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Abstract: In a graph G(V,E), the support s(v) of a vertex v is defined as the sum of degrees 

of its neighbours. Let k be any positive integer. In this paper, we introduce two new concepts 

in graph theory, namely, k – perfect degree support graph and (k,c) – linear degree support 

graph. A graph G is said to be a k – perfect degree support graph (k – pds graph) if for any 

vertex v in G, the ratio of its support to its degree is the constant k. A graph G is called a (k, 

c) – linear degree support graph ((k,c) – lds graph) if, the support of any vertex is k times its 

degree with a constant integer c added to it. Some families of (k,c) – lds graphs and k – pds 

graphs have been constructed in this paper. In addition, an interesting relationship between 

the eigen values of the adjacency matrix of a k – pds graph with the degree sequence of G 

as its eigen vector has been studied.  
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1 Introduction 

 Graphs under consideration in this paper are finite, simple, undirected and connected. 

For notations and terminology, we follow [5]. A graph G is said to be r- regular, if every vertex 

of G has degree r. For r ≠ l, a graph G is said to be (r, l) – biregular if the degree d(v) is either 

r or l for any vertex v in G. Let D(G) denote the set of all degrees of vertices in G. Let  and  

denote the minimum and maximum degree respectively in a graph G. Throughout this paper, 

let k denote a positive integer and let c denote an integer.  

Let G1 and G2 be any two graphs. The graph G1◦ G2 obtained from one copy of G1 and 

|V(G1)| copies of G2 by joining each vertex in the ith copy of G2 to the ith vertex of G1 is called 

the corona of G1 and G2. A subset S of V is called a dominating set of G if every vertex in               

V – S is adjacent to at least one vertex in S.  The domination number (G) is the minimum 

cardinality taken over all dominating sets in G. Let χ denote the chromatic number of a graph 

and let  denote its clique number. 

In a graph G, deleting an edge uv and introducing a new vertex w and two new edges 

uw and vw is called the subdivision of the edge uv.  The edge subdivision graph denoted by 

S1(G) is obtained from the graph G by subdividing every edge of G. 

The term arithmetic progression is not new to graph theory. Arithmetic progressions in 

cycle lengths and colouring have won the interest of many researchers till today. For further 

details on these topics, one can refer [6],[7],[8] and [9]. In this paper, we study a similar 

property comparing degree sequences and a related parameter in a graph. 



Tuijin Jishu/Journal of Propulsion Technology 
ISSN: 1001-4055 
Vol. 46 No. 2 (2025) 
__________________________________________________________________________________ 

466 

It is quite obvious that the degree of a vertex is an important parameter in a graph which 

decides most of the graph theoretical properties. But it is not sufficient to judge the entire 

importance of a vertex in a graph. Even two vertices of same degrees will be not of equal 

weightage in the same graph unless one is an isomorphic image of the other. The degrees of its 

neighbours contribute much in determining the weightage of a vertex in a graph. Hence it 

becomes essential to study about the degrees of neighbour vertices also. 

The concepts of support of a vertex, balanced graphs and highly unbalanced graphs 

have been introduced and studied by Selvam Avadayappan and G. Mahadevan [1].  

 The support s(v) of a vertex v is the sum of degrees of its neighbours. That is, s(v) = 

∑ 𝑑(𝑢)𝑢∈𝑁(𝑣) . Note that the support of any vertex in an r – regular graph is r2. 

 A graph G is said to be a balanced graph, if any two vertices in G have the same 

support. It is easy to observe that the complete bipartite graphs Km,n and any regular graphs are 

balanced graphs. A graph G is said to be highly unbalanced, if distinct vertices of G have 

distinct supports. For example, a highly unbalanced graph is shown in Figure 1. 

  

 

 

Figure 1 A highly unbalanced graph 

 The following results have been proved in [1]: 

Result 1  ∑ 𝑠(𝑣)𝑣∈𝑉  =∑ 𝑑(𝑣)𝑣∈𝑉
2
. 

Result 2  For any balanced graph G, (G) = 1 if and only if G ≅ K1,n, n ≥ 1. 

