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Abstract: A major threat is environmental pollution, particularly of gases resulting from the combustion 

of fossil fuels. Transesterification of used temple oil in methyl ester blended biodiesel at 25%, 50%, 75%, 

and 100% was studied. These were studied to see how they would affect engine emissions and 

performance. Results at 1500 rpm reduced brake power and thermal efficiency by 25% and 24%, 

respectively, compared to diesel. Indeed, however, the specific fuel consumption of diesel increased by 

23%. According to Cam Bell’s analysis, methyl ester blends led to a 15% lower air-fuel ratio and 4% 

lower volumetric efficiency than diesel. B100 biodiesel showed significant emission reductions: carbon 

monoxide 12%, hydrocarbons 44%, and smoke 48%. Under full load, NOx emissions were increased by 

200 percent. Engine performance and emission modeling were optimized using ANN, leading to a 

reduction in costs as well as physical effort and facilitating the handling of nonlinear datasets. 

Keywords: Used Temple Oil, Engine Performance and Emission Characteristics, Artificial Neural 
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1. Introduction  

The search for alternative fuels for diesel engines has however been necessitated by environmental 

factors and global depletion of fossile resources . The above challenges can be solved by using biodiesel. 

Biodiesel as a fuel is different from normal diesel in that it is renewable, biodegradable, non toxic and 

does not contain sulfur and aromatic [1-3]. But vegetable oils that are directly used in diesel engines 

suffer from high densities, high viscosity and low volatility which cause bad fuel atomization and spray 

penetration. This can lead to problems such as engine deposits, high viscosity of the lubricating fluids and 

unreliable piston ring adhesion [4,5]. The transesterification also increases the quality of the oil especially 

to be used in the engines. In comparison to standards diesel, biodiesel is associated with lesser amount of 

emission [5–7]. Further, other research shows that in proportion with the percentage of biodiesel 

additives in fuel, the characteristics of thermal conductivity and heat dissipation change and thereby 

leading to low temperature[8,9]. Some literature on biodiesel blends has also indicated that as the 

biodiesel fraction in the blend rises, then the peak cylinder pressure reduces [10,11]. This is due to the 

underlying heat release rates in the premixed combustion phase in higher biodiesel blends. Several 

literatures have been reviewed for assessing the feasibility of a number of pure vegetable oils including 

fish oil, palm oil, pongamia oil and neem seed oil for biodiesel production [12–14]. A comparison of the 

predictions of the two artificial neural network (ANN) training methods to experimental results showed 

strong alignment [15, 16]. To advance the multi-layer perceptron, a nonlinear mapping technique was 

used within the ANN model, the correlation values of 0.995, 0.980, 0.999, 0.985, and 0.999 were 

achieved with specific fuel consumption, exhaust gas temperature, thermal efficiency, hydrocarbons, 

NOx, and smoke emissions [17]. Then, the estimates of the engine emissions and performance was 
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determined utilizing ANNs model and ranged from 0.97 to 0.99 correlation coefficients with 

experimental data [18]. Further, the engine emissions and performance were estimated for palm biodiesel 

by feed-forward back propagation ANN model with given predictors and the value of correlation 

coefficient of determination was greater than 0.99 and mean absolute error was 1.879% [19, 20]. 

These form a basis for using the ANN model that predicts the engine parameters with correlation values 

R of 0.9994, 0.9995 and 0.9999 for training, testing and validation respectively, but with back 

propagation algorithm. The propagation done by the forward and backward propagation Levenberg-

Marquardt algorithm, and this model had the three-layer with 10-neuron mean squared error [21]. ANN 

modeling resulted into R² values of 0.88- 0.95 with low MRE and RMSE were 3.57- 6.86 and 0.89- 

1.15respectively. High levels of engine performance and low levels of emissions were realised with a 

BSFC of 0.3 kg/kWh, BTE of 30.8 % and a peak cylinder pressure of 65.6 bar [22, 23]. But prediction 

accuracy was within 7% of the model's estimations, emission values were 0.0107% CO, 853 ppm NOx 

and 26 ppm HC [24]. The engine performance emission forecast is also done using another extreme 

learning machine model with a kernel based approach with average absolute percentage error that are 

2.090% for Smoke O; 1.482% for BTE; 4.597% for CO; 2.224% for NOx, and 1.363% for BSFC [25]. 

Based on a central composite design and a response surface methodology, optimized conditions were 

found to be that with a load of 14.49 N·m and a 2.47% JP-8 methyl ester ratio. The outputs recorded 

under these parameters corresponded to a CO of 724 ppm, IMEP of 3.71 bar, NOx of 168.62 ppm, and 

BSFC of 193.46 g/kWh [26]. R²and RMSE values close to 1 were obtained to evaluate the performance 

of ANN model and to test its accuracy in forecasting essential combustion parameters. R values showed 

reliable performance and emission predictions with modest RMSE for results. At 240° BTDC, the 

optimum biodiesel–diesel blend of 13% biodiesel was found to balance emissions and performance well 

using optimization [28]. This investigation centers on several exemplary neural network architectures. It 

was shown that ELM outperforms LS-SVM and RBFNN by using logarithmic transformations, and that 

PSO outperforms SA in allowable computation times [29]. An ELM-WT model was developed for 

engine performance prediction, with an correlation value exceeding 0.97 suggests near-perfect cohesion, 

Pearson R > 0.97, and RMS error less then 2.79 [30,31]. Notably, the most efficacious outcomes were 

derived from an engine fuel composition of 20.22 %, an engine rotational velocity of 1483.39 revolutions 

per minute, and a utilization parameter of 95.6 % load. The ensuing configuration yielded a brake thermal 

efficiency of 20.61%, accompanied by a brake specific fuel consumption of 0.32 kg/kWh, and a brake 

specific energy consumption of 6.14 MJ/kW. Notably, CO emissions comprised 0.08963% and 

hydrocarbon emissions amounted to 18. Concurrently, this study employed a neural network model to 

forecast the engine's performance and emissions as a function of engine load, biodiesel percentage, and 

the concentration of ZnO nano additive. This model reached convergence at 0.01528 with MSE of 

