Copmpleteness of Fuzzy Gamma-M-Normed Linear Space ## Ramalingaiah Kadari^{1*}, B. Surender Reddy² 1* Department of Mathematics, University College of Engineering (A), Osmania University, Hyderabad, Telangana-500007, India. 2 Department of Mathematics, University College of Science, Osmania University, Hyderabad, Telangana-500007, India Abstract: This paper introduces the conception of fuzzy gamma-m-normed linear space in accordance with the theory of fuzzy n-normed linear space and it is proved that in a finite dimensional fuzzy gamma m-normed linear space, fuzzy m-normed linear spaces are the same, up to the fuzzy norm equivalence. Also the paper introduces fuzzy gamma-2-normed linear spaces, fuzzy right gamma-m-normed linear spaces and its properties and fuzzy gamma-m-normed linear space which can be analyzed by using the fuzzy n-normed linear space. The paper uses an applications with examples for algebraic operations of fuzzy set theory. The most important concepts fuzzy gamma ring, fuzzy gamma divison ring, fuzzy gamma vector space, fuzzy gamma ring have already been introduced. Using these concepts. Using these concepts it initiated the fuzzy Gamma-m-normed linear space and suggested a theorem for the gamma norm function which is continuous. So far the earlier research has been done in the general t-norm in a fuzzy n-normed linear space and proven that if t-norm is chosen other than "minimum" then the decomposition theorem of a fuzzy norm into a family of crisp norms may not hold. The paper identified completeness of fuzzy gamma m-normed linear space and constructed a norm function and satisfies the axioms of it fuzzy gamma m-normed linear space and additionally provided an example with proof in which a sequence is a Cauchy sequence and converges sequence in fuzzy gamma m-normed linear space if and only if it is Cauchy sequence and Convergence sequence in completeness of fuzzy gamma m-normed linear space. This paper originates the notion of completeness, and produces some results on it in fuzzy Gamma-m-normed linear space. Also a necessary condition and theorem for completeness of a sequence in fuzzy gamma m-normed linear space is suggested. **Keywords**: fuzzy gamma ring, fuzzy division ring, fuzzy gamma vector space, fuzzy gamma linear space, fuzzy gamma normed linear space, fuzzy Gamma-2-normed linear space, fuzzy right gamma-m-normed linear space, ## 1. Introduction: In 1987 the notion of a Gamma-ring which is more generalization than a ring was introduced by N.Nobusawa[1], and W.E.Barnes was developed the concepts in gamma-ring such as prime and primary ideals, gamma homomorphism's. after that many mathematicians determined the some interesting results on gamma-ring in accordance with concepts of Barnes and Nobusawa.[2] Gahler was introduced the theory of 2-norm,n-norm on a linear space[3] Bag and Samantha [4] introduced the notion of fuzzy norm on a linear space subsequently theory of fuzzy norm on a linear space[5,6,7]. First time A.K.Katsaras[8,9] introduced the concept of fuzzy normed linear space. M.Demirci [10,11] interposed the notion of fuzzy equality and smooth group by using fuzzy binary operations. The Fuzzy n-normed linear space introduced by AL.Narayanan and S.Vijayabalaji [12,13,14,15,16] and Reddy, B. S.