Result 3  For any n ≥ 6, there is a highly unbalanced graph of order n. 

Result 4[4]  A graph G is a balanced graph if and only if G is regular or biregular bipartite 

with each partition having vertices of same degree. 

 Balanced graphs are nothing but support – regular graphs with no restriction on the 

degrees of their vertices. Regular graphs are the only graphs with all vertices of same degree 

and same support. Though it seems that the parameters degree and support of a vertex are 

related to each other, normally these two parameters are not dependent on each other. Two 

vertices of same degree need not have same support in a graph.  

Even a pendant vertex in a graph may have same or more or less support compared to 

that of a vertex of degree two in the same graph. More surprisingly, in K1,n, the pendant vertex 

as well as the center vertex have the same support n. What happens if the support of a vertex 



Tuijin Jishu/Journal of Propulsion Technology 
ISSN: 1001-4055 
Vol. 46 No. 2 (2025) 
__________________________________________________________________________________ 

467 

varies proportionately with its degree in a graph? Does there exist a graph in which the ratio of 

support of any vertex to its degree is always a constant?  

To answer for these questions affirmatively we introduce the concepts of k – perfect 

degree support graph and (k,c) – linear degree support graph in this paper. 

 A graph G is said to be a k – perfect degree support graph (or simply a k – pds graph), 

if for any vertex v in G, 
𝑠(𝑣)

𝑑(𝑣)
 = k. For example, the graph C4  K2 shown in Figure 2 is a 3 – 

pds graph. In general, Cn ◦ K2 is a 3 – pds graph for any n ≥ 3.  

 

 

 

 

Figure 2 C4 ◦ K2 

A graph G is said to be a (k,c) – linear degree support graph (or simply a (k,c) – lds 

graph), if s(u) = k d(u) + c, for every vertex u in G. It is obvious that if G is (k,c) – lds, then  

for any two vertices u and v in G, s(u) – s(v) = k(d(u) – d(v)). For example, the graph shown 

in Figure 3 is a (3, -1) – lds graph.  

 

 

 

 

Figure 3 A (3, -1) – lds graph 

 The following facts can easily be verified: 

Fact 1  Any k – pds graph is nothing but a (k,0) – lds graph.  

Fact 2   In a (k,c) – lds graph, k = 0 if and only if it is a balanced graph. 

Fact 3  r – regular graphs are r – pds graphs and hence (r,0) – lds graphs. 

Fact 4  Km,n is a k – pds graph if and only if m = n = k. 

Fact  5  In a (k,c) – lds graph, two vertices of same degree have the same support. That 

is, d(u) = d(v) implies that s(u) = s(v). 
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 Note that the converse of Fact 5 is not true. For example, in K1,n, n ≥ 2, the vertices of 

same degree have the same support. But it is not a (k,c) – lds graph for any k and c. 

Eigen value of a k – pds graph 

Recall that for an n × n matrix A, a number λ is called an eigen value of A if there exists 

a non zero vector X = (

𝑥1

𝑥2

⋮
𝑥𝑛

) such that AX = λ X and X is called an eigen vector corresponding 

to the eigen value λ. If X is an eigen vector corresponding to the eigen value λ of A, then αX, 

where α is any non zero number, is also an eigen vector corresponding to λ. 

In this paper, we first prove that for any k - pds graph G, k is an eigen value for the 

adjacency matrix of G and the corresponding eigen vector is the degree sequence of G. We also 

obtain some bounds for the minimum and maximum degree of a k – pds graph. In addition we 

construct a few families of k – pds graphs and (k,c) – lds graphs with some constraints. All k – 

pds trees have been characterized.  

Further studies on k – pds and (k,c) – lds product graphs are in [2]. Generating new 

families of k – pds and (k,c) – lds graphs from given k – pds and (k,c) – lds graphs and still 

more characterizations of k – pds graphs are in [3].  

2  Eigen value of a k – pds graph 

Vibration analysis of structures from buildings to bridges is done at the time of 

designing using eigen values and eigen vectors. Eigen values can also be used to test for cracks 

or deformities in structural components used for construction. In addition, the eigen values can 

be used to determine if a structure has deformed under the application of a particular force. In 

control theory, the eigen values of the system matrix of a linear system tell us information about 

the stability and response of our system. A lot more applications of eigen values can be found 

in literature. 

