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Abstract:-This research examined how Brownian motion and soret effect influenced convection in MHD Jeffrey 

stream above a horizontal porous plane, with a magnetic field present. The fluid moved above the plate at y>0, 

with the plate extending infinitely in the x-direction and the flux B0 applied vertically along the ordinate. Using 

similarity transformation, the governing coupled nonlinear rapidness, temperature, and concentration boundary 

layer equations were transmuted into interconnected nonlinear ODEs. The resulting 4th order and 2nd order 

differential equations were then transmuted into 1st order ODEs using the shooting method. These equations 

were numerically computed utilizing the bvp4c function in MATLAB. The effects of porosity and wall 

transpiration on the velocity and the effect of various parameters were studied using graphs. 

Keywords: MHD Jeffery fluid, Brownian movement, soret effect porous plate. 

 

1. Introduction 

The Jeffrey fluid stands out as a remarkable example of non-Newtonian fluids. Among the several non-

Newtonian fluid representations, the Jeffrey fluid flow representation is particularly significant, offering a 

comprehensive and precise description of viscoelastic fluid properties. Magnetohydrodynamics (MHD) 

examines the behavior of electrically conductive fluids in motion when subjected to magnetic fields. Some of its 

uses include plasma confinement, cooling nuclear reactors with liquid metal, utilizing electromagnetic 

techniques for metal casting, and magnetohydrodynamic (MHD) systems for electricity generation, and 

geothermal energy extraction [4] Choi & Eastman, 1995; [5] Cramer and Pai, 1973. Knowledge of 

theconvection in MHD flows is essential in these application areas for the design and improvement of such 

systems, and it is also a non-Newtonian fluid that has viscoelastic property. It can properly simulate different 

industrial fluids such as polymers, paints, oils, and liquid crystals because they violate Newtonian physics [7] 

Hayat and Mustafa (2010). Jeffrey's fluid model has included the effect of the proportion between relaxation and 

retardation durationswhich makes it closer to real-life fluid flows than other basic viscoelastic models. 

Research on MHD flow and heat/mass shift over permeable plane is essential in filtration technology, thermal 

insulation engineering, oil recovery, and packed bed reactors. The transpiration effect, modelling 

injection/suction of fluid through the boundary, is useful in cooling metallic plates, chemical processing 

equipment, membrane filtration processes, and boundary layer control[3] Agarwal & Ahmad, 2017. The 

existence of a magnetic field is a positive factor and a negative factor because it contributes to the complications 

and functionality of these industrial uses. 

While there is a vast literature on heat transfer characteristics of viscous/Newtonian fluids under various 

configurations, studies relating to non-Newtonian fluids are scarce [1] Abel et al., 2009; [2] Abel and Mahesha, 

2008;[8] Hayat et al., 2010. A literature review reveals that there are very few publications on MHD Jeffrey 

fluid flows with heat and mass transfer effects, especially involving wall transpiration and porous media, which 

are mathematically complex. 
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Thermal energy transfer in MHD viscoelastic fluid flow along a plane analyzed analytically and numerically by 

Abel et al. [25] 2002 analytically and numerically. However, their work was restricted to viscoelastic fluids, 

without the inclusion of the Jeffrey fluid model. Noor et al.[10] 2014, in their research 

carried out in 2011 analyzed the hydromagnetic movement of Jeffrey fluid across aextended surface in the 

framework of nanoparticle mass transfer. However, "The effects of thermal radiation was not incorporated into 

the model. Subsequently, Nadeem et al. [11] 2012, Investigated the laminar boundary layer stagnation-point 

discharge of a Jeffrey fluid on an extending surface. The researchers examined how Brownian movement and 

soreteffectaffected the convection coefficients of the nanoparticles. However, the flow configuration was less 

complex, and the influence of the magnetic fields was eliminated. Recently, Abd-Alla et al.[12] 2022 discussed 

The wavelike movement of a Jeffrey fluid through an uneven passage, considering convection consequences. 