[17,18] proposed the concept of Fuzzy anti n-normed linear space and provide some results convergence sequence and Cauchy sequence in fuzzy anti n-normed linear space. The notion of n-normed left gamma-linear space is convection by S Kalaiselvan and S.Shivaramakrishnan [19]. All the authors inspired by Lotfi A. Zadeh [20] in his fuzzy set theory. Motivated by the previously mentioned theory, we present the concept of fuzzy gamma-m-normed linear spaces, denoting the convergent and cauchy sequence within these spaces. Additionally, we confirmed a few of the findings. ## 2. PRILIMANARIES: - **2.1. Definition:** An illustration of the degree to which each input contributes is provided by the characteristic function. Every processed input is assigned a weight, the functional overlap between the inputs is defined, and to ascertain their impact on the fuzzy output sets of the final output conclusion, the rules employ the input membership values as weight factors. A function that meets our needs for ease of use, speed, simplicity, and efficiency can be defined as an arbitrary curve whose shape we can describe. This function is then defuzzed into a crisp output that powers the system. In the continuous unit interval [0,1], where the end point values "0" and "1" denote different degrees of membership, Professor Zadeh expanded the concept of binary membership. - **2.2. Definition:** Fuzzy sets theory is an extension of classical set theory and elements have varying degree of membership a logic based on two truth values. If \mathbb{U} is the universe of discourse, a set F is said to be fuzzy set in F if there exists a function μ : F \rightarrow [0,1] and it is denoted by a set of ordered pairs as F={ $(u, \mu_E(u)) / u \in \mathbb{U}$ } - 2.3. Definition: Suppose U is a discrete and finite universe of discourse the fuzzy set F is written as $$F = \mu_F(u_1)/u_1 + \mu_F(u_1)/u_1 + \mu_F(u_1)/u_1 + \dots = \sum_{\mathbb{U}} \mu_F(u_1) = \{(u_\ell, \mu_F(u_\ell)) \mid u_\ell \in \mathbb{U} \}$$ - **2.4** .Definition: Suppose \mathbb{U} is a continuous and finite universe of discourse the fuzzy set F is written as $F = \int_{\mathbb{U}} \mu_F(u_\ell)$, here the summation and integration signs indicate the collection of all elements u in the universe of discourse \mathbb{U} along with their associated membership values $\mu_F(u_\ell)$ - **2.5.Example:** U={H¹=Finland,H²=Luxembourg,H³=Thailad,H⁴=India,H⁵=Turkiya,H⁶=Ukraine,H²=Zimbabwe,H ⁸=Afghanistan } is the universe of discourse of all countries then - (i) Let fuzzy set F_1 represents "Ranking in the World Happiness Report" if fuzzy set represented as F_1 ={(Finland,1.00), (Luxebourg,0.94),(Thailad,0.60),(India,0.14),(Tukiya,0.33),(Ukraine,0.29),(Zimbabwe,0.07), (Afghanistan, 0.00)} or F_1 ={(H^1 , 1.00), (H^2 , 0.94), (H^3 , 0.60), (H^4 , 0.14), (H^5 , 0.33), (H^6 , 0.29), (H^7 , 0.07), (H^8 , 0.00)} also it can be represented in summation form F_1 =1.00/Finland+0.94/Luxembourg+0.60Thailad+0.14/India+0.33Turkiya + 0..29/Ukraine+0.07/Zimbabwe+0.00/Afghanistan Or $$F_1 = 1.00/ H^1 + 0.94/ H^2 + 0.60/ H^3 + 0.14/ H^4 + 0.33/ H^5 + 0.29/ H^6 + 0.07/ H^7 + 0.00/ H^8$$ - (ii) Let fuzzy set F_2 represents "Ranking in the Human Development Report" then the fuzzy set represented as F_2 ={(Finland, 0.99), (Luxembourg, 0.89),(Thailad, 0.82),(India, 0.30), (Turkiya, 0.76), (Ukraine, 0.48), (Zimbabwe, 0.17), (Afghanistan, 0.05) } =={(H¹, 0.99), (H², 0.89), (H³, 0.82), (H⁴, 0.30), (H⁵, 0.76), - $(H^6, 0.48), (H^7, 0.17), (H^8,0.05)$ } also it can be represented in summation form $F_2=0.99/Finland+0.89/Luxembourg+0.82/Thailad+0.30/India+0.76/Turkiya$ - + 0.48/Ukraine+0.17/Zimbabwe +0.05/Afghanistan $$= 0.99/\ H^1 + 0.89/\ H^2 + \ 0.82/\ H^3 + \ 0.30/\ H^4 + \ 0.76/\ H^5 + \ 0.48/\ H^6 + \ 0.17/\ H^7 + 0.05/\ H^8$$ - **2.6. Definition:** If \mathbb{U} is the universe of discourse, a set F_1 and F_2 fuzzy sets with characteristic functions $\mu_{F_1}(u)$ and $\mu_{F_2}(u)$ respectively the fuzzy set operations are defined as given bellow - (1) Union: the union of two fuzzy sets F_1 and F_2 is defined as $$\mu_{\text{F1} \cup \text{F2}} (u) = \mu_{\text{F1}}(u) \vee \mu_{\text{F2}}(u) = \max \{ \mu_{\text{F1}}(u), \mu_{\text{F2}}(u) \}, \text{ for all } u \in \mathbb{U} \}$$ (2) Intersection: the intersection of two fuzzy sets F_1 and F_2 is defined as for all $u \in$, $$\mu_{\text{F1} \cap \text{F2}} (u) = \mu_{\text{F1}}(u) \wedge \mu_{\text{F2}}(u) = \min \{ \mu_{\text{F1}}(u), \mu_{\text{F2}}(u) \}$$ (3) Compliment: the compliment of F is denoted by F^{C} and it is defined as $\mu_{F^{C}}(u)=1-\mu_{F}(u)$ ISSN: 1001-4055 Vol. 45 No. 4 (2024) (4) Algebraic Sum: the sum of the two fuzzy sets $\mu_{E_1}(u)$, $\mu_{E_2}(u)$ is $\mu_{E_1}(u) + \mu_{E_2}(u)$ it is defined as $$\mu_{F1+F2}(u) = \mu_{F1}(u) + \mu_{F2}(u) - \mu_{F1}(u) \cdot \mu_{F2}(u)$$ (5)Algebraic Product: The product of the two fuzzy sets is $\mu_{F1}(u).\mu_{F2}(u)$ it is defined as $$\mu_{\text{F1.F2}}$$ (*u*)= $\mu_{\text{F1}}(u) . \mu_{\text{F2}}(u)$ - (6) Bounded Sum : the bounded sum of the two fuzzy sets $\mu_{F1}(u)$, $\mu_{F2}(u)$ is $\mu_{F1}(u) \oplus \mu_{F2}(u)$ it is defined as $\mu_{F1 \oplus F2}(u) = \min \{1, \mu_{F1}(u) + \mu_{F2}(u)\}$ - (7) Bounded difference: the bounded difference Θ of the two fuzzy sets $\mu_{F1}(u)$, $\mu_{F2}(u)$ is $\mu_{F1}(u) \Theta \mu_{F2}(u)$ it is defined as $\mu_{F1}(u) = \max\{0, \mu_{F1}(u) \mu_{F2}(u)\}$ | | H^1 | H^2 | H^3 | H^4 | H ⁵ | H^6 | H^7 | H_8 | |-----------------------------------|-------|-------|-------|-------|----------------|-------|-------|-------| | $\mu_{ ext{F1U F2}}$ | 1.00 | 0.94 | 0.82 | 0.30 | 0.76 | 0.48 | 0.17 | 0.05 | | μ _{F1∩ F2} | 0.99 | 0.89 | 0.60 | 0.14 | 0.33 | 0.29 | 0.07 | 0.00 | | μ_{F1}^{c} | 0.00 | 0.06 | 0.18 | 0.70 | 0.24 | 0.52 | 0.83 | 0.95 | | $\mu_{\text{F1+F2}}$ | 1.00 | 0.99 | 0.928 | 0.39 | 0.83 | 0.63 | 0.22 | 0.05 | | $\mu_{\mathrm{F1.F2}}$ | 0.99 | 0.83 | 0.49 | 0.04 | 0.25 | 0.13 | 0.01 | 0.00 | | $\mu_{\text{F1}\oplus \text{F2}}$ | 1.00 | 1.00 | 1.00 | 0.44 | 1.00 | 0.77 | 0.24 | 0.05 | | $\mu_{\text{F1}\ominus\text{F2}}$ | 0.01 | 0.05 | 0.22 | 0.16 | 0.43 | 0.18 | 0.10 | 0.05 | Table -1. Outcomes of the operations on fuzzy sets. **2.7.Definition:** Let F_G be any group and mapping $\mu_{FG} : F_G \rightarrow [0,1]$ is called fuzzy subgroup if for all $f_{\alpha 1}$, $f_{\alpha 2} \in F_G$ - $(1) \ \mu_{\text{FG}}(f_{g1} \ . \ f_{g2}) \ge \min \ \{ \ \mu_{\text{FG}}(f_{g1}) \ , \mu_{\text{FG}}(f_{g2}) \ \}$ - (2) $\mu_{FG}((f_{g1})^{-1}) = \mu_{FG}(f_{g1})$ - (3) Let f_{ge} be the
