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Abstract: A serious concern to human and their health upcoming years is heart disease.  To prompt diagnosis 

care, patients frequently experience impairment or even pass away.  The  diagnosis is directly dased on the 

experience of the many doctors, and the situation is made worse by the numerous issues related to heart disease 

that place a great burden on them.  Therefore, it makes sense to introduce computer-aided approaches to help 

doctors diagnose cardiac disease in order to improve treatment.  Nowadays, researchers typically use the feature 

selection approach to the processed (13 features) dataset that was chosen by physicians. This is improper because 

the feature size is so small.  The usefulness of the unprocessed dataset is overlooked, and many are unaware that 

it may contain latent. The mRMR is better than previous approaches, and the incremental feature selection method 

works well. It has the least helpful features in addition to the best accuracy. On the Cleveland dataset, it has 100% 

accuracy with 8 features, on the Hungarian dataset, it has 98.3% accuracy with 14 features, and on the Long-

beach-VA dataset, it has 99% accuracy with 9 characteristics. Additionally, we discover that certain 

characteristics—which physicians consider insignificant—have a role in classification and ought to catch their 

attention. 

TERMS INDEX: Heart illness, mutual information, feature selection, and mRMR. 

 

1. INTRODUCTION:  

  Due to their suddenness, cardiovascular diseases (CVDs) claim millions of lives each year. The patient 

is at risk of becoming disabled or maybe dying if treatment is delayed. Therefore, one successful strategy to save 

lives is to diagnose cardiac disease early and accurately .As medical research has advanced, physicians have 

identified numerous heart disease signs, directly created a more potent classifier by implementing the majority 

voting technique. Four machine learning techniques— K-Nearest Neighbour, Random Forest, and Logistic 

Regression—make up this ensemble approach. Out of the four algorithms, the one with the highest prediction 

accuracy is 88%. 90% accuracy is attained by the ensemble method utilizing the voting procedure. These 

approaches do not fully utilize the dataset and disregard the differences in the features. A fundamental step in the 

current study area is reducing the dimensionality of datasets, which entails removing redundant or unimportant 

information [11] that will drastically impair the effectiveness of machine learning techniques or raise computing 

costs.  Feature extraction and feature selection are the two primary branches of dimensionality reduction.  The 

two most used feature extraction techniques are PCA and LDA [12].  A neural network approach using PCA was 

presented by Karayilan et al. [13] to identify cardiac disease.  Additionally,  approach based on the LDA was 

proposed by Kolukisa et al. [14].  A technique for choosing PCA and as the input of Random Forest using 

spectroscopic data was presented by Shafizadeh-Moghadam and Hossein [15].  They discovered that the target 

variable's most pertinent primary components weren't the first. 

                  A dataset's features that follow a specific algorithm are chosen through feature selection.  These 

techniques preserve all feature information and improve the interpretability of prediction outcomes.  Additionally, 
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it is an effective method for preventing overfitting [16], which is brought on by the expansion of feature 

dimensionality space.  Feature selection, filter methods, wrapper methods, and embedding techniques are the three 

general categories [17].  Filter techniques assess their value or rank using a set of criteria.  It’s computationally. 

.  Elastic net plus a genetic algorithm make up this technique.  The first layer uses the evolutionary algorithm, one 

of the heuristic techniques, to choose a local optimization feature subset. The second layer uses the penalty factors 

to remove the redundant features.  

                     The well-known decision tree algorithm is one of the filter techniques based on the Shannon 

information entropy theory that have become significant in artificial intelligence since its inception [24].  The first 

purpose of the mutual information maximization (MIM) method is to reduce the uncertainty of class labels.  

Nevertheless, this approach only takes into account a feature's relevance and disregards its redundancy, resulting 

in the presence of redundancy in the chosen characteristics.  The concept of feature redundancy is introduced by 

Peng et al. [25] to enhance the effect of mutual information, significantly increasing its application.  A frequent 

occurrence in datasets related to heart disease is value missing, which significantly impairs feature selection 

techniques.  In order to avoid the detrimental impact that missing values can have, the mRMR technique will 

disregard certain feature values. 