0.00128 in the time of 0.00452 using hidden neurons 15. The model also proved responsiveness showing 

coefficients of determination higher than 98% for BTE and higher than 99% for BSFC. But the amount of 

CO, HC and smoke emissions declined by 8.26%, 2.08% and 3.08% respectively; On the other hand NOx 

and CO2 emissions raised to 22.39 % and 3.53% respectively [35,36]. Prediction of engine emissions and 

performance using the Complex Interactions ANN model was more accurate than that using the 

conventional ANN models, including the Extreme Learning Machine model.In addition, engine 

performance and emissions were optimized by a Taguchi approach, with ANN and multiple regression 

models to evaluate errors. BSFC and CO have larger deviation of 4.6%, 1.26%, 2.96% and 29.05% and 

NOx and HC errors are 1.26% and 2.96%, respectively, with thermal efficiency. The regression model 

had a standard deviation of 0.095, an adjusted R² of 0.972, with an accuracy of 18.482. The performance 

and emission metrics were highly correlated to each other using Kling Gupta efficiency (KGE) values 

from 0.9947 to 0.9997, indicating that the Boosted Regression Tree (BRT) model outperforms the ANN 

model [37]. 

The findings also show the effect of EGR, Biodiesel, diesel, Al2O3 nanoparticales and hydrogen on 

emissions and performance. HC and CO emissions were reduced by 14.9% and 11.7%, respectively, 30% 

biodiesel. Torque and power increased 4.89 percent while increasing diesels HC by 5.4 percent, CO by 
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5.8 percent, and NOx by 8 percent, adjusting for Al₂O₃ concentration from 30 ppm to 90 ppm. However, 

H addition resulted in 7.19% [38] increases in CO emissions. A study of previous studies gave emphasis 

to those studies that focused on diesel engine emissions and performance with methyl ester/diesel blends. 

However, by virtue of their still significantly inferior methyl ester yields, compared to used temple oil 

(UTO), these oils potentially fill an important, current gap in enabling the commercialization of non-

edible oils as an environmentally sustainable cultivation option. Biodiesel was produced with 

transesterification using UTO that was combined with the diesel at a volume ratio of 25%, 50%, 75% and 

100%. Thus, the resulting properties are in good agreement with ASTM standards for diesel fuel. 

Additionally, a novel ANN model to predict emissions as well as engine performance is introduced in 

this study for all UTO biodiesel‐diesel blends and engine speeds so that repeated physical testing is not 

necessary. The engine system is represented effectively by the ANN model as it captures the complex 

interaction among the engine system components in the real time by dynamically adjusting the engine 

conditions to gain higher responsiveness and adaptability. This model also dramatically decreases time, 

labor, and money costs, making it a robust solution for dealing with complex, non linear data with a 

lesser formal exposure to statistical training. Results of the experimental data were confirmed that the 

ANN model effectively minimized testing and accurately predicts engine suitability for biodiesel blends. 

Key metrics of engine performance involve fuel-air ratio, power output, fuel efficiency, heat conversion 

rate, and air volume management, alongside emission metrics tracking soot, carbon monoxide, 

hydrocarbons, and nitrogen oxides levels.. It shows great potential in model engine behaviour under 

varied conditions. 

2. Materials and Methods  

2.1 Fuel preparation  

Used temple oil (UTO) is high viscosity and cannot, due to this, be used directly in the CI engines 

without modification. Transesterification was used to process the oil to separate it into methyl ester and 

glycerin. UTO was first heated to 110°C to remove moisture and then filtered. A temperature monitored 

magnetic stirrer and thermometer were attached to a flask of preheated oil inside of which a flask of 

preheated oil was poured into a condenser. A methoxide solution was prepared by dissolving 1.5% 

potassium hydroxide (KOH) by weight in methanol, using a An molar ratio of 9:1 methanol to oil. The 

methoxide solution was vigorously mixed with heated oil at 60°C for 90 min to obtain methyl ester and 

glycerin. The ester and glycerin were separated after separation by allowing them to sit in a separating 

funnel for 24 hours. Warm water was used to remove residual catalyst, impurities and unreacted 

methanol. All water left in the biodiesel was removed by a rotary evaporator. Proper properties of each 

blend are shown in Table 1 concluding with final diesel to methyl ester blend ratios of 25, 50, 75, and 

100%. 

Table 1. Properties of Used Temple Oil Biodiesel 

Properties 

Biodiesel 

obtained from 

used temple oil 

ASTM Standard 

for Biodiesel 
Equipment utilized 

Density  0.855 0.875 Hydrometer 

Viscosity  3.9 1.9-6.0 
Brook field 

viscometer 

Flash point  105 100.0 min. 
Pensky Marten 

Apparatus 

Fire point  122 130 
Pensky Marten 

Apparatus 

Cloud point  9 -3 to 12 PE-7200I 

Pour point  56 -10 to 12 PE-7200I 

Calorific value  40129 kJ/kg - Bomb calorimeter 

Acid value 0.52 0.80 max. pH meter 

Solubility in H2o Insoluble Insoluble - 
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Color Light golden Light golden - 

Odor Light soapy order - - 

 

3. Experimental Test Ring 

3.1  Engine setup 

The engine undergoing examination is a single-cylinder DEUTZ F1L511 unit with a power output of 

5.775 kW at a rotational speed of 1500 rpm, featuring a stroke length of 105 mm and a bore diameter of 

100 mm. A compression ratio of 17.5:1 is also exhibited by this engine configuration. A nominal degree 

of fuel injection timing is employed, commencing from an initial injection timing of 240° before top dead 

centre (BTDC). A 10.5 kW  Meccalte AC generator was used to simulate load conditions and coupled to 

the test engine. Sharp edged orifice was used through the air box to measure intake airflow; fuel flow rate 

was found from the burn time for 25 cm³ of fuel. Intake and exhaust temperatures were monitored by 

calibrated K type thermocouples. Gaseous emissions including carbon monoxide, nitrogen oxides, and 

hydrocarbons were quantified utilizing a multi-component gas analyzer and smoke meter. Cylinder 

pressure measurements were obtained with a water-cooled piezoelectric pressure transducer, which was 

installed flush to minimize resonance effects and enabled real-time monitoring of pressure up to 250 bar. 