Based on the enormous applications of eigen values and eigen vectors to the society 

and importance of degrees of nodes of a network, we naturally think of methods of linking 

degree sequence and eigen vectors of the network models. 

 In other words, the networks could be designed in such a way to have desired eigen 

values to optimize the favourable results obtained out of it. As we have mentioned earlier, 

graph models are the most appropriate model to any network of known and unknown fields in 

daily life.  

Does there exist any graph in which its degree sequence itself serves as an eigen vector? 

Or for any eigen vector fixed, could we develop a graph model with its degree sequence as the 

given eigen vector? 

Thinking of this line it is of great interest to spot out that k - pds graphs have eigen 

value to be k and its degree sequence itself as an eigen vector. 
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 This existence encourages us to develop the concept of eigen graphs. In any graph G of 

order ν, let MD(G) be an ν × 1 matrix such that its entries are degrees of vertices of G. That is, 

MD(G) = (

𝑑(𝑣1)
𝑑(𝑣2)

⋮
𝑑(𝑣𝜈)

). 

Now if λ is an eigen value of A(G) with respect to eigen vector equivalent to degree 

sequence of G, then A(G)MD(G) =λ MD(G). We call such graphs as λ – eigen graphs. That is, 

 - eigen graphs are graphs with its degree sequence as an eigen vector for the eigen value  

with respect to its adjacency matrix.  

Theorem 2.1 For any positive integer , a graph G is a  - eigen graph if and only if it is a  - 

pds graph. 

Proof Let G be a  - eigen graph for some positive integer . Then A(G)MD(G) =λ MD(G) 

= (𝛾𝑖) where 𝛾𝑖= ∑ 𝛽𝑖𝑘𝛼𝑘
𝜈
𝑘=1  which is equivalent to ∑ d(𝑣𝑘)𝑣𝑘∈𝑁(𝑣𝑖) . That is, ∑ 𝑑( 𝑣𝑘)𝑣𝑘∈𝑁(𝑣𝑖)  

=  𝛾𝑖 = d(vi). We know that s(v) = ∑ 𝑑(𝑢)𝑢∈𝑁(𝑣) . Therefore we have s(vi) =  d(vi) for every 

vertex vi in G which implies that G is a  - pds graph. Conversely, suppose that G is a  - pds 

graph. Retracing the above steps, we get G to be a  - eigen graph.     ■ 

All k – pds graphs constructed in Section 3 and 4 are k – eigen graphs.   

3 Results on k – pds and (k,c) – lds graphs  

The following theorem proves the existence of a k – pds graph for any k ≥ 1. 

Theorem 3.1 For any k ≥ 1, there exists a k – pds graph Hk. 

Proof Construct the graph Hk with vertex set V(Hk) = {x}  { uij / 1 ≤ i ≤ 3, 1 ≤ j ≤ k – 1}           

{vij / 1 ≤ i ≤ 3, 1 ≤ j ≤ k – 1}  {wij / 1 ≤ i ≤ 3, 1 ≤ j ≤ k – 2} and the edge set E(Hk) = { uijvij / 1 

≤ i ≤ 3, 1 ≤ j ≤ k – 1}  {uijwil / 1 ≤ i ≤ 3, 1 ≤ j ≤ k – 1, 1 ≤ l ≤ k – 2}  {xuij / 1 ≤ i ≤ 3,              1 

≤ j ≤ k – 1}. Clearly x is of degree 3(k – 1) and of support 3k(k – 1), uij is of degree k and support 

k2, vij is a pendant vertex with support k and wij is of degree k – 1 and support                     k(k 

– 1), for 1 ≤ i ≤ 3 and 1 ≤ j ≤ k – 1. This gives that Hk is a k – pds graph. 

For example the 5 – pds graph H5 is shown in Figure 4.        ■ 

 The existence of a (k, c) – lds graph for any k ≥ 1 has been established in the following 

theorem. 