identity element of fuzzy group F_G such that $\mu_{FG}(f_g) \le \mu_{FG}(f_{ge})$, for all $f_g \in F_G$ - **2.8.Definition:** Let F_R is fuzzy additive abelian group, and F_Γ be any additive group the mapping $\mathcal{Z}_{\mathscr{R}}: F_R \times F_\Gamma \times F_R \to F_R$ and it is defined as $\mathcal{Z}_{\mathscr{R}}(f_{r1}, f_{\gamma}, f_{r2}) = f_{r1}.f_{\gamma}.f_{r2}$ such that F_R is called as fuzzy Gamma ring if it satisfies the following properties let for any $f_{r1}, f_{r2}, f_{r3}, \in F_R$ and $f_{\gamma 1}, f_{\gamma 2}$ and $f_{\gamma} \in F_\Gamma$ (1) $$Z_{\mathcal{R}}(f_{r_1}+f_{r_2},f_{v_3},f_{r_3}) = Z_{\mathcal{R}}(f_{r_1},f_{v_3},f_{r_2}) + Z_{\mathcal{R}}(f_{r_2},f_{v_3},f_{r_3})$$ $$(2)Z_{\mathcal{R}}(f_{r_1},f_{\gamma_1}+f_{\gamma_2},f_{r_2})=Z_{\mathcal{R}}(f_{r_1},f_{\gamma_1},f_{r_2})+Z_{\mathcal{R}}(f_{r_1},f_{\gamma_2},f_{r_2})$$ (3) $$Z_{\mathcal{R}}(f_{r_1}, f_{\gamma}, f_{r_2} + f_{r_3}) = Z_{\mathcal{R}}(f_{r_1}, f_{\gamma}, f_{r_2}) + Z_{\mathcal{R}}(f_{r_1}, f_{\gamma}, f_{r_3})$$ (4) $$Z_{\mathcal{R}}((f_{r_1}, f_{\gamma_1}, f_{r_2}), f_{\gamma_2}, f_{r_3}) = Z_{\mathcal{R}}(f_{r_1}, f_{\gamma_1}, (f_{r_2}, f_{\gamma_1}, f_{r_3}))$$ **2.9.Definition:** Let $\mu_{\mathscr{L}_{\mathscr{I}}}$ be any non-empty fuzzy sub set of fuzzy Gamma ring F_R is said to be fuzzy left ideal of F_R if it satisfies the following properties as fuzzy Gamma if for all $f_{r_1}, f_{r_2}, f_{r_3}, \in F_R$ and $f_{\gamma} \in F_{\Gamma}$ such that (i) $$\mu_{\mathcal{L}}(f_{r_1}-f_{r_2}) \geq \min\{\mu_{\mathcal{L}}(f_{r_1}), \mu_{\mathcal{L}}(f_{r_2})\}$$ (ii) $$\mu_{\mathscr{L}}(f_{r2}+f_{r1}-f_{r2}) \geq \mu_{\mathscr{L}}(f_{r1})$$ ISSN: 1001-4055 Vol. 45 No. 4 (2024) _____ $$(iii)\mu_{\mathcal{L}_{q}}(f_{r_{2}}f_{\gamma}(f_{r_{1}}+f_{r_{3}})-f_{r_{2}}f_{\gamma}f_{r_{3}}) \geq \mu_{\mathcal{L}_{q}}(f_{r_{1}})$$ - **2.10. Definition:** Let $(F_{\nu},+,\times)$ is a vector space over a field \mathcal{K}_{ν} and mapping μ_{ν} : $F_{\nu} \to [0,1]$ is a fuzzy set of F_{ν} is said to be fuzzy vector subspace of \mathcal{K}_{ν} if it satisfies the following properties for all $f_{\nu 1}, f_{\nu 2} \in F_{\nu}$ and $\mathcal{K}_{\nu} \in \mathcal{K}_{\nu}$ - (1) $\mu(f_{v_1}, f_{v_2}) \ge \min \{ \mu \nu(f_{v_1}), \mu \nu(f_{v_2}) \}$ - (2) $\mu((f_{v1})^{-1}) \ge \mu \nu(f_{v1})$ - $(3)\;\mu(\not k_v\;f_{v1})\geq \mu\nu(f_{v1})$ - **2.11.Definition:** If $\mu_{\mathcal{V}}$: $F_{\mathcal{V}} \rightarrow [0,1]$ is a fuzzy vector subspace of $F_{\mathcal{V}}$ over a field $\mathcal{K}_{\mathcal{V}}$ if and only if $\mu_{\mathcal{V}}(\mathcal{K}_{v_1}f_{v_1}, \mathcal{K}_{v_2}f_{v_2}) \ge \min \{ \mu_{\mathcal{V}}(f_{v_1}), \mu_{\mathcal{V}}(f_{v_2}) \}$, for all $f_{v_1}, f_{v_2} \in F_{\mathcal{V}}$ and for all $\mathcal{K}_{v_1}, \mathcal{K}_{v_2} \in \mathcal{K}_{\mathcal{V}}$ - **2.12. Definition:** If the fuzzy Gamma-ring and F_D have an identity element and just one non-zero ideal, then they are referred to as division fuzzy Gamma-rings. - **2.13. Definition:** Let F_v is fuzzy vector space if $\widetilde{f_{v1}}(m) = V$ for all $m \in \mathcal{M}$ then a mapping $\|...\|$: $F_v \to [0,1]$ is said to be a fuzzy norm on the soft vector space F_v if $\|...\|$ is satisfies the following properties - (1) $\|\widetilde{f_{v1}}\| \ge \widetilde{0}$, for all $\widetilde{f_{v1}} \in F_{\mathcal{V}}$ - $(2) \parallel \widetilde{f_{v1}} \parallel = \widetilde{0} \iff \widetilde{f_{v1}} = \widetilde{0}$ - (3) $\| \cdot \widetilde{f_{v1}} \| = | \mathcal{R}_v | \| \widetilde{f_{v1}} \|$, for all $\widetilde{f_{v1}} \in F_v$ and for every soft scalar $\mathcal{R}_v \in \mathcal{K}_v$ - $(4)\|\widetilde{f_{v1}} + \widetilde{f_{v2}}\| \leq \|\widetilde{f_{v1}}\| + \|\widetilde{f_{v2}}\|, \text{ for all } \widetilde{f_{v1}} \ , \widetilde{f_{v2}} \in \mathrm{F} v$ The fuzzy vector space F with fuzzy norm $\|...