Piston position was detected through a proximity sensor located on the output shaft.  Derived combustion 

parameters were calculated using pressure-crank angle graphs, which were subsequently averaged over 

120 engine cycles. Data acquisition and analysis were facilitated using a software platform and a 

dedicated data acquisition card. Testing was carried out with the engine full load at speeds of 800 and 

1800 rpm. The engine was then reheated to exhaust temperatures with pure diesel fuel, after which was 

tested. One time steady state conditions were reached three measurements were taken for each test to 

ensure accuracy. Error sources were equipment selection, ambient conditions and instrument calibration; 

however, error analysis was performed to validate accuracy. The three run average was used as reliability 

for each result. 

The temperature measurement range for the thermocouples exhibited a scale spanning 0 to 1300 K, 

coupled with a precision of ±1 degree Celsius and an uncertainty of ±0.15. The CO2-free hydrogen 

indicator demonstrated an accuracy of ±10 watts, whereas the uncertainty was ±0.2 watts across the 250-

7000 watt measurement spectrum. The analytical measurement ranges for exhaust components 

comprised: carbon monoxide concentrations between 0 and 10 percent, hydrocarbon concentrations 

between 0 and 20,000 parts per million, and nitric oxide concentrations between 1 and 5000 parts per 

million; each of these ranges exhibited an uncertainty of ±1. The maximum total experimental uncertainty 

was calculated based on Equation 1 to be 3.33%. WR is the uncertainty in the overall test rig, R being 

independent and X dependent measurement. 

WR=√(
∂R

∂x1
∂x1)

2

 + (
∂R

∂x2
∂x2)

2

 +. . . . . . . + (
∂R

∂xn
∂xn)

2

        (1) 

 

 

Figure 1. Schematic diagram of experimental setup. 
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3.2 ANN Methodology 

A mathematical model is developed in this application, using a set of experimental input and output data 

from which a relationship is formed that enables engine performance and emission to be predicted for 

varying fuel and engine speeds mixture combinations, thus eliminating the need for repetition of 

experiments. The engine performance and emissions are predicted by this study using an artificial neural 

network (ANN) as a function of engine speed and biodiesel ratios. ANN plays the role of mathematical 

representation of the neural behavior of biological systems, including the brain [39, 40]. A single neuron, 

the basic unit of an ANN (in schematic form), is shown in Fig. 2. 

Here Artificial Neural Network (ANN) is a suitable methodology employed to model diesel engine 

performance and emissions on the basis of its capacity to mimic the intricacy, complexity and non-

linearity of engine dynamics and emission processes. Several interacting variables influence diesel engine 

emissions and performance, defining nonlinear relationships that are difficult to identify accurately using 

traditional regression techniques. ANNs also provide a large advantage in that they can learn and 

determine important features directly from data and poor quality, domain-specific feature engineering can 

be avoided. It is this adaptability, which enables the utilization of several input data sources, such as 

sensor and time series data, typical of engine monitoring systems, to be integrated. In addition, ANNs can 

generalize over all the domains of variable operating conditions and give reliable accuracy in real world 

application. 

However, because engine performance and emissions are high-dimensional and noisily dependent, there 

are advanced computational resources and neural network frameworks used in training on these datasets. 

As a result, ANNs are suitable for modeling projects aimed at engine optimization, with respect to 

emissions, environmental regulations compliance and targets of efficiencies. Noteworthy types and 

architectures of ANN models in the relevant literature are reviewed, encompassing feed forward, 

recurrent, feedback, classification, radial basis function, sequence-to-sequence, and modular models [41-

44]. This study leverages feed forward artificial neural networks, exhibiting satisfactory performance 

even with a solitary hidden neuron and multistage processing. 

Nevertheless, the neuron is given the signal value, wi, and the relevant (weight) coefficients together 

with the input parameters, xi. The first estimation process requires the introduction of the weight 

coefficient values. 

The result of the linear addition to the sum S is with the bias to be b and signal values. The minimum is 

set by the bias magnitude. In order for the neuron to respond the incoming information it requires a value 

of S. 

  S =  ∑ xiwi + bm
i=1           (2) 

The calculated value of S is either represented by the expected value y~i of a known variable yi, or it 

passes through the activation function ~ and is transmitted to following neurons. Fully coupled feed-

forward ANNs are taken into consideration in this work. The architecture of artificial neural networks is 

characterized by a synaptic connection wherein each neuron in a particular layer distributes its signals to 

every neuron in the subsequent layer. Typically, these networks comprise ζ total layers, where ζ − 2 

hidden layers are present, and are comprised of nζ neurons. The signal magnitude, Sζij, at neuron j in the 

ζth layer is a function of the preceding layer with n ζ−1 neurons, calculated as per the given formula. 

 

Figure 2. ANN Configuration 
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The rectified linear unit activation function was utilized for the hidden layers, characterized by its ability 

to output non-negative values, as formulated by .  

Sζ
ij = Φ (∑ xiwi + bnζ−1

i=1 )                            (3) 

Φ (S) = max (0,X)                          (4) 

A linear activation function was implemented at the output layer. 

Φ (S) = X                           (5) 

Utilising equation (3), the output parameter vector is computed throughout the artificial neural network 

(ANN) architecture, thereby enabling the optimization of weights and biases via the training procedure to 

minimise predictive loss. 

The dispersion between actual and predicted variable values Y comprises the discrepancy function, 

denoted as E, which is quantified via the mean squared error (MSE) metric employed within the existing 

model. Furthermore, the implementation encompasses various optimization methodologies, including 

adaptive sub gradient techniques, stochastic gradient descent strategies (which encompass the adaptive 

moment estimation algorithm, ADAM) and Nesterov momentum modifications, are implemented to 

alleviate loss function optimization. [40–46]. For the current model, the method was applied to speed up 

ANN training with ADAM. Additionally provided are the ranges at which the input parameters can be 

specified. For instance, the maximum engine speed is 1800 rpm, and the maximum mix ratio is 100%. 