Theorem 3.2 For any k ≥ 1, there exists a (k,c) – lds graph Gk for some integer c. 

Proof  Let Gk be the graph with vertex set V(Gk) = { uij / 1 ≤ i ≤ 2, 1 ≤ j ≤ k – 1}  { vij /            1 

≤ i ≤ 2, 1 ≤ j ≤ k – 1}  {wi / 1 ≤ i ≤ k – 1}  { xij / 1 ≤ i ≤ k – 1, 1 ≤ j ≤ k – 1}  { yi /                1 

≤ i ≤ k – 1}; And the edge set E(Gk) = { uijwj / 1 ≤ i ≤ 2, 1 ≤ j ≤ k – 1}  { uijvij / 1 ≤ i ≤ 2,                  
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1 ≤ j ≤ k – 1}  {wiwj / 1 ≤ i,j ≤ k – 1, i ≠ j }  { xijyi / 1 ≤ i ≤ k – 1, 1 ≤ j ≤ k – 1}  { yiwi /         

1 ≤ i ≤ k – 1}  {xijxim / 1 ≤ i, j, m ≤ k – 1, j ≠ m}. 

 Clearly if the degree of a vertex v in Gk is 1, 2, k – 1, k or k+1, then the support of v is 

2, 2+k, 1+(k – 1)2,2+k(k – 1) or 2+k2 respectively. Gk is easily verified to be a (k,c) – lds graph 

with c = 2 – k.  For example G7 is shown in Figure 5.         ■ 

 

 

 

 

 

 

 

Figure 4 The 5 – pds graph H5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5 The graph G7 
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 Next we discuss about the bounds for minimum and maximum degrees in a k – pds 

graph. 

Theorem 3.3 In any non trivial k – pds graph G, 1  δ ≤ k ≤ ∆  k2 – k + 1, for any k ≥ 1.  

Proof Since we consider only connected graphs, obviously  ≥ 1. Let G be a k – pds graph, 

then for any vertex v  V(G), s(v) / d(v) = k. If possible, assume that k < δ. Then one can easily 

note that for any vertex v, s(v) ≥ δd(v) > kd(v) which implies s(v) / d(v) > k, which is a 

contradiction. Hence we conclude that k ≥ δ. Similarly if k > Δ, then s(v) ≤ ∆d(v) < kd(v), which 

is again a contradiction. Hence we can conclude that δ ≤ k ≤ ∆. 

 Now it remains to show that   ≤ k2 – k + 1. Let, if possible, G contain a vertex, say v 

of degree k2 – k + 1+i, for some i  1. If there exists a neighbour w of v in G such that d(w) < 

k, then we take d(w) = k – m, where m ≥ 0. Now s(w) ≥ k2 – k + 1 + i + (k – m – 1). But  ≥ 

1 and so s(w) ≥ k2 – k + 1+i + k – m – 1 = k2 +i – m > k(k – m). This forces that 
𝑠(𝑤)

𝑑(𝑤)
> 𝑘, 

which is a contradiction to the fact that G is k – pds. Hence the degree of every neighbour of v 

exceeds k. That is, d(w) > k, for every w  N(v). Therefore s(v) ≥ d(v) (k+1), which is a 

contradiction. Therefore d(v)  k2 – k +1. Hence we proved.   ■ 

Note that the above inequalities are all strict. As an illustration, one can verify that any 

r – regular graph is an r – pds graph with ∆ = δ = r. Also a 3 – pds graph with  = 7 is shown 

in Figure 6. The graph shown in Figure 6 stands as an example of a graph with 1 < δ < k < ∆ 

< k2 – k + 1.  

 

 

 

 

Figure 6 A graph for which 1 < δ < k < ∆ < k2 – k + 1. 

 In the case of (k,c) – lds graphs the above inequality does not hold good. In fact, we 

cannot fix any bounds for minimum and maximum degrees of a (k,c) – lds graph. Supporting 

the above argument, we present the next theorem in case of (1,c) – lds graph. 

Theorem 3.4 For any two positive integers m, n such that m > n ≥ 1, there exists a (1,c) – lds 

graph G with (G) = n and (G) = m, for some integer c. 