1.1. OUR-CONTRIBUTIONS: 

                  These shortcomings still exist in current efforts, which primarily use certain algorithms  selection 

techniques of 13 features.  The  feature selection approach on so few features is not necessary.  The dataset limits 

the algorithm's performance, and the 74-feature dataset ought to have more corroborating data.  The mutual 

information approach is a useful option for taking into account the interaction within features.  Additionally, the 

efficacy of the incremental feature combination approach needs to be confirmed.  In this study, we eliminated the 

dataset's performance limitation and highlighted the significance of the 74 characteristics dataset.  One of the filter 

methods, the mRMR approach. 

           The Random Forest method, mRMR, Kendall τ correlation, LDA, PCA, and LDA theories and algorithms 

are presented in Section II. Additionally, the flowchart for the entire experiment and datasets related to heart 

disease are introduced in this section. A thorough comparison of the findings, discussion, and conclusion are 

presented in Section III.  and Section IV concludes by summarizing the findings of this effort and outlining a 

future plan. 

1.2.METHODS AND DATASETS: 

                        One method for reducing feature scale is dimensionality reduction [30]. It finds the latent 

information in addition to reducing their dimensionality and speeding up the training procedure. This type of 

approach can occasionally highlight the significance of certain features [31], [32]. The specifics of the Random 

Forest, mRMR, Kendall τ correlation, LDA, and PCA techniques will be covered in this section. 

A) The PCA Method  

   PCA  type of method that reflects the original data and investigates the most important factors.  To 

accomplish the goal of dimensionality reduction, it employs matrix transformation, minimizes information loss, 

and allows variance values to grow as much as possible.  Numerous research fields, including text mining and 

picture recognition, have made use of PCA.   

2. Proposed Algorithms: The proposed algorithms are as follows: 

Table 2 displays the distributions for Cleveland, Hungarian, and Long Beach, Virginia. Following the removal of 

any missing or worthless values, they have 280, 249, and 121 samples, respectively. Whereas the presence 

indicates illness, the absence indicates health. They're both out of balance. 

Algorithm-1 Kendall 

Output the new dataset D 
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def select_top_n_features(dataset, target_label, n): 

    """ 

    Selects the top n features from the dataset based 

 on Kendall's tau correlation with the target label. 

 

    Parameters: 

    dataset (pd.Data Frame): The input dataset containing features and the target label. 

    target_label (str): The name of the target label column. 

    n (int): The number of top features to select. 

 

    Returns: 

    pd.DataFrame: 

 A new DataFrame containing the top n features and the target label. 

    """ 

    # Separate features (X) 

 and target label (y) 

    X = dataset.drop(columns=[target_label]) 

    y = dataset[target_label] 

 

    # Calculate Kendall's tau for each feature 

    tau_values = { 

        feature: abs(kendalltau(X[feature], y).correlation) 

        for feature in X.columns 

    } 

 

    # Sort features by absolute tau value in descending order and select top n 

    top_features = sorted(tau_values, key=tau_values.get, reverse=True)[:n] 

 

    # Create a new DataFrame with the selected features and target label 

    selected_data = dataset[top_features + [target_label]] 

    return selected_data 

 

ALGORITHM 2: 

 

# Function to process dataset 
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def process_dataset(D, n): 

    L = D.pop("target")  # Extract label L 

    Dt = [] 

 

    for i in range(len(D.columns) - 2, -1, -1): 

        feature = D.iloc[:, i] 

        if feature.name not in Dt and feature.nunique() >= 20: 

            transformed_feature = feature.apply(lambda x: L.iloc[int(x / 0.1)] if int(x / 0.1) < len(L) else x) 

            Dt.append(transformed_feature) 

    Dt = pd.DataFrame(Dt).T  # Convert list of series to DataFrame 

  # Build a Random Forest model 

    X_train, X_test, y_train, y_test = train_test_split(Dt, L, test_size=0.2, random_state=42) 

    rf = RandomForestClassifier(max_depth=25, random_state=42) 

    rf.fit(X_train, y_train) 

    # Get feature importances 

    d = dict(zip(Dt.columns, rf.feature_importances_)) 

    d_sorted = sorted(d.items(), key=lambda item: item[1], reverse=True 

 # Select top n features 

    Dp = Dt[[feature for feature, importance in d_sorted[:n]]] 

    Dp["target"] = L  # Add label back 

    return Dp 

 

Algorithm-3 to perform PCA 

# Sample dataset 

np.random.seed(42) 

# Standardize numerical features 

scaler = StandardScaler() 