When the thermal radiation response was incorporated, the magnetic field and wall transpiration effects were 

not considered. Subsequently, Hayat et al.[9] (2015) incorporated thermal radiation and heat source/sink effects 

into analyzing a transient MHD rotating Jeffrey fluid flow over a stretching sheet. However, this analysis also 

excluded mass transfer and medium porosity factors. The intricate interplay between heat and mass transfer 

involving nanoparticles when considering the MHD radiative-convective Movement of Jeffrey fluid across a 

porous surface with wall transpiration does not appear to have been studied earlier, and this is the reason for the 

present work. Srikant G V P N et al.[13] (2014) studied Magnetohydrodynamic nanofluid with chemical 

reaction effects: An examination of convection,by Achala. L. N and Sathyanarayana. S. B[14] 2011 investigated 

“Fluid over nonlinearly stretching sheet with magnetic field by homotopy analysis method,” Journal of Applied 

Mathematics and Fluid Mechanics. Krishnendu Bhattacharyya [15] 2013gave intensified study on “Boundary 

layer stagnation-point flow of Casson fluid and heat transfer towards a stretching/shrinking sheet”, Advances in 

heat and mass transfer. M. Qasim [16] 2013 "Heat and mass transfer in a Jeffrey fluid over a stretching sheet 

with heat source/sink”. Masarath Jabeen*, V Dhanalaxmi,[17-19] investigated on Numerical investigation of 

heat and mass transfer in a Jeffrey Fluid flowing over a sheet with linear stretching and chemical reactions: A 

study examining the combined influence of viscous dissipation and Ohmic heating on magnetohydrodynamic 

Jeffrey nanofluid flow incorporating magnetic dipole effects. Mohammed. J. Uddin et al. [20] 2012 “MHD free 

convective boundary layer flow of a nanofluid past a flat vertical plate with Newtonian heating boundary 

condition.” Jakati et al. [21] To study the effects Scientists employed the Jaffrey fluid model to examine 

Brownian movement and soreteffecton nanofluid extending. In a complementary investigation, Ghafouri et 

al.[22] 2017 analyzed how different thermal conductivity models affected combined convection heat transfer in 

a square enclosure containing water-alumina nanofluid. The objectives of the present work are to establish a 

theoretical and computational analysis of heat and nanoparticle mass transfer in the MHD radiative flow of a 

Jeffrey viscoelastic fluid over a horizontal porous plate with suction injection. These are performed for a steady, 

laminar, two-dimensional, boundary layer flow configuration. The thermal radiation heat transfer, temperature-

dependent heat generation, and absorption were considered. The buoyancy forces were excluded from the flow 

model. The fundamental partial differential equations representing momentum conservation, heat transfer, and 

nanoparticle distribution were converted into a more suitable format. These transformed A precise finite-

difference-based shooting technique is utilized for the numerical resolution of ODEs. The effects of newly 

introduced dimensionless control variables on the rapidity, temperature, and concentration outline within the 

boundary layer are thoroughly examined through comprehensive visual representations and analysis. Therefore, 

the present study offers a theoretical analysis and is supported by numerical simulation to elaborate the 

multifaceted transport characteristics of radiative hydromagnetic boundary layer flows of Jeffrey fluid with 

transpiration boundary conditions and buoyancy forces excluded.  

2. Mathematical formulations 

The core equations that characterize Jeffrey fluid can be represented as 

𝜏 = −𝑝𝑙 + Ε   (1) 

       Ε =
𝜇

1+𝜆1
 𝑅1 + 𝜆2  

𝜕𝑅1

𝜕𝑡
+ 𝑉. ∆ 𝑅1   (2) 
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In this equation, E represents the additional stress tensor, τ denotes the Cauchy stress tensor, 𝜆1 and 𝜆2 are the 

Jeffrey fluid's material parameters, and 𝑅1 signifies the Rilin-Ericksen tensor, which is defined by the given 

expression.  

𝑅1 =  ∇𝑉 +  ∇𝑉 ′ 

 

Fig. 1. Physical model of problem 

This study investigates the behavior of a steady two-dimensional incompressible,conductive Jeffrey fluid as it 

moves over a linear extended sheet. The investigation considers the consequences of chemical reactions, thermal 

radiation, and heat sources on the fluid flow. The sheet's linear stretching is induced by the employment of equal 

and opposite forces along the x-axis, which generates the fluid motion. Perpendicular to the sheet is the y-axis, 

with the origin fixed as shown in fig 1.    

The power index m characterizes how both temperature and species concentration change in relation to the 

distance from the origin. The rapidity at which the sheet is extended varies. Uw(x)at t = 0.  