Proof Let m and n be two positive integers such that m > n. Now we construct a (1,c) – lds 

graph of minimum degree n and maximum degree m. 
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Case 1 m is even. 

 Construct G with vertex set V = {u1, u2, … , un-1, v1, v2, … , vm} and edge set E = {uivj, 

1  i  n – 1 and 1  j  m; v2i-1v2i, 1  i  m/2}. Here all ui’s are of degree m and support mn 

and all vj’s are of degree n and support mn – m + n, where 1  i  n – 1 and 1  j  m. And so 

for every vertex v in G, s(v) = d(v) + m – n. Hence G is a (1,m-n) – lds graph.  

For example, the case when n = 3 and m = 6 is illustrated in Figure 7. 

 

 

 

 

Figure 7 

Case 2 m is odd. 

 We now construct G with vertex set V = {u1, u2, … , un-1, v1, v2, … , vm, x1, x2, …, xn-1, 

y1, y2, …, ym} and edge set E = {uivj and xiyj, 1  i  n – 1 and 1  j  m; v2i-1v2i and y2i-1y2i 1  

i  (m-1)/2; vmym}. Here all ui’s and xi’s are of degree m and support mn and all vj’s and yj’s are 

of degree n and support mn – m + n, where 1  i  n – 1 and 1  j  m. Here also for every 

vertex v in G, s(v) = d(v) + m – n. Therefore G is a (1,m-n) – lds graph. Such a (1,c) – lds 

graph G constructed with m = 5 and n = 3 is given in Figure 8.   ■ 

  

 

 

Figure 8 A (1,c) lds graph with  = 5 and  = 3. 

It is clear that K2 is the only 1 – pds graph. For any k ≥ 1, we have proved the existence 

of a k – pds graph. Next we characterize all 2 – pds graphs in the next theorem.  

Theorem 3.5 A connected graph G is 2 – pds if and only if G ≅ Cn, n ≥ 3, or S1(K1,3). 

Proof Let G be a 2 – pds graph. Then by Theorem 3.3, minimum degree in G is either 1 or 2.  

Case 1 G contains a pendant vertex v. 

  Since G is 2 – pds, v must be adjacent to a vertex u of degree 2. This means that s(u) = 

4 and hence u is adjacent to a vertex w of degree 3. We also conclude that no neighbour of w 

is a pendant vertex and s(w) = 6. This forces that, all neighbours of w are of degree 2. Let N(w) 
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= {u,x,y}. Then we have d(u) = d(v) = d(x) = 2. Now s(x) = 4. Hence the remaining neighbour 

of x is a pendant vertex. Similarly y is adjacent to a pendant vertex. Thus G ≅ S1(K1,3). 

Case 2 (G) = 2. 

 That is, G contains no pendant vertex. Let v be a vertex of degree 2. Then clearly s(v) 

= 4. This forces that any vertex in N(v) can have degree at most 3. In other words, N(v) can 

have vertices of degree 2 or 3. If v is adjacent to a vertex of degree 3, then the other neighbour 

of v is a pendant vertex, which leads to a contradiction. Thus any vertex in G of degree 2 can 

be adjacent only to vertices of degree 2. This forces that, G is a 2 – regular connected graph. 

This means that G is isomorphic to Cn, for n ≥ 3. And the converse is easy to verify.  

           ■ 

It is interesting to characterize (k,c) – lds graphs also. As an initialization, we 

characterize (1,c) – lds graphs with  = 1 in the next theorem.  

The Bistar graph,  Bn,n, n ≥ 0 is obtained from two stars K1,n by adding an edge between 

their central vertices. For example, one can refer B4,4 in Figure 9. 

 

 

 

Figure 9 The Bistar graph B4,4 

Theorem 3.6 A graph with at least one pendant vertex is (1,c) – lds if and only if it is a bistar 

Bc+1,c+1. 

Proof Let G be a graph with (G) = 1. Assume that G is a (1,c) – lds graph. Then for every 

vertex v in G, s(v) = d(v) + c, for some constant c. In particular, we have c ≥ 0. Otherwise, 

support of any pendant vertex is less than or equal to 0, which is a contradiction.  