The reason for this issue is that the gradient of the loss function gradients is greatly affected by the 

weights value , which results in a significant training time. The "Min − Max" normalization procedure 

was used by the current model to address the given problem [47, 48]. Therefore, the following formula 

was used to first normalize all of the input data: 

                   (6) 

For each input variable, normalization is performed to ensure a uniform range between 0 and 1. The 

cumulative impact of input variables can be determined by summing the associated weights and biases 

for the respective neurons at a given layer. 

       (7) 

It is found that the ANN prediction accuracy is influenced by more parameters when more neurons are 

used. However, over fitting could result from having too many neurons [41]. The datasets used for 

training and validation is isolated from the larger datasets. Notwithstanding instances of over prediction 

by the neural network, this strategy mitigates the propensity for over fitting by talkatively optimizing the 

loss function [41]. Within the framework of this study, the overall datasets consisted of 80% validation 

and 20% training. 

3.3 Training ANN 

This investigation utilised Artificial Neural Network (ANN) to forecast diesel engine performance and 

emissions, based on a specially per-determined datasets consisting of 25 discrete points, evenly dispersed 

throughout the input feature space. This was chosen as a uniform distribution all over input space so that 

there is no bias and the generalization capacity of the ANN is increased. Top to increase training 

efficiency and performance, the dataset was normalized. Despite the limited size of the data set, the ANN 

was able to learn the underlying patterns thanks to the uniform distribution and normalization, and it 

produced reliable and accurate predictions about the performance of diesel engines. Forward propagation 

is made on the input variables, loss function is calculated, then biases and weights are corrected using a 
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modified back propagation inference. To make sure the loss function converged, we then repeated this 

process for 50,000 epochs. The programme code was formulated utilizing Python 3.0, in conjunction with 

the Keras open source library, an integral component of the TensorFlow artificial neural network 

framework. The model we currently use is a multi layer perceptron, with different numbers of neurons in 

each layer [50–54]. At first a procedure starts to initialize the training variables like weights … (biases) 

with truncated normal distribution. The model finds the best number of neurons by comparing the loss 

function values for training and validation datasets and thus find the most influential parameters for 

getting the optimization on loss function. In this model there are two neurons in the input layer to 

represent engine speed and mix ratio. 

I utilized an output layer with nine neurons and five hidden layers, each with sixteen neurons. Engine 

performance metrics and exhaust pollutants presently under investigation encompass air-fuel ratio, 

carbon monoxide, hydrocarbon emissions, carbon dioxide emissions, smoke, brake-specific torque, 

power output, brake-specific fuel consumption, brake thermal efficiency, and volumetric efficiency. 

Consequently, as shown in Fig. 3, the ANN structure is 2; 16; 16; 16; 16; 16; 16; 9. As a result, I = 1289 

parameters were used, resulting in the convergence graphs shown in Figure 4 with a 1.1035% MAPE and 

a 5.0943 MSE, respectively. 

 

Figure 3 illustrates a visual representation of the neural network's structural framework 

 

 

Figure 4. A visual inspection  the mean squared error (MSE) and mean absolute percentage error 

(MAPE) metrics exhibit convergence characteristics. 

 

An iterative procedure of alternating the comparison of the training loss on datasets was used to optimize 

the architecture of Artificial Neural Networks (ANN) [55]. Following the evaluation of different 

configurations, we found an optimal structure with 5 layers of hidden neurons, each having 16 neurons. A 

systematic approach was employed to vary the number of hidden layers and neurons, thereby facilitating 
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an evaluation of performance metrics to identify the optimal model. Optimal loss function values during 

training were achieved by navigating a balance between predictive efficacy and model complexity. 

3.4 Accuracy of performance 

As proxies for predictive efficacy, the following five evaluation metrics were employed in our analyses: 

Evaluative metrics provide disparate viewpoints on predictive model efficacy.  Indices such as Mean 

Squared Error, Mean Absolute Percentage Error, and Mean Squared Logarithmic Error serve as efficacy 

indicators, with lower scores signifying enhanced precision. The Coefficient of Determination (R²) and 

Correlation Coefficient (r) represent the degree of fit between predicted and actual values, where values 

approximating unity signify excellent concordance. Conversely, optimal model performance underscores 

the challenge of achieving error measures approaching zero; hence, models displaying near-zero error 

and elevated R² or r values are regarded as superior. 

Equation 8 is purported to embody the Mean Squared Error (MSE), representing the average of squared 

deviations between observed values and predictive outcomes derived from a model. 

MSE =
1

n
 ∑ (yi − Ŷi)

2n
i=1                      (8) 

Where n is the number of data points, yi is the actual value  Ŷi is the predicted value and (yi − Ŷi)
2
  is 

the squared deviation for each prediction. 

The Mean Absolute Percentage Error (MAPE) is formulated as the average of absolute discrepancies 

between empirical measurements and model-predicted outcomes, expressed as a percentage (Eq. 9). 

          (9) 

MSLE is in fact a measure of relative deviation from log transformed experimental and predicted values. 

In a similar manner like large deviations in the large values, MSLE also accounts for small deviations in 

small values, providing a good route for proportional error assessment (Equation 10). 

                (10) 

It is a statistical measure called the Coefficient of Determination, R2  which defines the proportion of 

variance in the predicted values that the experimental data can explain. Equation 11 defines it, meaning 

how well the observed data are predicted by the regression model. 

                        (11) 

The correlation coefficient (r) can be estimated by an effective equation that can be directly applied to 

ANN model predictions (Ŷi) and their experimental values (yi) (Equation 12). 

                         (12) 

All these metrics give a clear picture of the accuracy and reliability of the models as well as their 

consistency and can help in a determination of the whole picture of the model efficiency. 

4. Results and Discussion 

4.1 Brake output power 

The surface with experimental scatter, Figure 5 demonstrates the effect of a mixture on engine brake 

power using a surface plot displaying both experimental data and model prediction as shown in Figure 5 
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b and line graphs in Figure 5 a. The faster engine is capable of more RPM and the brakes have greater 

power. Fuel usage goes up with engine speed. With increasing the biodiesel quantity, combustion 

backfire is quicker than diesel oil increase and also when methyl ester calorific value lowers. Compared 

to pure diesel, biodiesel may result in fuel atomization and vaporization problems that stem from its 

greater density and viscosity as well as lead to poor air-fuel mixing. Mixtures of diesel fuel that include 

biodiesel take more fuel to get the same maximum power output. Pure methyl ester (B100, 0% Diesel) 

produces its smallest output power under full load and at exactly this engine speed by approximately 25 

percent less then the diesel oil.  

