosen for Mercury ( Pr = 0.025), 

Air at 25oC and one atmospheric pressure ( Pr = 0.71), Water ( Pr = 7.00) and Methanol ( Pr = 11.62). To focus 

out attention on numerical values of the results obtained in the study the values of Sc  are chosen for the gases 

representing diffusing chemical species of most common interest in air namely Hydrogen ( Sc = 0.22), Helium (

Sc = 0.30), Water-vapour ( Sc = 0.60) and Oxygen ( Sc = 0.66). For the physical significance, the numerical 

discussions in the problem and at t  = 1.0, stable values for velocity, temperature and concentration fields are 
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obtained. To examine the effect of parameters related to the problem on the velocity field and Skin-friction 

numerical computations are carried out at Pr = 0.71. To find solution of this problem, we have placed an 

infinite vertical plate in a finite length in the flow. Hence, we solve the entire problem in a finite boundary. 

However, in the graphs, the y  values vary from 0 to 9, and the velocity, temperature, and concentration tend to 

zero as y  tend to 9. This is true for any value of y . Thus, we have considered finite length. 

 

Fig. 1. Effect of Gr on Velocity profiles 

 

Fig. 2. Effect of Gc on Velocity profiles 

 

Fig. 3. Effect of M on Velocity profiles 

 

Fig. 4. Effect of Sc on Velocity profiles 

4. 1. Results And Discussions of Velocity Profiles: 

The temperature and the species concentration are coupled to the velocity via Grashof number and 

Modified Grashof number as seen in equation (9). Figures (1)-(6) display the effects of material parameters such 

as Gr , Gc , Sc , Pr , M and K . For various values of Grashof number and Modified Grashof number, the 
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velocity profiles u  are plotted in figures (1) and (2). The Grashof number signifies the relative effect of the 

thermal buoyancy force to the viscous hydrodynamic force in the boundary layer. As expected, it is observed 

that there is a rise in the velocity due to the enhancement of thermal buoyancy force. Also, as Gr increases, the 

peak values of the velocity increases rapidly near the porous plate and then decays smoothly to the free stream 

velocity. The Modified Grashof number  defines the ratio of the species buoyancy force to the viscous 

hydrodynamic force. As expected, the fluid velocity increases and the peak value is more distinctive due to 

increase in the species buoyancy force. The velocity distribution attains a distinctive maximum value in the 

vicinity of the plate and then decreases properly to approach the free stream value. It is noticed that the velocity 

increases with increasing values of the Modified Grashof number. The effect of the Hartmann number is shown 

in figure (3). It is observed that the velocity of the fluid decreases with the increase of the magnetic field number 

values. The decrease in the velocity as the Hartmann number increases is because the presence of a magnetic 

field in an electrically conducting fluid introduces a force called the Lorentz force, which acts against the flow if 

the magnetic field is applied in the normal direction, as in the present study. This resistive force slows down the 

fluid velocity component as shown in figure (3). The nature of velocity profiles in presence of foreign species 

such as Hydrogen (Sc = 0.22), Helium (Sc = 0.30), Water-vapour (Sc = 0.60) and Oxygen (Sc = 0.66) are shown 

in figure (4). The flow field suffers a decrease in velocity at all points in presence of heavier diffusing species. 

Figure (5) depicts the effect of Prandtl number on velocity profiles in presence of foreign species such as 

Mercury (Pr = 0.025), Air (Pr = 0.71), Water (Pr = 7.00) and Methanol                            (Pr  = 11.62) are shown 

in figure (5). We observe that from figure (5) the velocity decreases with increasing of Prandtl number. In figure 

(6) we have the influence of the Permeability parameter on the velocity. It can be seen that as the values of this 

parameter increases, the velocity increases. 