When c = 0, G ≅ K2, which is nothing but B0,0. Now let c > 0. Let u be a pendant vertex 

in G and let v be its neighbour. Then s(u) = c+1 and hence d(v) = c+1. This implies that s(v) 

= 2c+1. If there exists a vertex w  N(v), with degree m > 1, then s(w) =  m + c. Hence all the 

neighbours of w except v must be pendant. Also we know that pendant vertices can be adjacent 

only to vertices of degree c + 1. Hence m = c + 1. That is, d(w) =  c + 1. Therefore the 

remaining c – 1 neighbours of v are pendant. Hence G ≅ Bc+1,c+1.  
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The converse is obvious.           ■  

Recall that mG denotes the union of m copies of G. Let < K1,n, m > denote the graph 

obtained from mK1,n by adding a new vertex and joining it with the center vertex of each copy 

of K1,n. For example, the graph depicted in Figure 6 is nothing but < K1,2, 7 >.  One can easily 

note that < K1, k – 1, k
2 – k + 1 > is a k – pds tree.  

Theorem 3.7 For k ≥ 2, a tree G is k – pds tree if and only if G ≅ < K1, k – 1, k
2 – k + 1 >. 

Proof  Let G be a k – pds tree. Then G contains at least two pendant vertices. Also all the 

pendant vertices of G are adjacent to vertices of degree k in G. That is, G contains a vertex of 

degree k. In fact, G contains at least two such vertices of degree k, say v1 and v2, for which 

every neighbour except one is a pendant vertex. Otherwise, the graph obtained by removing all 

pendant vertices from G is not a tree, which is a contradiction.  

Since s(v1) = k2, the only non pendant neighbour of v1 and v2 is of degree k2 – k + 1. 

The same is true for v2 also.  

Let us first assume that v1 and v2 have a common neighbor, say w, of degree k2 – k + 1. 

Now we think of the remaining neighbours of w. One can note that no neighbour of w can be 

of degree less than k. For, if a neighbour of w is of degree k – 1, then its support will be at least  

k2 + k – 3 which is always greater than the required support k2 – k since k ≥ 2. Therefore no 

neighbour of w is of degree less than k. But s(w) = k(k2 – k + 1) and so every neighbour of w 

should be of degree k. Consequently, except w, every negihbour of vertices in N(w) is a pendant 

vertex. Thus G ≅ < K1, k – 1, k
2 – k + 1 >.  

If suppose v1 and v2 have two different neighbours w1 and w2 of degree k2 – k + 1, then 

as in the above discussion, G is disconnected with each component isomorphic to                  < 

K1, k – 1, k
2 – k + 1 >, which is a contradiction since G is a tree. Hence we conclude that if G is 

a k – pds tree then G ≅ < K1, k – 1, k
2 – k + 1 >. The converse follows easily.                ■ 

Corollary 3.8 For k ≥ 2, an acyclic graph G is a k – pds graph if and only if G ≅ m < K1, k – 1, 

k2 – k + 1 >, for some m ≥ 1. 
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4    Construction of k – pds and (k,c) – lds graphs 

 In this section, we construct few families of k – pds and (k,c) – lds graphs. The next 

theorem gives the construction of a k – pds family with all odd degrees from 1 to 2k – 1 together 

with k. 

Theorem 4.1 For any k ≥ 1, there exists a k – pds graph G with D(G) = {1,3,5,…,2k – 1, k}. 

Proof   Let m = lcm(1,3,5,…,2k – 1). Let us construct a graph Gk with vertex set V(Gk) =           

{vi / 1 ≤ i ≤ m}  {uij / 1 ≤ i ≤ k, 1 ≤ j ≤ m/(2i – 1)} and the edge set E(Gk) = { uijvl / 1 ≤ i ≤ k, 1 

≤ j ≤ m/(2i – 1), (2i – 1)(j – 1) + 1 ≤ l ≤ (2i – 1)j}.  