X_scaled = scaler.fit_transform(data[['feature1', 'feature2', 'feature3']]) 

# Perform PCA 

pca = PCA(n_components=2) 

principal_components = pca.fit_transform(X_scaled) 

pc_df = pd.DataFrame(principal_components, columns=['PC1', 'PC2']) 

# Add categorical variable 

pc_df['category'] = data['category'] 

# Function to calculate correlation ratio (η²) 
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def correlation_ratio(cat, values): 

    categories = np.unique(cat) 

    total_variance = np.var(values) 

    between_group_variance = sum( 

        np.var(values[cat == c]) * len(values[cat == c]) for c in categories 

    ) / len(values) 

    return (total_variance - between_group_variance) / total_variance 

# Compute η² for each principal component 

correlations = {} 

for pc in ['PC1', 'PC2']: 

    correlations[pc] = correlation_ratio(pc_df['category'], pc_df[pc]) 

 

# Display correlation results 

correlations_df = pd.DataFrame.from_dict(correlations, orient='index', columns=['Eta Squared']) 

print(correlations_df) 

 

2.1. Flowchart of the  heart disease prediction. 

   Displays  the distributions for Cleveland, Hungarian, and Long Beach, Virginia. Following the removal 

of any missing or worthless values, they have 280, 249, and 121 samples, respectively. Whereas the presence 

indicates illness, the absence indicates health.  

 

  

Fig1. Flowchart of heart disease prediction. 
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The flow chart describes that the heart disease prediction in various versins with the dimensionality reduction and 

classifiers. 

 

3. OUTCOMES AND EXAMINATION  

3.1. OUTCOMES FROM THE ACCIDENTAL DATASET 

 Both the datasets and the classifiers' properties have an impact on the prediction outcomes.With their respective 

AUCs, ANN and KNN exhibit the lowest performance among these classifiers, almost losing the prediction 

function. It suggests in an indirect way that pre-processing is required when using ANN and KNN, and that certain 

classifiers have a great ability to remove irrelevant information. The fact that dataset type affects the prediction 

effect is another noteworthy factor; Cleveland and Hungarian appear to be superior to Long Beach, Virginia.  

                                                                                                                                                                                     

  The  Kendell τ  & the  Random Forest methods, we evaluate the performance of the incremental feature 

combination method on three datasets in Fig. 2.  In this experiment, 30 features are chosen and collected in a 

certain order. The first feature added is the 25th most important feature, followed by the 24th most important 

feature, and so on. The first features have a minimum of five.  Based on the results, the accuracy of Cleveland and 

Hungarian increases quickly as the amount of features increases.  On the Long-Beach-Va dataset, accuracy does 

not appear to increase until the feature number exceeds 25.  The accuracy growth is modest and steady, particularly 

when the feature number is less than 15.  It suggests that inconsequential characteristics have minimal impact. 

Table 1: processed  data sets features 

S.No Original 

number 

Feature 

name 

Feature description 

1 3 Age  Age in years 

2 4 Sex  Sex (1=male,0=female) 

3 9 cp Chest pain type 

• value1:typical angina, 

• value 2: a typical angina, 

• value 3: non anginal pain 

• value 4: asymptomatic 

4 10 thresbps The Resting hold presure 

5 12 chol The Serum cholestroal in mg/dl 

6 16 fbs The Fasting blood sugar>120mg/dl for 1=true,0=false 

7 19 resteeg The Resting electrocardiographic results 

8 32  thalach The Maximum heart rate achieved 

9 38 exang The Exercise induced angina for 1= yes, 0=no 

10 40 oldpeak The ST depression induced by exercise relative to rest 

11 41 slope The slope of the peak exercise ST segment  

12 44 ca Height at rest 
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13 51 thal • 3=normal 

•  6=fixed defect 

• 7=reversable defect 

14 58 num Diagnosis of heart disease i.e. heart disease status. 

 

 

 

4.Simulation Results 

 

The simulation results for the proposed algorithms are as follows in the specified data sets. 

 

Fig2. distribution  based on sex 

In Fig 2,represents the distribution of test results based on sex, divided into four categories: 

1. Positive Males (Red - 50%):This group makes up half of the total population, meaning that 50% of all 

individuals in the study are males who tested positive. 

2. Positive Females (Green - 5%):This category is much smaller, showing that only 5% of the total 

individuals are females who tested positive. 