 

Fig. 5. Effect of Pr on Velocity profiles 

 

Fig. 6. Effect of K on Velocity profiles 
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Fig. 7. Effect of Pr on Temperature profiles 

 

Fig. 8. Effect of Sc on Concentration profiles 

4. 2. Results And Discussions of Temperature Profiles: 

In figure (7) we depict the effect of Prandtl number on the temperature field. It is observed that an increase 

in the Prandtl number leads to decrease in the temperature field. Also, temperature field falls more rapidly for 

water in comparison to air and the temperature curve is exactly linear for mercury, which is more sensible 

towards change in temperature. From this observation it is conclude that mercury is most effective for 

maintaining temperature differences and can be used efficiently in the laboratory. Air can replace mercury, the 

effectiveness of maintaining temperature changes are much less than mercury. However, air can be better and 

cheap replacement for industrial purpose. This is because, either increase of kinematic viscosity or decrease of 

thermal conductivity leads to increase in the value of Prandtl number. Hence temperature decreases with 

increasing of Prandtl number.  

4. 3. Results And Discussions of Concentration Profiles: 

The effect of Schmidt number on the concentration field is presented in figures (8). Figure (8) shows the 

concentration field due to variation in Schmidt number for the gasses Hydrogen, Helium, Water-vapour and 

Oxygen. It is observed that concentration field is steadily for Hydrogen and falls rapidly for Water-vapour and 

Oxygen in comparison to Helium. Thus Hydrogen can be used for maintaining effective concentration field and 

Helium can be used for maintaining normal concentration field. 

Table-1: Skin-friction coefficient ( )
 

Gr  Gc  M  K  Pr  Sc    

1.0 1.0 1.0 1.0 0.71 0.22 0.2161 

2.0 1.0 1.0 1.0 0.71 0.22 0.2314 

1.0 2.0 1.0 1.0 0.71 0.22 0.2406 

1.0 1.0 2.0 1.0 0.71 0.22 0.1513 

1.0 1.0 1.0 2.0 0.71 0.22 0.2615 

1.0 1.0 1.0 1.0 7.00 0.22 0.2148 
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1.0 1.0 1.0 1.0 0.71 0.30 0.2116 

 

4. 4. Results And Discussions of Skin-friction Coefficient: 

The profiles for Skin-friction due to velocity under the effects of Grashof number, Modified Grashof 

number, Hartmann number, Permeability parameter,
 
Prandtl number and Schmidt number is presented in the 

table-1. We observe from the above table-1, the Skin-friction
 
due to velocity increases under the effects of 

Grashof number, Modified Grashof number, Permeability parameter and decreases under the effects of 

Hartmann number,  Prandtl number and Schmidt number.  

 

4. 5. Results And Discussions of Nusselt & Sherwood Numbers: 

The profiles for Nusselt number due to temperature profile under the effect Prandtl number is presented in 

the table-2. We see from this table-2 the Nusselt number
 
due to temperature falls under the effect of Prandtl 

number. The profiles for Sherwood number
 
due to concentration profiles under the effect of Schmidt number is 

presented in the table-2. We see from this table the Sherwood number due to concentration profile falls under 

the effect of Schmidt number.   

Table-2: Nusselt number and Sherwood number 

Pr  Nu  Sc  Sh  

0.71 4.8586 0.22 7.5597 

7.00 4.4782 0.30 7.3401 

11.62 3.3719 0.78 6.3932 

5. Conclusions: 

This work investigated an unsteady MHD flow past a semi-infinite vertical moving permeable moving plate 

with heat transfer and mass transfer. The governing equations are approximated to a system of linear ordinary 

differential equations by using suitable similarity transformations. Numerical calculations are carried out for 

various values of the dimensionless numbers of the problem using an efficient and finite element method. The 

results are presented graphically and we can conclude that the flow field and the quantities of physical interest 

are significantly influenced by these numbers.  

1. The velocity increases as the permeability parameter, heat and mass transfer increases. However, the velocity 

was found to decreases as the Hartmann number, Prandtl number and Schmidt number are increases.  

2. The fluid temperature was found to decrease as the Prandtl number increases.  

3. The concentration decreases as the Schmidt number increases.  

4. The Skin-friction coefficient due to velocity profile increases under the effects of Grashof number,
 
Modified 

Grashof number and Permeability parameter and decreases under the effects of Hartmann number, Prandtl 

number and Schmidt number.  

5. Nusselt number due temperature profile falls under the effect of Prandtl number. 

6. Sherwood number due concentration profile falls under the effect of Schmidt number. 
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