  In the constructed graph Gk, for 1 ≤ i ≤ m, d(vi) = k and s(vi) = k2. And uij, 1 ≤ i ≤ k, 1 ≤ 

j ≤ m / (2i – 1) is of degree 2i – 1 and of support (2i – 1)k. Hence Gk is a k – pds graph.       

For example, the constructed 3 – pds graph G3 is given in Figure 10.  ■ 

 

 

 

 

Figure 10 A 3 – pds graph G3 

 Next we construct another family of k – pds graphs with domination number k + 1 for 

any k ≥ 2.  

Theorem 4.2 For any given k ≥ 2, there exists a k - pds graph with D(G) = {2,4,6,…,2k – 2, k}. 

Proof Let m = lcm(2,4,…,2k-2). Let us construct a graph Gk with vertex set V(Gk) = {vi / 1 ≤ i 

≤ m}  {uij / 1 ≤ i ≤ k - 1, 1 ≤ j ≤ m/(2i)} and the edge set E(Gk) = { uijvl / 1 ≤ i ≤ -1, 1 ≤ j ≤ 

m/2i, 2i(j – 1) + 1 ≤ l ≤ 2ij}{v2i-1v2i/ 1≤ i ≤ m/2}.  

  In Gk, for 1 ≤ i ≤ m, d(vi) = k and s(vi) = k2. And uij, 1 ≤ i ≤ k-1, 1 ≤ j ≤ m / (2i) is of 

degree 2i and of support 2ik. Hence Gk is a k – pds graph. 

 For example, a 4 – pds graph constructed as above  is shown in Figure 11.  ■ 

                                 

Figure 11 A 4 – pds graph 



Tuijin Jishu/Journal of Propulsion Technology 
ISSN: 1001-4055 
Vol. 46 No. 2 (2025) 
__________________________________________________________________________________ 

476 

Theorem 4.3 For any k ≥ 2, there exists a k – pds bipartite graph with (G) = k + 1. 

Proof Let us construct a graph Gk with vertex set V(Gk) = {ui / 1 ≤ i ≤ k-1}                       {vi 

/1 ≤ i ≤ k+1}  {wi /1 ≤ i ≤ k+1} and the edge set E(Gk) = {uivj / 1 ≤ i ≤ k – 1, 1 ≤ j ≤ k+1}  

{viwi / 1 ≤  i ≤ k+1}. In Gk, ui’s are of degree k+1 and support k(k+1), vj’s are of degree k and 

support k2 whereas wk’s are pendant vertices with support k.  

Thus Gk is a k – pds bipartite graph with (G) = k + 1. As an example, the 8 – pds graph 

G8 is shown in Figure 12.                   ■  

 

 

 

 

 

 

 

Figure 12 An 8 – pds graph G8 

 Note that K2 is the only 1 – pds graph with domination number one. 

The next theorem gives yet another construction for a family of k – pds graphs without 

pendant vertices. 

Theorem 4.4 For any k ≥ 3, there exists a bipartite k – pds graph Gk with (G) = 2. 

Proof To prove the existence of such a k – pds graph, we give two different constructions 

depending on the parity of k.  

Case (i) Let k be even. 

  Let the vertex set of Gk be V(Gk) = {uij /1 ≤ i ≤ 
𝑘2− 2𝑘+2

2
, 1≤ j≤ k–1} {vij / 1 ≤ i ≤ 

𝑘2− 2𝑘+2

2
,  1 ≤ j ≤ 2}  {w} and the edge set be E(Gk) = { uijvir / 1 ≤ i ≤ 

𝑘2− 2𝑘+2

2
,  1 ≤ j ≤ k – 1, 

1 ≤ r ≤ 2}  {vijw / 1 ≤ i ≤ 
𝑘2− 2𝑘+2

2
,  1 ≤ j ≤ 2}. 

 In Gk, uij’s are of degree 2 and of support 2k, vij’s are of degree k and support k2 whereas 

w is of degree k2-2k+2 and of support k(k2-2k+2). Therefore Gk is a k – pds graph. 
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Case (ii) Let k be odd. 