3. Negative Males (Blue - 29%):This segment represents 29% of the total population, indicating males 

who tested negative. 

4. Negative Females (Light Blue - 16%):This section accounts for 16% of the total population, 

representing females who tested negative. 

The given pie chart represents the relationship between blood sugar levels and heart disease. It is divided into two 

segments, showing the percentage of individuals with heart disease who either have high blood sugar or do 

not.Dark Purple Section (33%)- represents people who have high blood sugar and also suffer from heart disease. 

Light Blue Section (67%) -represents people who do not have high blood sugar but still suffer from heart disease. 
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Fig 3. distribution of blood sugar levels 

  A majority (67%) do not have high blood sugar. However, 33% of people with heart disease  high blood 

sugar, indicating a possible link between blood sugar levels and heart disease. The 3D effect and the separation 

of one slice (exploded pie chart) are likely used to emphasize the Detailed Explanation of the Pie Chart on Heart 

Disease and Blood Sugar.  In Fig 3,  represents the distribution of blood sugar levels among individuals with heart 

disease.  

The  Fig  3, is divided into two portions: 

• 33% (Dark Purple Segment): These are individuals who have high blood sugar and also suffer from heart 

disease. 

• 67% (Light Blue Segment): These are individuals who do not have high blood sugar but still suffer from 

heart disease 

Blood Sugar Risk Factor: 

High blood suar (diabetes or prediabetes) is a well-known risk factor for heart .The 33% figure suggests that a 

significant proportion of heart disease cases are associated with high blood sugar, possibly due to conditions 

like diabetes, insulin resistance, or metabolic syndrome .Other Causes of Heart Disease (67% Group): 

The 67% who do not have high blood sugar still have heart disease, meaning there are other risk factors 

contributing to their condition, 

➢ High blood pressure 

➢ Smoking 

➢ High cholesterol 

➢ Obesity 

➢ Lack of exercise 

➢ Genetics (family history of heart disease) 

• Clinical Importance: 

• While diabetes is a major contributor to heart disease, it is not the only cause. 

• Even people with normal blood sugar levels should maintain a heart-healthy lifestyle to 

reduce their risk. 
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Fig 4. Heatmap of features of the Cleveland CHD dataset derived using Pearson correlation coefficient 

  In Fig 4, represent  Heatmap of features of the Cleveland CHD dataset derived using Pearson correlation 

coefficient dataset, derived using  Pearson correlation coefficient. The Pearson correlation measures the linear 

dependency between two variables, with values ranging from -1 to 1. In the heatmap, red represents negatively 

correlated features, meaning an increase in one feature leads to a decrease in the other, while green indicates 

positively correlated features, signifying that both variables increase together. This visual representation helps 

identify patterns that may contribute to heart disease prediction. 
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Fig 5. A machine intelligence framework for Cleveland heart disease dataset. 

 

 

 

.Table 2. Proposed different aspect and details 

Aspect Details 

Correlation Method Pearson Correlation Coefficient 

Heatmap Color Scale 
- Red: Negatively correlated features  

- Green: Positively correlated features 

Correlation Range -1 (strong negative) to +1 (strong positive) 

Dataset Name Cleveland CHD Dataset 

Key Features Age, Sex, Cholesterol, Resting Blood Pressure, ECG Readings, etc. 

Total Instances Includes both normal subjects and heart patients 

Data Representation Graphical representation of dataset composition 

Imputation Used to handle missing values for complete analysis 

Purpose Identify key predictors of heart disease, assist in early diagnosis and treatment 
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  By analysing the correlation heatmap, researchers can determine which features have the most significant 

impact on heart disease risk. Strong correlations may indicate potential   

 

Fig 6 correlation between categorical features & dimensions 

biomarkers or key predictors that can aid in early diagnosis and targeted treatment strategies 

 In Fig7,   represents this is a confusion matrix for an SVM classification. True Positives (TP): 95 (Actual 

Positive, Predicted Positive) 

• False Negatives (FN): 23 (Actual Positive, Predicted Negative) 

• False Positives (FP): 20 (Actual Negative, Predicted Positive) 

• True Negatives (TN): 138 (Actual Negative, Predicted Negative) 
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Fig 7.  confusion matrix for an SVM 

From this, you can calculate key performance metrics: 