\|$ on F_V is said to be a fuzzy normed linear space and is denoted by $(F_V \|...\|, \mathcal{M})$. (1),(2),(3) and (4) are called to be fuzzy norm axiom. **2.14. Definition:** Let F_D be a fuzzy division Gamma-ring possessing identification 1 and let $(F_{\nu},+)$ be a fuzzy abelian group. and the function $Z_{\nu}:F_Dx\ F_{\Gamma}x\ F_{\nu}\to F_{\nu}$ and it is defined as $Z_{\nu}(f_{\nu},f_{\gamma},f_{d})=f_{\nu}.\ f_{\gamma}.f_{d}$ then F_{ν} is called as a right fuzzy Gamma-vector space over F_D if the following properties holds for every $f_{\nu 1},f_{\nu 2}\in F_{\nu}$, $f_{d1},f_{d2}\in F_D$ and $f_{\gamma 1},f_{\gamma 2}$ and $f_{\gamma}\in F_{\Gamma}$ $$(F_{\gamma} - V^{1}) (f_{v1} + f_{v2}, f_{\gamma}, f_{d1}) = \mathcal{Z}(f_{v1}, f_{\gamma}, f_{d1}) + \mathcal{Z}_{\mathcal{V}}(f_{v2}, f_{\gamma}, f_{d1})$$ $$(F_{\gamma}-V^2)(f_{v1},f_{\gamma},f_{d1},f_{d2}) = \mathcal{Z}(f_{v1},f_{\gamma},f_{d1}) + \mathcal{Z}v(f_{v1},f_{\gamma}f_{d2})$$ $$(F_{\gamma}-V^3)(f_{v1},f_{\gamma 1},f_{d1},f_{\gamma 2},f_{d2})) = \mathcal{Z}((f_{v1},f_{\gamma 1},f_{d1}),f_{\gamma 2},f_{d2})$$ $(F_{\gamma}-V^4)$ $(f_{v1},f_{\gamma},1)=f_{v1}$, for some $f_{\gamma} \in F_{\Gamma}$, the elements f_{v1},f_{v2} are called fuzzy vectors in F_{ν} , f_{d1},f_{d2} are called fuzzy scalars in F_D . **2.15.Definition:** The unit closed interval [0, 1] and I_f be any closed sub-interval of [0, 1] and is defined by $I_{\mathfrak{f}} = [I_{\mathfrak{f}} \ I_{\mathfrak{f}}]$ where $0 \le I_{\mathfrak{f}} \le I_{\mathfrak{f}} \le I_{\mathfrak{f}} \le I_{\mathfrak{f}}$ suppose $\mathcal{C}[0,1]$ be the set of all closed sub interval of [0,1] that is $$C[0,1] = \{ I_f / I_f = [I_f I_f^+], I_f, \leq I_f^+ \text{ and } I_f, I_f^+ \in [0,1] \}$$ **2.16.Definition:** Consider F be any set and a mapping $F^{I}:F \rightarrow C[0,1]$ and the set is represented as $\{F^I(\mathfrak{f})=[F^{I-}(\mathfrak{f})\ ,F^{I+}(\mathfrak{f})]/\ F^{I-}\ ,F^{I+}\ \text{are fuzzy subsets of}\ F\ ,F^{I-}(\mathfrak{f})\leq F^{I+}(\mathfrak{f}),\ \text{for all}\ \mathfrak{f}\in F\ \}\ \text{and this set is also called as interval-valued fuzzy subset of}\ F.$ - **2.17. Definition** Let $(F_{\nu}, +, X)$ is a vector space over a field \mathcal{K}_{ν} with dimension m and μ is a fuzzy subset of F_{ν} such that $\mu_{\nu}(\mathcal{k}_{\nu_1} f_{\nu_1} + \mathcal{k}_{\nu_2} f_{\nu_2}) \ge \min \{ \mu_{\nu}(f_{\nu_1}), \mu_{\nu}(f_{\nu_2}) \}$, for all $f_{\nu_1}, f_{\nu_2} \in F_{\nu}$ and for all $\mathcal{k}_{\nu_1}, \mathcal{k}_{\nu_2} \in \mathcal{K}_{\nu}$ - **2.18. Definition:** Let Δ^F be a binary operation and is mapping from [0,1]x[0,1] to [0,1] that is $\Delta^F : [0,1]x[0,1] \to [0,1]$ is said to be continuous triangular-norm or t-norm if it satisfies the following axioms (i) Δ^{F} is associative and commutative ISSN: 1001-4055 Vol. 45 No. 4 (2024) That is for every f^1 , f^2 , $f^3 \in [0,1]$ such that $\Delta^F((f^1,f^2),f^3) = \Delta^F(f^1,(f^2,f^3))$ and $\Delta^{F}(f^{1}, f^{2}) = \Delta^{F}(f^{2}, f^{1})$ - (ii) Δ^F is continuous - (iii) Δ^F (f¹,1)= f¹, for all f¹ \in [0,1] - (iv) $\Delta^{F}(f^{1}, f^{2}) \leq \Delta^{F}(f^{3}, f^{4})$ whenever $f^{1} \leq f^{3}$ and $f^{2} \leq f^{4}$, for all $f^{1}, f^{2}, f^{3}, f^{4} \in [0, 1]$ - **2.19. Example:** We have two examples of continuous t-norm $\Delta^F(f^1, f^2) = f^1 \cdot f^2 \Delta^F(f^1, f^2) = \min\{f^1, f^2\}$. - **2.20.Remark:** For any f^1 , $f^2 \in (0,1)$ with $f^1 > f^2$ there exists f^3 , $f^4 \in (0,1)$ such that Δ^F (f^1 , f^3) $\geq f^2$ and for any $f^4 \in (0,1)$ there exists f^5 , $f^6 \in (0,1)$ such that Δ^F (f^5 , f^6) $\geq f^4$, Δ^F (f^1 , f^3) $\geq f^2$ - **2.21. Definition:** Let F_L linear space over a fuzzy field F a real valued function $\parallel,...,\parallel: F_L \times F_L \rightarrow [0,1]$ and it satisfies the following properties - (1) $\|v_{r1}, v_{r2}\| = 0$ if and only v_{r1}, v_{r2} are linearly independent over F. - (2) $\|v_{r1},v_{r2}\| = \|v_{r2},v_{r1}\|$ - (3) $\|v_{r1},kv_{r2}\|=k\|v_{r1},v_{r2}\|$ - $(4) \ \|\nu_{r1,}\nu_{r2} + \nu_{r3}\| \leq \|\nu_{r1,}\nu_{r2}\| + \|\nu_{r1,}\nu_{r3}\|$ Is called the soft m-norm on F_L and the pair $(F_L, \parallel ..., \parallel)$ is called the fuzzy 2-normed linear space. - **2.22. Definition:** Let F_R be a real vector space over with dimension m over a field F a real valued function $\|.,...,\|: F_R \to [0,1]$ and it satisfies the following properties - (1) $\|\mathbf{v}_{r1}, \mathbf{v}_{r2}, \mathbf{v}_{r3}, \dots, \mathbf{v}_{rm-1}, \mathbf{v}_{rm}\| = 0$, if and only if $\mathbf{v}_{r1}, \mathbf{v}_{r2}, \mathbf{v}_{r3}, \dots, \mathbf{v}_{rm-1}, \mathbf{v}_{rm}$ are linearly independent over F. - (2) $\|v_{r1}, v_{r2}, v_{r3}, \dots, v_{rm-1}, v_{rm}\|$ is invariant under any permutation. - (3) $\|v_{r1},v_{r2},v_{r3},...,v_{rm-1}, kv_{rm}\|=k\|v_{r1},v_{r2}, v_{r3},...,v_{rm-1}, v_{rm}\|$ - $(4) \ \| \nu_{rl}, \nu_{r2}, \ \nu_{r3}, \dots, \nu_{rm-l}, \ \nu_{rm} + \ \nu'_{r} \ \| \leq \| \nu_{rl}, \nu_{r2}, \ \nu_{r3}, \dots, \nu_{rm-l}, \ \nu_{rm} \| + \| \nu_{rl}, \nu_{r2}, \ \nu_{r3}, \dots, \nu_{rm-l}, \ \nu'_{rm} \| \ \text{ is called the } \ m\text{-norm on } F_{\mathbb{R}} \\ \text{and the pair } (F_{\mathbb{R}}, \| \dots, \|) \ \text{is called the } \ m\text{-normed linear space}.$ - **2.23.Definition**: Let $F_{\mathcal{V}}$ be a linear space in a field F, Fuzzy m-normed linear space is defined as a fuzzy subset $F_{\mathcal{N}}$ of $F_{\mathcal{V}}$ x $F_{\mathcal{V}}$ x ... x $F_{\mathcal{V}}$ x $F_{\mathcal{V}}$ (m-times)x($-\infty$, ∞) and the pair ($F_{\mathcal{V}}$, $F_{\mathcal{N}}$). $F_{\nu} \times F_{\nu} \times \dots \times F_{\nu} \times F_{\nu}$ (m-times) $\times (-\infty, \infty)$ is referred to as a fuzzy m-norm on F_{ν} if and only if. - (1) $F_{\mathcal{N}}(f_{v1}, f_{v2}, f_{v3}, ..., f_{vm-1}, f_{vm}, f_t) \ge 0$, for all $f_t \in (-\infty, \infty)$. - (2)
$F_{\mathcal{N}}(f_{v1},f_{v2},f_{v3},...,f_{vm-1},f_{vm},f_t)=0$ if and only if $f_{v1},f_{v2},f_{v3},...,f_{vm-1},f_{vm}$, are linearly dependent if for all $f_t \ge 0$, and $f_t \in (-\infty,\infty)$ - $(3) \ F_{\mathcal{N}}(f_{v1} \ , f_{v2} \ , f_{v3}, \ldots, f_{vm-1} \ , f_{vm} \ , f_t) \ is \ invariant \ under \ any \ permutation \ of \ f_{v1} \ , f_{v2} \ , f_{v3}, \ldots, f_{vm-1} \ , f_{vm} \ , f_t \ .$ - (4) $F_{\mathcal{N}}(f_{v1}, f_{v2}, f_{v3}, ..., f_{vm-1}, f_{\Delta}f_{vm}, f_{t}) = F_{\mathcal{N}}(f_{v1}, f_{v2}, f_{v3}, ..., f_{vm-1}, f_{vm}, f_{t}, \frac{f_{t}}{|f_{\Delta}|})$, where $f_{\Delta} \in F$ - $(5) F_{\mathcal{N}}(f_{v1}, f_{v2}, f_{v3}, ..., f_{vm-1}, f_{vm1} + f_{vm2}, f_{t1} + f_{t2}) \geq min\{ F_{\mathcal{N}}(f_{v1}, f_{v2}, f_{v3}, ..., f_{vm-1}, f_{vm1}, f_{t1}), F_{\mathcal{N}}(f_{v1}, f_{v2}, f_{v3}, ..., f_{vm-1}, f_{vm2}, f_{t2}) \}$ - $(6) F(f_{v1}, f_{v2}, f_{v3}, \ldots, f_{vm-1}, f_{vm}, f_t) \text{ is a left continuous and non-decreasing function of } f_t \in (-\infty, \infty) \text{ such that} \\ F(f_{v1}, f_{v2}, f_{v3}, \ldots, f_{vm-1}, f_{vm}, f_t) = 0.