Figure 5. The output power of methyl ester blends at different engine speeds and comparison of 

experimental results with artificial neural network predictions. performance analysis and 

graphical representations of the experimental data alongside surface plots generated by the ANN 

model are provided. 

 

4.2 Brake Specific Fuel Consumption 

A comparison of Brake-Specific Fuel Consumption metrics is presented via graphical representations in 

Figure 6, illustrating both experimental and predicted trends as a function of engine speed for diesel and 

biodiesel blend mixtures. Notably, biodiesel exhibits elevated specific fuel consumption relative to diesel 

fuel across all loading conditions. This disparity is attributed to the inferior energetic efficiency of 

biodiesel, which necessitates increased energy input to achieve parity with diesel. The underlying causes 

of this phenomenon are primarily associated with enhanced viscosity, compromised combustion 

performance, and reduced volatility characteristics of biodiesel. The high viscosity, lack of good 

combustion and poor volatility responsible for the increased specific fuel consumption of biodiesel. 

When there was incomplete combustion caused by friction, heterogeneous mixing and atomization 

problems, the BSFC values for diesel oil increased. The BSFC increase when comparing biodiesel with 

diesel fuel was 23% at an engine speed of 1500 rpm. 

Figure 6. BSFC of biodiesel blends at different engine speeds and comparison of experimental 

results with artificial neural network predictions. performance analysis and graphical 

representations of the experimental data alongside surface plots generated by the ANN model are 

provided. 
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4.3 Brake Thermal efficiency 

With experimental scatter, we improved the use of surface plots and line graphs. Fig. 7 shows the 

improvements in FUE and BTE over both results along with those of other experiments at diesel baseline, 

after treating a range of ethanol fuels up to E40 (resulting blend) levels 7a and b, respectively. Fuel 

consumption and rapid acceleration are at their highest in the table on the right-most 8,000 rpm unit. A 

diminution in thermal efficiency occurs as the concentration of methyl ester rises. Boosted thermal 

efficiency enhances the brake thermal efficiency ratio until the latter commences to decrease. Conversely, 

at low rotational speeds, augmented heat dissipation and elevated fuel consumption coexist. Additionally, 

at elevated speeds, exacerbated fuel consumption and frictional losses precipitate an increase in specific 

fuel consumption. Because bidiesel is more viscous, not as combustible, and has less volatility around 

diesel the thermal efficiency of it is lower. BTE decreases due to lower volatility and calorific value of 

biodiesel compared with diesel oil. Consumption rises and a lot of heat is lost at lower engine speeds. 

Methyl ester Your overall thermal when compared with diesel fuel declined by 24% at the state of work 

from maximum load, 1500 rpm. 

 

Figure 7. Thermal efficiency of biodiesel blends at different engine speeds and comparison of 

experimental results with artificial neural network predictions. performance analysis and 

graphical representations of the experimental data alongside surface plots generated by the ANN 

model are provided. 

 

4.4 Air fuel ratio 

Figures 8a and 8b illustrate line and surface plots delineating the relationship between engine speed and 

the diesel and biodiesel blends' fuel-air equivalence ratio, accompanied by experimental data 

corroborations. Notably, the equivalence ratio exhibits a propensity to ascend in conjunction with 

increased engine speed due to the concomitant augmentation in fuel flow rate necessitated. Fossil fuels 

oxidize and form carbon with oxidizing atom ratios that are an order of magnitude lower than those of 

biodiesel, which is less prone to oxidation. Biodiesel has a slower rate of consumption because its 

calorific value is greater, and this is why. Compared to diesel blends, biodiesel blends exhibit a more 

favourable air-fuel stoichiometric ratio due to their oxygen 11% enriched composition. Like diesel, 

biodiesel blends also have a lower stoichiometric air-fuel ratio, and the density of biodiesel blends 

depend on the methyl ester content (i.e., the amount of biodiesel), which increases with biodiesel 

proportion. When biodiesel is mixed with diesel, fuel consumption per volume increases, but decreases 

on the true air : fuel ratio. The equivalence ratios of the methyl ester compared with that of the pure 

diesel decrease by 15% in Full Load and at 1500 rpm engine speed. 
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Figure 8. Air-fuel ratio methyl ester at different engine speeds and comparison of experimental 

results with artificial neural network predictions. performance analysis and graphical 

representations of the experimental data alongside surface plots generated by the ANN model are 

provided. 

 

4.5 Volumetric efficiency 

Line graphs and experimental scatter is used to present how volumetric efficiency changes with engine 

speed for expected and actual performance as diesel oil and biodiesel blend are used in Figure 9a and for 

surface plots in Figure 9b. Volumetric efficiency decreases as engine speed increases because as there is 

increased flow restriction in the intake manifold, and intake valves, and the air filter as these restrict the 

amount of air into the cylinder. The fact was that the volumetric efficiency of biodiesel blends with 

higher ethyl ester content was observed. Also, the exhaust gas temperatures of all methyl ester blends 

were higher than that of diesel fuel due to more complete combustion using less air that allows extra 

oxygen present in the methyl ester fuels mixing. Biodiesel blends have an oxygen content of 11% by 

weight and therefore require less air than DFL. Finally, the increase in residual gas temperature is most 

important to volumetric efficiency, especially with engine speed. Restrictions in the intake valve, 

manifold and air filter, combined with severe throttling of the air intake by the restrictions in the intake at 

higher engine speed reduce the amount of air admitted to the cylinder. Latent heat of vaporization and 

thermal properties are different for biodiesel blends of these types than for B, and lead to higher cylinder 

temperature and lower intake air temperature than B diesel. Comparing diesel fuel with B 100, the 

volumetric efficiency was 4% higher for diesel fuel than for B100. 