• Accuracy = (TP + TN) / (TP + TN + FP + FN) 

= (95 + 138) / (95 + 138 + 20 + 23) 

= 233 / 276 ≈ 84.42% 

• Precision (Positive Predictive Value) = TP / (TP + FP) 

= 95 / (95 + 20) 

= 95 / 115 ≈ 82.61% 

• Recall (Sensitivity, True Positive Rate) = TP / (TP + FN) 

= 95 / (95 + 23) 

= 95 / 118 ≈ 80.51% 

• Specificity (True Negative Rate) = TN / (TN + FP) 

= 138 / (138 + 20) 

= 138 / 158 ≈ 87.34% 

• F1 Score = 2 × (Precision × Recall) / (Precision + Recall) 

≈ 2 × (0.8261 × 0.8051) / (0.8261 + 0.8051) 

≈ 81.75% 
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 This shows that the SVM model performs well, with a good balance between precision and recall. If you 

want improvements, you might fine-tune hyperparameters or try different kernel functions.

 

Fig 8. confusion matrix for a K-Nearest Neighbours (KNN) 

   This is a confusion matrix for a K-Nearest Neighbours (KNN) classification model. Here’s the 

breakdown of the values: 

• True Positives (TP): 89 (correctly predicted positive cases) 

• False Negatives (FN): 29 (actual positives incorrectly classified as negatives) 

• False Positives (FP): 31 (actual negatives incorrectly classified as positives) 

• True Negatives (TN): 127 (correctly predicted negative cases) 

From this, you can calculate key performance metrics: 

1. Accuracy = 
TP+TN

TP+TN+FP+FN
=

89+127

89+127+31+29
=

216

276
= 0.783 = 78.3% 

2. Precision = 
TP

TP+FP
=

89

89+31
=

89

120
= 0.742 = 74.2% 

3. Recall (Sensitivity) = 
TP

TP+FN
=

89

89+29
=

89

118
= 0.754 = 75.4% 

4. F1-Score = 2 ×
Precision×Recall

Precision+Recall
= 0.748 = 74.8 
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Fig 9. Random Forest Classifier 

In Fig 9, represents: 

• True Positives (TP): 95 (Actual Positive, Predicted Positive) 

• False Positives (FP): 14 (Actual Negative, Predicted Positive) 

• False Negatives (FN): 23 (Actual Positive, Predicted Negative) 

• True Negatives (TN): 144 (Actual Negative, Predicted Negative) 

  This confusion matrix represents the performance of a Random Forest Classifier in a binary 

classification problem. It compares the actual labels with the predicted labels to assess True Positives (TP) = 95  

• The model correctly identified 95 positive cases. 

• False Negatives (FN) = 23  

• The model incorrectly predicted 23 actual positive cases as negative. 

• False Positives (FP) = 14  

• The model incorrectly predicted 14 actual negative cases as positive. 

• True Negatives (TN) = 144  

• The model correctly identified 144 negative cases. 

Using these values, we can calculate the following key metrics: 

➢ Accuracy: 86.6% (Overall correctness) 

➢ Precision: 87.2% (Reliability of positive predictions) 

➢ Recall: 80.5% (Ability to detect actual positives) 

➢ F1-Score: 83.7% (Harmonic mean of precision & recall) 

  The model performs well overall, with a high precision (87.2%), meaning it makes few false positive 

errors.  
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Table3. Performance proposed method MIFH along with baseline methods statistics on UCI heart disease Cleveland. 

Research by  Method Accuracy in % Sensitivity in % Specificity in % 

Purushottam et all 

in 2016 

Rule based 

classifier 

86.7 … … 

Sha etc all in 2017 PPCA 82.18 75 90.5 

Vijayashree etc all 

in 2018 

PSO with SVM 84.36 --- --- 

Haq etc all in 2018 Relief +LR 89 77 98 

Haq etc all in 2018 mRMR+NB 84 77 90 

Hq etc all in 2019 LASSO+SVM 8 75 96 

Saqline etc all in 

2019 

RBF kernel based 

SVM 

81.19 72.92 88.68 

Mohan etc all in 

2019 

HRF LM 88.7 92.8 82.6 

Ali etc all in 2019 L1 linear SVM + 

L2 linear & RBF 

SVM 

92.22 82.92 100 

MIFH  FAMD +RF 93.44 89.28 96.96 

 

 

Fig 10. MIFH along with baseline methods statistics on UCI heart disease Cleveland dataset. 