Under these assumptions, the governing equation of continuity and momentum takes the following form 

𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0          (3) 

𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
=

𝜐

1+𝜆1
 
𝜕2𝑢

𝜕𝑦2 + 𝜆2  𝑢
𝜕3𝑢

𝜕𝑥𝜕 𝑦2 + 𝑣
𝜕3𝑢

𝜕𝑦3 −
𝜕𝑢

𝜕𝑥

𝜕2𝑢

𝜕𝑦2 +
𝜕𝑢

𝜕𝑦

𝜕2𝑢

𝜕𝑥𝜕𝑦
  +

𝜇0

𝜌
𝑀

𝜕𝐻

𝜕𝑥
  (4) 

In this context, 𝑢, 𝑣represent the rapidity components along the x and y axes, respectively. The momentum 

diffusivity is denoted by𝑣 while 𝜆1 signifies the ratio between relaxation and retardation time. 

Additionally,𝜆2indicates the relaxation time. A dipole field exerts influence on the flow of magnetic fluid, and 

the scalar potential of the permanent magnet is represented by φ. 

𝜑 =
𝛾

2𝜋
 

𝑥

𝑥2 + (𝑦 + 𝑎)2
  

The resultant magnitude of H of the magnetic field intensity is given by  

𝐻 =    
𝜕𝜑

𝜕𝑥
 

2

 +  
𝜕𝜑

𝜕𝑦
 

2

  

𝜕𝐻

𝜕𝑥
= −

𝛾

2𝜋
 

2𝑥

(𝑦 + 𝑎)4
  

𝜕𝐻

𝜕𝑦
= −

𝛾

2𝜋
 

−2

(𝑦 + 𝑎)3
+

4𝑥2

(𝑦 + 𝑎)5
  

Temperature can be used to express magnetization 𝑀 = 𝐾∗ 𝑇𝑐 − 𝑇 as a linear relationship. 
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with the 𝐾∗paramagnetic coefficient represented by the Curie temperature denoted as Tc. However, it is crucial 

to note that this relationship is fundamental for manifesting ferrohydrodynamic interaction. 

The equation of heat transfer is given as 

𝜌𝑐𝑝  𝑢
𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
 = 𝑘  

𝜕2𝑇

𝜕𝑥2 +
𝜕2𝑇

𝜕𝑦2 +
 𝜌𝑐 𝑝

 𝜌𝑐  𝑓
(𝐷𝐵(

𝜕𝑐

𝜕𝑥

𝜕𝑇

𝜕𝑥
+

𝜕𝑐

𝜕𝑦

𝜕𝑇

𝜕𝑦
+

𝐷𝑇

𝑇∞
  

𝜕𝑇

𝜕𝑥
 

2

+  
𝜕𝑇

𝜕𝑦
 

2

   (5) 

In this context, 𝑐𝑝  represents themassic heat capacity, while 𝑘 denotes thediffusivity, T indicates the fluid's 

temperature, and 𝑇∞  signifies the fluid's constant temperature at a considerable distance from the sheet. The 

nanoparticle volume fraction is represented by C, with DB and DT referring to the Brownian diffusion coefficient 

and thermophoretic diffusion coefficient, respectively.  𝜌𝑐 𝑝symbolizes the effective heat capacity of 

nanoparticles, and  𝜌𝑐 𝑓 represents the heat capacity of the base fluid. 

A technique for calculating the flux of radiative heat 𝑞𝑟 is offered by the Rosseland diffusion approximation. 

𝑞𝑟 = −
4𝜍∗

3𝐾𝑠

𝜕𝑇4

𝜕𝑦
     (6) 

The Rosseland mean absorption coefficient𝐾𝑠  is represented by this equation, with symbolizing the Stefan-

Boltzmann constant𝜍∗. Given that the temperature𝑇4, within the fluid flow is considered to be comparatively 

low, it can be expressed as a linear function of temperature. 

𝑇4 ≈ 4𝑇∞
3𝑇 − 3𝑇∞

4
          (7) 

On solving (6) (7) and (5) we get 

𝜕𝑞𝑟

𝜕𝑦
= −

16𝜍∗𝑇∞
3

3𝐾𝑠

𝜕2𝑇

𝜕𝑦2.         (8) 

A dimensionless temperature variable 𝜃(𝜁)    is presented, which takes the form: 

𝜃 𝜁 =
𝑇−𝑇∞

𝑇𝑤−𝑇∞
          (9) 

The laminar boundary layer flow's first-order chemical reaction, incorporating concentration diffusion, is 

expressed as 

𝑢
𝜕𝐶

𝜕𝑥
+ 𝑣

𝜕𝐶

𝜕𝑦
= 𝐷  

𝜕2𝐶

𝜕𝑥2 +
𝜕2𝐶

𝜕𝑦2 +
𝐷𝑇

𝑇∞
 
𝜕2𝑇

𝜕𝑥2 +
𝜕2𝑇

𝜕𝑦2 .      (10) 

                                                                       

In this context, D represents the coefficient of diffusion. 