Figure 9. Volumetric efficiency of biodiesel blends at different engine speeds and comparison of 

experimental results with artificial neural network predictions. performance analysis and 

graphical representations of the experimental data alongside surface plots generated by the ANN 

model are provided. 
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4.6 CO emission 

The CO emissions (Fig. 10) is engine speed dependent. In both the line graphs (Fig. 10a), and thus also in 

Fig. 10b, experimental scatter surface plots, CO emissions initially drop to a minimum and then increase 

with engine speed. At lower speeds carbon monoxide oxidation rates are slower at higher temperatures, 

CO being produced is more dependent on engine speed. At lower engine RPM and gas cylinder 

temperature, the rate of CO oxidation is reduced. Biodiesel releases more carbon dioxide than diesel fuel. 

That’s because adding oxygen to biodiesel molecules helps burn and lowers the chance of fuel rich zones. 

Existing data indicates that biodiesel exhibits enhanced air-fuel mixing and combustion efficacy when 

compared to diesel fuel, primarily due to its comparably greater oxygen content. Furthermore, 

experimental results demonstrate a reduction of 12% in CO emissions when B100 is used as a substitute 

for diesel fuel, particularly under conditions of high engine speed and maximal braking torque. 

 

Figure 10: CO emissions from the biodiesel blends at different engine speeds and comparison of 

experimental results with artificial neural network predictions. performance analysis and 

graphical representations of the experimental data alongside surface plots generated by the ANN 

model are provided. 

4.7 HC emission 

Figure 11a depicts the correlation between HC emissions and engine speed via a line graph, while Figure 

11b exhibits a surface plot displaying the aforementioned relationship in conjunction with experimental 

scatter plots for diesel and methyl ester, encompassing actual and ANN-predicted data. Higher HC 

emissions are the product of all biodiesel blends at higher engine speed, increased gasoline consumption, 

and hotter cylinder. On the other hand, slower engine speeds yield lower HC emissions. It's because of 

the very high engine load, so rich fuel mixture, and lesser presence of oxygen. Since methyl ester 

contains a much higher content of oxygen, therefore this reduces hydrocarbon emission regardless of the 

engine loads at which it is applied. Because biodiesel possesses more cetane number along with a shorter 

ignition delay, it emits fewer hydrocarbons compared to the same diesel fuel. For this specific application, 

replacing diesel fuel with biodiesel that runs at full load at 1500 rpm reduces HC emission by as much as 

44 percent. 

 

Figure 11. HC concentration of biodiesel blends at different engine speeds and comparison of 

experimental results with artificial neural network predictions. performance analysis and 

graphical representations of the experimental data alongside surface plots generated by the ANN 

model are provided. 
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4.8 NOx emission 

As shown in figure 12, using actual and predicted data, engine speed affects methyl ester and NOx 

emissions. Figures 12(a) show line graphs and figures 12(b) surface plots with experimental data points. 

Such factors as cylinder temperature, residence time and oxygen content control the amount of thermal 

NOx produced. However, at higher speeds it becomes richer and at normal speed it is lean. The 

augmentation in nitrogen oxide emissions is primarily attributable to an increase in cylinder temperature. 

At elevated engine speeds, enhanced turbulence within the combustion chamber leads to a more affluent 

fuel-to-air mixture. The thermal NOx formation occurs at elevated combustion temperatures as 

dissociated nitrogen and oxygen react. NOx emissions increase as the proportion of methyl ester 

increases. The contribution of thermal NOx formation to increase the adiabatic flame temperature and to 

elevate NOx emissions for biodiesel over pure diesel are largely related to the cylinder temperature and 

oxygen content. As the turbulence increased in the engine cylinders, the air fuel mixture becomes richer 

and it has been known to correlate with higher thermal NOx levels. Associations between decreased air 

mixture uniformity, prolonged ignition latency, and increased fuel preparation times have been linked to 

elevated emissions. Consequently, biodiesel produced from B100, similar to diesel fuel, exhibits 

enhanced NOx emissions of 23% at full load operations under 1500 rpm conditions. 

 

Figure 12. NOx emission for methyl ester blends at different engine speeds and comparison of 

experimental results with artificial neural network predictions. performance analysis and 

graphical representations of the experimental data alongside surface plots generated by the ANN 

model are provided. 

4.9 Smoke emission 

Figure 13: Smoke emission as influenced by line graphs of biodiesel blends and engine speed, surface 

plots with the experimental scatter results; projected results versus experimental results: Both projected 

and experimental results match. With the increase in smoke emission, the speed of the engine is also on 

the rise due to diesel oil, whereas there is less smoke formation since the oxygen is abundant at a lower 

speed of the engine. As the engine speed increases, fuel consumption increases also, reducing oxygen 

content and causing visual smoke emissions. On the other hand, the amount of smoke produced from 

methyl ester decreases with increase in biodiesel content in the fuel. Because of the biodiesel higher 

oxygen content, less smoke was created. As the output power and fuel consumption grow, so do the 

smoke emissions. The smoke formed was reduced when methyl esters were incorporated into standard 

diesel. Biodiesel enhances combustion and also the nature of smoke for it holds oxygen. With oxygen, 

biodiesel burns slowly and hence has higher particle oxidation and strength in smoke diminution when 

diffusive combustion is conducted. Methyl esters hold oxygen that aids in efficient ignition, reduces the 

emission of smoke, and boosts the combustion force. B100 biodiesel reduces the load induced smoke 

produced by diesel fuel by 48% at 1500 rpm under full load. 
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Figure 13. Smoke emission of biodiesel blends at different engine speeds and comparison of experimental 

results with artificial neural network predictions. performance analysis and graphical representations of 

the experimental data alongside surface plots generated by the ANN model are provided. 

4.10 Cylinder pressure 

For diesel engine operating at full load with pure diesel and various biodiesel blends as illustrated in Figure 14, 

the effect of crank angle on cylinder pressure. Time traces for cylinder pressure for all tested fuels were similar, 

and biodiesel blends had lower peak cylinder pressures than pure diesel. The faster combustion of methyl ester 

oils, which have higher cetane numbers than regular diesel, faster ignition and leave more fuel in the cylinder 

before ignition, which this reduction in pressure is due to. Analysis of ignition parameters suggests that the 

maximum cylinder pressure in diesel engines is attained subsequent to the culmination of ignition delay time. 