Table 4. report of SVM, KNN etc 

Report of SVM  

              precision    recall  f1-score   support 

 

           0       0.83      0.81      0.82       118 

           1       0.86      0.87      0.87       158 

0

20

40

60

80

100

120

Relief +LR mRMR+NB LASSO+SVM RBF kernel
based SVM

HRF LM L1 linear SVM +
L2 linear & RBF

SVM

FAMD +RF

Accuracy in % 86.7 82.18 844.36 Sensitivity in % … 75 --- Specificity in % … 90.5 ---
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    accuracy                           0.84       276 

   macro avg       0.84      0.84      0.84       276 

weighted avg       0.84      0.84      0.84       276 

################################################## 

 

Report of KNN  

              precision    recall  f1-score   support 

 

           0       0.74      0.75      0.75       118 

           1       0.81      0.80      0.81       158 

 

    accuracy                           0.78       276 

   macro avg       0.78      0.78      0.78       276 

weighted avg       0.78      0.78      0.78       276 

 

################################################## 

 

Report of SVM  

              precision    recall  f1-score   support 

 

           0       0.87      0.81      0.84       118 

           1       0.86      0.91      0.89       158 

 

    accuracy                           0.87       276 

   macro avg       0.87      0.86      0.86       276 

weighted avg       0.87      0.87      0.87       276 

 

################################################## 

Report of KNN  

              precision    recall  f1-score   support 

 

           0       0.74      0.75      0.75       118 

           1       0.81      0.80      0.81       158 

    accuracy                           0.78       276 
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   macro avg       0.78      0.78      0.78       276 

weighted avg       0.78      0.78      0.78       276 

################################################## 

Report of SVM  

              precision    recall  f1-score   support 

 

           0       0.87      0.81      0.84       118 

           1       0.86      0.91      0.89       158 

    accuracy                           0.87       276 

   macro avg       0.87      0.86      0.86       276 

weighted avg       0.87      0.87      0.87       276 

################################################## 

Report of SVM  

              precision    recall  f1-score   support 

           0       0.80      0.81      0.80       118 

           1       0.85      0.85      0.85       158 

    accuracy                           0.83       276 

   macro avg       0.83      0.83      0.83       276 

weighted avg       0.83      0.83      0.83       276 

 

Fig 11. Hungarian-PCA.    Fig 12. Hungarian mRMR 
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Fig 13.Long bech-va-PCA 

Table 5. Data set of  Long-Beach-Va 

Data 

set 

Method Accuracy (%) Precision (%) F 1(%) Recall (%) 

Long-

Beach-

Va 

RF 76.2 87.3 79.7 87.7 85.2 92.1 91.8 97.1 

LR 74.0 82.5 75.7 88.3 84.4 88.4 95.8 88.7 

ANN 71.4 68.5 73.4 77.1 82.8 79.6 95.5 82.8 

GB 68.8 92.6 82.1 92.6 78.1 95.0 75.4 97.6 

KNN 73.2 73.0 76.7 76.1 83.7 83.7 92.7 93.4 

SVM 64.5 74.9 84.6 87.0 82.0 82.0 63.6 77.8 

 

 

Fig 14. Comparision of Long bech-va-PCA 
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Fig15. Long beach-va-R 

Fig16. Long beach-va -Kendall 

ss 

Fig 17. Long beach-va-mRMR 
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Fig 18.Time complexity with the instances. 

Table 6. Comparision on Cleveland data set 

Data 

set 

Method Accuracy (%) Precision (%) F 1(%) Recall (%) 

Clevel

and 

RF 81.5 94.6 81.2 97.2 78.0 93.5 75.7 90.2 

LR 83.2 92.6 86.6 97.4 81.4 90.9 77.2 85.5 

ANN 61.4 57.1 58.2 46.8 59.4 49.6 68.2 62.0 

GB 83.7 98.8 84.8 97.8 81.6 98.6 79.1 99.4 

KNN 63.8 63.1 59.4 60.9 58.4 54.5 57.9 49.9 

SVM 85.1 89.5 85.5 91.0 83.6 87.2 82.1 84.1 

 

 

Fig 19. Comparision on Cleveland data set 

Table 7. Comparision on Hungarian data set 

 Method Accuracy (%) Precision (%) F 1(%) Recall (%) 