We present a temperature variable without dimensions, denoted as∅(𝜁), which takes the following form: 

∅ 𝜁 =
𝐶−𝐶∞

𝐶𝑤−𝐶∞
          (11) 

3. Boundary Conditions 

To incorporate the effect of boundary surface stretching that induces flow in the x-direction, the following 

boundary conditions for velocity, temperature, and concentration are considered appropriate: 

𝑢 = 𝑈𝑤 𝑥 = 𝑐𝑥, 𝑣 = 0 𝑎𝑡 𝑦 = 0 

𝑢 → 0, 𝑢′ → 0 𝑎𝑠 𝑦 → ∞  

𝑇 = 𝑇𝑤 = 𝑇∞ + 𝐴1  
𝑥

𝑙
 
𝑚

at y=0  

T→ 𝑇∞as y→ ∞ 

     𝐶 = 𝐶𝑤 = 𝐶∞ + 𝐴2  
𝑥

𝑙
 
𝑚

at y=0  
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𝐶 → 𝐶∞as y→ ∞         (12) 

In this context, constants are represented by 𝐴1,𝐴2and 𝑙, while 𝑙 denotes the characteristic length. The surface 

temperature parameter is symbolized by m, and 𝑇𝑤  signifies the stretching sheet temperature. Additionally, 

𝐶𝑤  𝑎𝑛𝑑 𝐶∞ indicate the levels of concentration at the surface and at a significant distance away from the surface, 

respectively. To resolve equations (4), (5), and (10), the following similarity transformations are employed.  

𝑢 = 𝑐𝑥𝑓′ 𝜉 , 𝑣 = − 𝑐𝜐𝑓 𝜉   𝑤ℎ𝑒𝑟𝑒 𝜉 =  
𝑐

𝜐
𝑦      (13) 

Where  𝜉 is the correspondence variable and 𝑓 𝜉 is the nondimensional stream function 

Substituting eq (13) in eq (4) (5) and (10) we obtain second and fourth order ODEs as follows 

 𝑓′′′ +  1 + 𝜆1  𝑓𝑓′′ − 𝑓′ 2 + 𝛽 𝑓′′ 2 − 𝑓𝑓𝑖𝑣 − (1 + 𝜆2)
2𝛽𝜃1

(𝜂+𝛼1)
4 = 0    (14) 

𝜃′′ + 𝑃𝑟 𝑓𝜃′ + 𝑁𝑏𝜙
′𝜃′ + 𝑁𝑡𝜃

′ 2 = 0       (15) 

𝜙′′ + 𝐿𝑒𝑃𝑟 𝑓𝜙′ +
𝑁𝑡

𝑁𝑏
𝜃′′ = 0        (16) 

With boundary conditions (12), takes the following form. 

𝑓 𝜉 = 𝑠, 𝑓′ 𝜉 = 1 𝑎𝑡 𝜉 = 0; 𝑓′ 𝜉 = 0, 𝑓′′  𝜉 = 0 𝑎𝑠 𝜉 → ∞ 

    𝜃 𝜉 = 1 𝑎𝑡 𝜉 = 0 ;  𝜃 𝜉 = 0 𝑎𝑠 𝜉 → ∞ 

    𝜙 𝜉 = 1 𝑎𝑡 𝜉 = 0 ;  𝜙 𝜉 = 0 𝑎𝑠 𝜉 → ∞ 

In this context,𝛽 = 𝜆2𝑐represents the Deborah number, 𝑅 =
4𝜍∗𝑇∞

3

𝐾𝑠
 signifies the radiation parameter,𝑃𝑟 =

𝜌𝑐𝑝

𝑘
denotes the Prandtl number, 𝛾 =

𝑄𝜐

𝜌𝑐𝑝
 indicates a heat source parameter, 𝑆𝑐 =

𝜐

𝐷
stands for the Schmidt 

number,𝐾𝑟 =
𝐾𝑟∗𝛿2

𝜐
represents the chemical reaction factor, and 𝑠 =

−𝑣𝑤

 𝑐𝜐
is a parameter where s>0. 

The non-linear ordinary differential equations (14), (15), and (16), along with their associated boundary 

conditions (17), are transformed into ODEs utilizing the shooting technique. The numerical solution is then 

obtained through MATLAB's bvp4c function. This process reduces the 4
th
order and 2

nd
 order equations to a set 

of 1
st
 order simultaneous equations. 