The combustion characteristics of biodiesel are further expedited by its inherent oxygen content, allowing for 

enhanced fuel droplet evaporation and ignition occurred at lighter droplet formation and mass entrainment rates. 

Moreover, the higher bulk modulus of biodiesel results in faster combustion and louder fuel injection system 

noise. The faster ignition process results in a pressure drop within the fuel circuits of biodiesel blends with diesel, 

which may reduce the calorific value slightly or further may impair fuel atomization. Methyl esters require less 

energy than diesel fuel for diffusion.Moreover, biodiesel and its blends have higher density and viscosity than 

diesel and thus greatly alter the spray properties, worsening atomization and vaporization difficulties. The peak 

cylinder pressures at full load for B0, B25, B50, B75, and B100 were 70, 68, 66, 65, and 64 bars. 

 

Figure 14. Biodiesel blends cylinder pressure profiles at varying crank angles. 

4.11 Heat releasing rate 

 Under full load conditions, heat release rate analysis (HRR) patterns of diesel and biodiesel fuel blends exhibit a 

congruence with previously noted trends. The HRR peak rate of biodiesel blends diminishes incrementally in 

tandem with increasing methyl ester concentration relative to the pure diesel counterpart. This phenomenon can 

be attributed to the lower heat release rates during the premixed combustion phase, which is a consequence of 

the higher cetane number and shorter ignition delay of biodiesel. Furthermore, the lower reaction rates observed 

in biodiesel are also accompanied by diminished calorific values, leading to a reduced heat output. HRR and 

cylinder pressure decline as biodiesel proportion increases in the blend. In addition biodiesel’s increased density 
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and viscosity affects its combustion characteristics. During the fuel-premixed phase, biodiesel blends exhibit an 

accelerated combustion onset by virtue of their elevated cetane number, thereby prompting a reduction in fuel 

consumption during the initial diffusion phase and a corresponding increase in the subsequent premixed phase. 

Biodiesel's inherently high cetane number presents a conundrum, as it potentially induces self-ignition at the 

onset of injection, thereby compromising atomization, vaporization, and fuel-air mixing. A comparative analysis 

of the peak heating rates (HRRs) reveals a notable trend amongst various biodiesel blends and pure diesel (B0-

B100): a sequential decline from 47 Joule/CA for B0 to 42 Joule/CA for B100. 

 

Figure 15. Biodiesel blend heat release rates for the tested fuels over the range of crank angles. 

4.12 Comparison of the derived model with the experimental model 

Figure 16. Performance and emission characteristics predicted by trained Artificial Neural Network (ANN) 

model. A plot was created to evaluate the ANN’s predictions against experimental value. Along the Excellent 

network performance is represented by y^ =y line (with a 45° slope). The results from equations 7-15 

demonstrate a high correlation with experimental and ANN-predicted values, as evidenced by the data presented 

in figure 16, thereby validating the predictive capabilities of this model.  Fig. 16a and 16b depict the correlation 

coefficients (r) in the relation brake output power and brake specific fuel consumption is 0.9948, 0.9995; 16c 

(correlation coefficients (r) values for brake thermal efficiency): 0.998; 16d (correlation coefficients (r) values 

for air fuel ratio): 0.9982; 16e (correlation coefficients (r) values for volumetric efficiency): The coefficient of 

determination R2 values were also substantial: 0.0.999, 0.996, 0.9964, 0.9986, 0.9948, 0.9947, 0.9914, 0.9955, 

9893. Also, in the MSE values, these values were low mean squared error (MSE) values were exceptionally low 

at 0.0109, 7.1718, 0.0331, 0.0756, 0.0886, 16.5033, 0.1861, 21.2867, and 0.5027, respectively. In all output 

variables, mean absolute percentage errors (MAPE) were kept under 3%, and then was 1.9455%, 0.4665%, 

0.8451%, 1.0629%, 0.387%, 0.3424%, 1.7066%, 0.6049 and 2.6726%. Lastly, extremely low mean squared 

logarithmic error (MSLE) values: 4.0.0002, 2.2547E−05, 1.7416E−05, 0.0005, 5.7108E−05, 0.001, 3.000E−04, 

9.5243E−05, 4.997E−05, and 4497E−05 were found; all of these values were below 0.002. 

The ANN model's predicted performance indicators are displayed in figure 17. Performance metrics utilised for 

engine evaluation encompass parameters such as braking efficacy, air-fuel admixture ratio, brake- specific fuel 

consumption, thermal efficiency, volumetric capacity, and emissions of pollutants including hydrocarbons, 

particulates, carbon monoxide, and nitrogen oxides. Notably, statistical indicators comprise mean squared 

difference, mean absolute percentage deviation, coefficient of determination, correlation coefficient, and mean 

squared logarithmic difference. The efficacy of Artificial Neural Network (ANN) models is substantiated by 

statistically significant correlations between performance indicators, namely, higher values of correlation 

coefficient (r) and coefficient of determination (R²), Subsequently, these instances are characterised by lower 

values for MSE, MAPE, and MSLE concomitantly. Additionally, it has been noted that the ANN model has 

demonstrated exceptional performance across all output parameters. For instance, in Fig. 17a, all of the 

correlation coefficient (r) values are greater than 0.99, A highly robust linear relationship exists between the 

calculated and measured values. Additionally, fig. 17b displays scores of R2 are well above 0.98 for all 

parameters of the output engine indicating variations in all the parameters of output ANN at more than 98 % 

level, and these all can be explained with that model only. MSE is described in Fig.17c. These data sets yield 
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minimal values of MSE = 0.0109, MSE = 0.0331, and MSE = 0.0886 for brake output power, brake thermal 

efficiency, and air-fuel ratio, respectively.  

 

Figure 16.  illustrates a regression analysis of inter relationships between key engine performance 

indicators and pollutant emissions, comprising brake output power, fuel consumption efficiency, thermal 

efficiency, air-fuel stoichiometry, volumetric efficiency, and gaseous and particulate exhaust emissions. 
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Figure 17. ANN predictive performance metrics: (a) r, (b) R2, (c) MSE, (d) MAPE and (e) MSLE. 