RF 80.9 92.6 75.9 91.5 72.2 89.7 69.6 88.2 
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Hunga

rian 

LR 83.0 91.0 78.4 88.6 73.4 87.1 69.6 86.2 

ANN 63.4 63.3 11.3 3.5 3.1 1.3 15.6 0.8 

GB 82.6 84.8 76.4 76.5 77.7 79.8 79.5 84.8 

KNN 64.0 68.4 52.5 58.4 44.1 45.6 38.8 39.6 

SVM 80.9 89.6 73.4 85.3 72.7 85.5 72.7 86.1 

 

Fig 20.Comparision on Hungarian data set 

 

 

Fig  21.Comparision on Hungarian data set 

Table 8.Method, accuracy and number of features details 

Author Method Accuracy Feature 

D. Khanna, R. Sahu Logistic Regression 84.85% 13 

S. S. Khan and S. Quadri Decision tree 89.1% 13 

D. R. V. S. Kodati Navie bayes 83.7% 13 
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F. S. Alotaibi SVM 92.3% 13 

K. Uyar and A. Ilhan GF based on RFNN 96.63% 13 

A. Gupta, & etc MIFH 93.44% 28 

Proposed  mRMr+RF, ANN, SVM 97.3% 13 

 

 

Fig 22. Comparision of Cleveland data set 

Table 9.Selected features by Kendall from original data: 

Method  1 2 3 4 5 6 7 8 9 10 11 12 13 

Kendall Cleveland 61 67 51 65 63 60 44 38 9 68 40 41 4 

Hungaria 63 38 60 41 6 40 67 9 30 7 72 65 68 

Long-

beach-va 

67 63 60 6 9 61 72 38 40 41 7 68 39 

0 0 0 0 0 0 0
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Fig 23. Features by Kendall from original data sets 

 

Fig 24. Features by Kendall from original data sets-1 

Table 10. Selected features by Kendall from original data sets 

Method Serial 

number 

1 2 3 4 5 6 7 8 9 10 11 12 13 

Random 

forest 

Cleveland 51 61 63 9 60 67 38 40 65 32 44 30 68 

Hungaria 63 38 41 9 6 60 7 61 67 40 65 32 30 

Long-

beach-va 

67 60 63 3 12 40 56 61 32 65 6 74 29 
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Fig 24. Features by Kendall from original data sets-2 

Table 11.Selected features with mRMR from original data sets 

Method Serial 

number 

1 2 3 4 5 6 7 8 9 10 11 12 13 

mRMR Cleveland 5 42 41 45 43 44 40 46 35 29 34 2 39 

Hungaria 9 58 45 48 38 52 3 46 35 53 50 55 44 

Long-

beach-va 

9 5 58 56 52 49 50 54 57 3 48 53 1 

 

Fig 23. Features by mRMR from original data sets 

 

5. Conclusion 

0

20

40

60

80

1 2 3 4 5 6 7 8 9 10 11 12 13

Features by Kendall 

Serial number Cleveland Hungaria Long-beach-va

0 10 20 30 40 50 60 70

1

2

3

4

5

6

7

8

9

10

11

12

13

Features by mRMR 

Long-beach-va Hungaria Cleveland Serial number



Tuijin Jishu/Journal of Propulsion Technology 

ISSN: 1001-4055 

Vol. 46 No. 2 (2025) 

__________________________________________________________________________________ 

266 

  This research demonstrates that mRMR is an effective feature selection method for heart disease 

prediction. Our findings show that reducing features indiscriminately degrades classifier performance, while 

selecting the most relevant ones enhances accuracy. The incremental feature selection method achieves over 90% 

of the best performance, highlighting the importance of key features. 

             mRMR outperforms other selection methods by consistently improving classifier accuracy across 

datasets. Among the tested classifiers, Random Forest, Gaussian Bayesian, and ANN exhibit the best predictive 

performance. These results confirm the value of mRMR in optimizing feature selection for heart disease 

prediction. Additionally, eliminating irrelevant or redundant features not only improves model performance but 

also enhances computational efficiency, reducing training time and overfitting risks. These findings emphasize 

the importance of feature selection in medical diagnostics and suggest that mRMR can be a valuable tool for 

improving predictive modelling in healthcare applications. 
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