𝑓 = 𝑦 1 , 𝑓′ = 𝑦 2 , 𝑓′′ = 𝑦 3 , 𝑓′′′ = 𝑦 4  

𝜃 = 𝑦 5 , 𝜃′ = 𝑦 6  

𝜙 = 𝑦 7 , 𝜙′ = 𝑦(8)     (18) 

Substituting these in (14)(15)(16) and (17) we have 

𝑦(4) +  1 + 𝜆  𝑦 1 𝑦 3 − 𝑦 2 2 + 𝛽(𝑦(3)2 − 𝑦 1 𝑦 4 ′) = 0   (19) 

𝑦 ′ 6 + Pr⁡[𝑦 1 𝑦 6 + 𝑁𝑏𝑦 8 𝑦 6 + 𝑁𝑡𝑦 6 = 0   (20) 

𝑦 ′ 8 + 𝐿𝑒𝑃𝑟[𝑦 1 𝑦 8 +
𝑁𝑡

𝑁𝑏
𝑦 ′ 6 = 0   (21) 

With boundary conditions 

𝑦0 1 = 1, 𝑦0 2 = 1 ;  𝑦∞ 2 = 0, 𝑦∞ 3 = 0; 𝑦0 5 = 1, 𝑦∞ 5 = 0; 𝑦0 7 = 1, 𝑦∞ 7 =0;𝑦0 8 =

1, 𝑦∞ 8 =0 

The system of equations represented by (19), (20), and (21) is simplified into eight concurrent first-order 

equations. 
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𝑦 ′ 1 = 𝑦 2  

𝑦 ′ 2 =  𝑦 3  

𝑦 ′ 3 = 𝑦 4  

𝑦 ′ 4 = (y(4)  − (1 + 𝜆1 )(y(2)2  − y(1)y(3)) +  βy(3)2 + (1 + 𝜆1)((2𝛾1𝜗1)/(η + 𝛼1)4)/(βy(1))  (22)  

𝑦 ′ 5 = 𝑦 6  

𝑦 ′ 6 = − Pr⁡[𝑦  1 𝑦 6 + 𝑁𝑏𝑦 8 𝑦 6 + 𝑁𝑡𝑦 6 = 0      (23) 

𝑦 ′ 7 = 𝑦 8  

𝑦 ′ 8 = −𝐿𝑒𝑃𝑟[𝑦 1 𝑦 8 +
𝑁𝑡

𝑁𝑏
𝑦 ′ 6     (24)  

The governing equations are solved numerically using MATLAB's bvp4c function. 

4. Result and Discussion 

Figures 2 and 3 demonstrate that the fluid's concentration rises as the Prandtl number increases. 

Figure 4 illustrates that the fluid's temperature decreases with rise in the Nt parameter. Figure 5 indicates that 

the fluid's concentration grows as Nb increases. 

Figure 6 reveals that the fluid's radial velocity diminishes with rise in the  𝜆1  parameter. 

Figures 7 and 8 depict the changes in the fluid's temperature and concentration in relation to the𝜆1  parameter. 

Lastly,  

Figure 9 displays how the fluid's velocity varies with respect to the 𝜆1parameter. 

 

Fig. 2.      Fig. 3. 

 

Fig. 4. Fig. 5. 
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Fig. 6. Fig. 7. 

 

Fig. 8. Fig. 9. 

Table 1: 

Nt 

 
0.1 0.5 0.7 

f 0.982159 0.982159 0.982159 

f' 0.861721 0.861721 0.861721 

theta 1.064059 1.044462 1.038563 

phi 1.130395 1.130395 1.130395 

 

Table 2: 

 
Pr 

 
8.5 9 9.5 

f 0.98215934 0.98215934 0.98215934 

f' 0.86172091 0.86172091 0.86172091 

theta 1.06405861 1.06405861 1.06405861 

phi 1.54922818 1.58363407 1.61836176 

Table 3: 

  
Nb 

 

 
0.3 0.5 0.7 

f 0.982159 0.982159 0.982159 

f' 0.861721 0.861721 0.861721 

theta 1.064059 1.064059 1.064059 

phi 1.079477 1.130395 1.179742 

 

Table 4: 

 
lambda 1 

 
1 2 3 

f 0.98215934 0.97309733 0.96393957 

f' 0.86172091 0.79107266 0.71940049 

theta 1.06405861 1.06350254 1.0629419 

phi 1.13039496 1.12945651 1.12851052 
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