In terms of NOx and CO emissions, this yields the highest values (MSE = 21.2867 and 16.5033, respectively). 

while stating the lowest value of squared discrepancies between the experimental and ANN calculated value of 

the aforementioned parameter. Figure 17d: The mean absolute percentage error, or MAPE, is used to display the 

error magnitude in percentage form. MAPE values of 0.3424% for CO emissions and 2.6726% for smoke 

emissions, respectively, indicate the minimum and maximum emissions. It means that the ANN on nearly 

reaches the best performance in predicting smoke emissions while being worst for CO emissions. The MAPE 

worked well (Fig. 17e) for least CO emission value although the mean squared logarithmic error (MSLE) 

matched it. The maximum MSLE for smoke emissions (MSLE = 0.001) was 1.7416e−05. It is a metric for the 
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difference between the log-transformed experimental and anticipated values. The findings show that the ANN 

model is highly successful in accurately predicting engine parameters. 

Nonetheless, varying MSE, MAPE, and MSLE values indicate that the model reacts to various output factors. 

The model performed exceptionally well in predicting CO, NOx, and volumetric efficiency, however, it did not 

do as well when it came to smoke emissions. There are several common causes for these differences between 

ANN forecasts of diesel engine performance and emissions and experimental findings. First, the engine's 

chemical and physical processes may not be adequately represented by the ANN model. This would result in an 

inaccurate prediction. The majority of the time, it is caused by inadequate or biased training data that does not 

accurately reflect all operational settings. The model may perform poorly on new, unseen data but well on 

known data if it overfits the training set. Sensor measurement errors and data discrepancies during testing add 

noise to the ANN, hindering its generalization capability. The designed network is constrained in simplifying 

engine performance and emissions complexity due to its built-in assumptions. These disparities necessitate 

improving the models' design, complexity, and data quality, and additional representative information about 

conditions in the real world for better training. This may be owed to several causes; numerous connections 

involve the input parameters and output variables that might be complicated and nonlinear such that many 

interactions might have resulted in different directions with diverse magnitudes. Some may tend to be very 

direct, whereas for others, many can come into play. This might be due to the quality of training data impacts on 

the performance of ANN; however, there are some parameters for which there is complete high-quality training 

data. This can also be due to some intrinsic variability and noise associated with the data related to the particular 

outputs, as emission values are influenced by various sources outside. Additional architectural properties of the 

ANN, such as depth and the number of neurons used, may be more appropriate to some outputs than others. 

Finally, the nature through which features are extracted and transformed in the feature engineering process 

determines the ability of the model to predict several parameters with and without error because some feature 

engineering might be more representative of some outputs than others. 

The ANN is a prediction tool even with small discrepancies. Results motivate further investigations into this 

model and find possible ways to increase it for the different output parameters. In order to develop further 

improvement, future investigations may consider a different design neural network or methods of data 

preprocessing. 

Conclusions 

This study investigates the direct utilisation of Used Temple oil (UTO) in diesel engines and biodiesel-diesel 

blends, conforming to prescribed ASTM properties. Experimental investigations involving diesel-biodiesel 

blends with varying proportionate compositions, namely 25%, 50%, 75% and 100%, were conducted. A model 

of an artificial neural network (ANN) was constructed utilizing an empirical dataset generated from experiments 

examining the physical and combustion characteristics of mixtures of diesel and biodiesel, thereby providing a 

predictive framework for performance and emissions based on rotational velocity and fuel proportions. 

⚫ Under maximum loading conditions, the power output of B100 biodiesel is observed to be significantly 

impaired relative to a conventionally operated diesel engine, exhibiting a reduction of 25% at a speed of 1500 

rpm. This decrement in power output is accompanied by a corresponding 23% reduction in brake-specific fuel 

consumption. Furthermore, the thermal efficiency of B100 biodiesel is compromised, manifesting a diminution 

of 24% at identical operating conditions. Notwithstanding these thermal inefficiencies, B100 biodiesel is 

characterized by an air-fuel ratio and volumetric efficiency that are 15% and 4% lower, respectively, as 

compared to diesel at the aforementioned speed. 

⚫ In comparative trials with diesel fuel, utilisation of B100 biodiesel realised a statistically significant 

reduction in CO emissions of 12%, a decrease of 44% in hydrocarbon emissions, and an attendant 48% decline 

in particulate emissions when engine speed reached 1500 rpm and during maximum braking conditions. This 

was, however, very different from B100 at maximum load (1500 rpm) and 50% load where NOx emissions were 

23% higher compared to diesel. 
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⚫ The maximum HRR for B0, B25, B50, B75, and B100 was 47, 46, 45, 44, and 42 Joule/CA, respectively, 

while the peak full-load cylinder pressures, as indicated below, were 70, 68, 66, 65, and 64 bar. 

⚫ The ANN model exhibits outstanding prediction power across all engine output parameters. The fact that 

all of the parameters' r values stayed above 0.99, their R2 level values were all above 0.98, and the MSE, MAPE, 

and MSLE values were significantly lower suggests that the ANN model was highly predictive. 

⚫ The mean squared error of the brake torque output, air-fuel efficiency, and volumetric efficiency all drop to 

their lowest levels. 

CO and NOx emissions showed their peak values on the highest brake thermal efficiency and equivalence ratios 

respectively, CO emissions had both the lowest mean absolute percentage error (MAPE) and mean squared 

logarithmic error (MSLE), while smoke emissions had the highest MSLE. In fact, pure biodiesel also had greater 

density and viscosity than diesel fuel. This results in problems with vaporization and atomization, which in turn 

causes the filter to block in cold weather and the fuel injector to clog. Biodiesel takes more fuel, generates less 

power, and loses thermal efficiency because it has a lower calorific value than diesel oil. Because biodiesel has a 

greater flash point than pure diesel, it may be handled and stored safely. Biodiesel's higher oxygen content 

improves combustion efficiency, which lowers CO and HC emissions. Diesel oil emits less NOx than biodiesel; 

recirculation of exhaust gases helps reduce NOx emissions. Used temple oil biodiesel containing 20% of this 

substance is recommended as a diesel engine substitute due to its chemically and physically analogous 

properties to those of diesel oil. 
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