We construct Gk as follows: V(Gk) = { uij, aij / 1 ≤ i ≤ 
𝑘2− 2𝑘+1

2
,1 ≤ j ≤  k – 1}  {vij, bij / 

1 ≤ i ≤ 
𝑘2− 2𝑘+1

2
,  1 ≤ j ≤ 2}  { wi / 1 ≤ i ≤ 2}  {ci, dj / 1 ≤ i ≤ k – 1, 1 ≤ j ≤ 2} and the edge set 

E(Gk) = { uijvir / 1 ≤ i ≤ 
𝑘2− 2𝑘+1

2
, 1 ≤ j ≤ k – 1, 1 ≤ r ≤ 2}  {aijbir / 1 ≤ i ≤ 

𝑘2− 2𝑘+1

2
,  1 ≤ j ≤ k – 

1, 1 ≤ r ≤ 2}  {vijw1 / 1 ≤ i ≤ 
𝑘2− 2𝑘+1

2
,  1 ≤ j ≤ 2}  {bijw2 / 1 ≤ i ≤ 

𝑘2− 2𝑘+1

2
,  1 ≤ j ≤ }  {widi 

/ 1 ≤ i ≤ 2}  {cjdi  / 1 ≤ i ≤ 2, 1 ≤ j ≤ k -1}. In Gk, uij, aij, cij’s are of degree 2 and support 2k, vij, 

bij, dij’s are of degree k and support k2, w1 and w2 are of degree k2-2k+2 and support k(k2-2k+2). 

Hence Gk is a k – pds graph.  

For example, the graphs G5 and G6 are illustrated in Figure 13.   ■ 

 

 

  

 

 

 

                                                                          

 

The graph G5 

 

 

 

 

 

 

 

The graph G6 

Figure 13 
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There exists a family of k – pds graphs with clique number k which is proved in the 

next theorem.  

Theorem 4.5 For any k ≥ 2, there exists a k – pds biregular graph H with (H) = χ(H) = (H) 

= k. 

Proof Let k ≥ 2 be any integer. Construct the graph Hk with vertex set,                                    V(Hk) 

= {ui / 1 ≤ i ≤ k}  { vij / 1 ≤ i ≤ k, 1 ≤ j ≤ k -1}. Let k be even. Then the edge set of Hk is given 

as, E(Hk) = {uiuj / 1 ≤ i ≤ k, 1 ≤ j ≤ k, i ≠ j}  { vi,2j-1vi,2j / 1 ≤ i ≤ k, 1 ≤ j ≤ (k/2) -1}  {v2i-1,k-

1v2i,k-1 /1 ≤ i ≤ k/2}  { uivij  / 1 ≤ i ≤ k; 1 ≤ j ≤ k – 1}. For odd integer k,                  E(Hk) = { 

uiuj / 1 ≤ i ≤ k, 1 ≤ j ≤ k, i ≠ j}  {vi,2j-1vi,2j / 1 ≤ i ≤ k,   1 ≤ j ≤ (k-1)/2}  { uivij  /      1 ≤ i ≤ k; 1 

≤ j ≤ k – 1}. The vertices ui’s are of degree 2(k – 1) and support 2k(k-1) whereas vij’s are of 

degree 2 and support 2k. Thus, Hk is a k – pds biregular graph. Also clique number of Hk is k 

and it is easy to note that (Hk) = χ(Hk) = k. For example, H6 and H7 are shown in Figure 14.

              ■ 

 

 

 

 

 

 

 

The graph H6 

 

  

 

 

 

 

 

The graph H7 

Figure 14 
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Theorem 4.6  For any k ≥ 1 and c ≥ 1, there exists a (k,c) – lds graph G with s(v) = k d(v) + 

c, for any vertex v  V(G). 

Proof   Consider the graph G = Kk+1◦ 𝐾𝑐
𝑐. In this graph, pendant vertices are of support k + c 

and the other vertices are of degree k + c and support k2 + kc + c. Hence G is the required             

(k,c) – lds graph.  

For example, the (k,c) – lds graph with k = 3 and c = 3 is shown in Figure 15.       ■ 

 

 

  

 

 

 

Figure 15 
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