$ **2.24.Definition:** Let $(F_{\mathcal{V}}, \mathbb{I}, \dots, \mathbb{I})$ be a fuzzy m-normed linear space and a sequence $\{f_{vr}\}_{r=1}^{\infty}$ in $(F_{\mathcal{V}}, \mathbb{I}, \dots, \mathbb{I})$ is said to convergence to $f_v \in F_{\mathcal{V}}$ if for every $\in >0$ there exists appositive number M such that $\lim_{r \to \infty} \|(f_{v1}, f_{v2}, f_{v3}, \dots, f_{vr-1}, f_{vr} - f_v)\| = 0$ That is $$\lim_{r\to\infty} \| (f_{v1}, f_{v2}, f_{v3}, ..., f_{vr-1}, f_{vr}) \| = f_v$$ - **2.25. Definition:** In a fuzzy m-normed linear space $(F_{\nu}, \|.....\|)$ a sequence $\{f_{vr}\}_{r=1}^{\infty}$ is said to be Cauchy sequence if if for every $\mathcal{E} > 0$ there exists appositive number M such that $\|(f_{v1}, f_{v2}, f_{v3}, ..., f_{vr-1}, f_{vr} f_{v\ell})\| \le \mathcal{E}$, whenever $r, \ell \ge M$. And it is represented by $\lim_{r \ne \infty} \|(f_{v1}, f_{v2}, f_{v3}, ..., f_{vr-1}, f_{vr} f_{v\ell})\| = 0$. - **2.26. Definition:** The fuzzy m-normed linear space $(Fv, \parallel, \dots, \parallel)$ is said to be complete if every Cauchy sequence is convergent in it. - **2.27.Definition:** Let E_V be subset of fuzzy m-normed linear space $(F_V, \mathbb{I}, \dots, \mathbb{I})$ and is said to be bounded if there exists a positive real constant η such that $$\|(e_{v1}, e_{v2}, e_{v3}, ..., e_{vr-1}, e_{vr})\| \le \eta \text{ for all } e_{v1}, e_{v2}, e_{v3}, ..., e_{vr-1}, e_{vr} \in E_V.$$ **2.28.Definition:** Let $(F\nu, \|..., f_{vm-1}, f_{vm})$ be a fuzzy m- normed linear space for any $(f_{v1}, f_{v2}, f_{v3}, ..., f_{vm-1}, f_{vm}) \in F\nu$, then set $\{(f_{v1}, f_{v2}, f_{v3}, ..., f_{vm-1}, f_{vm}) \in F\nu / \|(f_{v1}, f_{v2}, f_{v3}, ..., f_{vm} - f_{v0})\| < \rho \}$ is called an open ball center at f_{v0} with radius ρ and it is represented as $B_{\rho}(f_{v0}) = \{(f_{v1}, f_{v2}, f_{v3}, ..., f_{vm-1}, f_{vm}) \in F\nu / \|(f_{v1}, f_{v2}, f_{v3}, ..., f_{vm} - f_{v0})\| < \rho \}$ Similarly we can define a closed ball $$B_{\varrho}(f_{v0}) = \{(f_{v1}, f_{v2}, f_{v3}, \dots, f_{vm-1}, f_{vm}) F_{\mathcal{V}} / \| (f_{v1}, f_{v2}, f_{v3}, \dots, f_{vm} - f_{v0}) \| \leq \rho \}$$ - **2.29.Definition:** In the fuzzy m-normed linear space $(F_{v}, \|....., \|)$ a sequence $\{f_{vr}\}_{r=1}^{\infty}$ is called bounded or norm bounded if there is a constant η such that that $\|(f_{v1}, f_{v2}, f_{v3}, ..., f_{vr-1}, f_{vr})\| \le \eta$, for all r. - **2.30. Remark:** Every convergent sequence is Cauchy and norm bounded in the fuzzy m-normed linear space $(Fv, \mathbb{I}, \dots, \mathbb{I})$. - **2.31.Theorem:** Let $(F_{\mathcal{V}}, \|..., \|)$ be a fuzzy m-normed linear space and let $\{f_{vr}\}_{r=1}^{\infty}$ and $\{f'_{vr}\}_{r=1}^{\infty}$ be two Cauchy sequences in $(F_{\mathcal{V}}, \|..., \|)$ such that $\|(f_{v1}, f_{v2}, f_{v3}, ..., f_{vr-1}, f_{vr})\| \to f_v$, $\|(f'_{v1}, f'_{v2}, f'_{v3}, ..., f'_{vr-1}, f'_{vr})\| \to f'_{v}$, as $r \to \infty$. Let $\{k_{vr}\}_{r=1}^{\infty}$ be a sequence in $\mathcal{K}_{\mathcal{V}}$ where $\mathcal{K}_{\mathcal{V}}$ is being the field of scalars be such that $k_{vr} \to k_{v0}$ as $r \to \infty$ then the following axioms holds: (F-1) $$\|(f_{v1}\pm f'_{v1}, f_{v2}\pm f'_{v2}, f_{v3}\pm f'_{v3}, ..., f_{vr}\pm f'_{vr})\| \rightarrow f_v\pm f'_v$$, as $r\rightarrow \infty$ (F-2) $$\|(f_{v1}, f_{v2}, f_{v3}, \dots, f_{vr-1}, k_{vr}, f_{vr})\| \rightarrow k_v \cdot f_v$$, as $r \rightarrow \infty$. (F-3) Let $\{f_{vr}\}_{r=1}^{\infty}$ and $\{f'_{vr}\}_{r=1}^{\infty}$ be two Cauchy sequences in $(F_{\mathcal{V}}, \|....., \|)$ and $\{k_{vr}\}_{r=1}^{\infty}$ be a Cauchy sequence in then $\{f_{vr} + f'_{vr}\}_{r=1}^{\infty}$ and $\{k_{vr}f_{vr}\}_{r=1}^{\infty}$ are also Cauchy sequence in $(F_{\mathcal{V}}, \|....., \|)$. Proof: (1) We have $$\|(f_{v1}\pm f'_{v1},f_{v2}\pm f'_{v2},f_{v3}\pm f'_{v3},...,f_{vr}\pm f'_{vrV}-(f_{v}\pm f'_{v}))\| \le (\|(f_{v1},f_{v2},f_{v3},...,f_{vr}-f_{v}\|+1)\| + \|(f_{v1}\pm f'_{v1},f_{v2}\pm f'_{v2},f_{v3},...,f_{vr}-f_{v}\|+1)\| f'_{v3},f_{v3},...,f_{vr}-f_{v}\|+1)\| f'_$$ $$\|(f'_{v1}, f'_{v2}, f'_{v3}, \dots, f'_{vr} - f'_{v})\| \rightarrow 0$$, as $r \rightarrow \infty$, Since $$\lim_{r\to\infty} \| (f_{v1}, f_{v2}, f_{v3}, ..., f_{vr-1}, f_{vr} - f_v) \| = 0$$ and $$\lim_{r \to \infty} \| \left(\mathbf{f'_{v1}} , \mathbf{f'_{v2}} , \mathbf{f'_{v3}} , \dots, \mathbf{f'_{vr-1}} , \mathbf{f'_{vr}} - \mathbf{f'_{v}} \right) \| = 0$$ Hence $$\|(f_{v1}\pm f'_{v1}, f_{v2}\pm f'_{v2}, f_{v3}\pm f'_{v3}, ..., f_{vr}\pm f'_{vr}\| \rightarrow f_v\pm f'_v$$, as $r\rightarrow\infty$. (2) Given that $k_{vr} \rightarrow k_{v0}$ as $r \rightarrow \infty \Rightarrow |k_{vr} - k_{v0}| \rightarrow 0$, as $r \rightarrow \infty$ then there exists a constant λ such that $|k_{vr}| \leq \lambda$ for all r. Now we consider ISSN: 1001-4055 Vol. 45 No. 4 (2024) $\| (f_{v1} , f_{v2} , f_{v3}, \ldots, f_{vr-1} \ , \ k_{vr} \ f_{vr} - k_{v0} \ f_{v0}) \| = \| (f_{v1} , f_{v2} , f_{v3}, \ldots, f_{vr-1} \ , \ k_{vr} \ f_{vr} - k_{vr} \ f_{v0} + k_{vr} \ f_{v0} - k_{v0} \ f_{v0}) \| = \| (f_{v1} , f_{v2} , f_{v3}, \ldots, f_{vr-1} \ , \ k_{vr} \ f_{vr} - k_{vr} \ f_{v0} + k_{vr} \ f_{v0} - k_{v0} \ f_{v0}) \| = \| (f_{v1} , f_{v2} , f_{v3}, \ldots, f_{vr-1} \ , \ k_{vr} \ f_{vr} - k_{vr} \ f_{v0} + k_{vr} \ f_{v0} - k_{v0} \ f_{v0}) \| = \| (f_{v1} , f_{v2} , f_{v3}, \ldots, f_{vr-1} \ , \ k_{vr} + k_{vr} \ f_{v0} - k_{v0} \ f_{v0}) \| = \| (f_{v1} , f_{v2} , f_{v3}, \ldots, f_{vr-1} \ , \ k_{vr} + k_{vr} + k_{vr} \ f_{v0} - k_{v0} \ f_{v0}) \| = \| (f_{v1} , f_{v2} , f_{v3}, \ldots, f_{vr-1} \ , \ k_{vr} + k_{vr} + k_{vr} \ f_{v0} - k_{v0} \ f_{v0}) \| = \| (f_{v1} , f_{v2} , f_{v3}, \ldots, f_{vr-1} \ , \ k_{vr} + k_{vr} + k_{vr} \ f_{v0} - k_{v0} \ f_{v0}) \| = \| (f_{v1} , f_{v2} , f_{v3}, \ldots, f_{vr-1} \ , \ k_{vr} + k_{$ $$\leq \|(f_{v1}\,,f_{v2}\,,f_{v3},\ldots,f_{vr\text{-}1}\,\,,\,k_{vr}\,(f_{vr}\text{-}\,f_{v0}))\| + \, \|(f_{v1}\,,f_{v2}\,,f_{v3},\ldots,f_{vr\text{-}1}\,\,,\,(k_{vr}\,\text{-}\,k_{v0}\,)f_{v0})\|$$ $$\leq \mid k_{vr} \mid \| (f_{v1} \ , f_{v2} \ , f_{v3}, \ldots, f_{vr\text{-}1} \ , \ f_{vr}\text{-} \ f_{v0})) \| + \ | k_{vr} \ - \ k_{v0} | \ \| (f_{v1} \ , f_{v2} \ , f_{v3}, \ldots, f_{vr\text{-}1} \ , \ f_{v0}) \|$$ $$\leq |\lambda| \|(f_{v1}, f_{v2}, f_{v3}, \dots f_{vr-1}, f_{vr} - f_{v0})\| + |k_{vr} - k_{v0}| \|(f_{v1}, f_{v2}, f_{v3}, \dots, f_{vr-1}, f_{v0})\| \rightarrow 0 \text{ as } r \rightarrow \infty.$$ So $$\|(f_{v1}, f_{v2}, f_{v3}, \dots, f_{vr-1}, k_{vr}, f_{vr})\| \to k_{v0} \cdot f_{v0}$$, as $r \to \infty$. (3) We have $$\|(f_{v_1}, f_{v_2}, f_{v_3}, ..., f_{v_{r-1}}, f_{v_r} - f_{v_\ell})\| \to 0$$, as $r, \ell \to \infty$ And $$\|(f'_{v1}, f'_{v2}, f'_{v3}, ..., f'_{vr-1}, f'_{vr} - f'_{v\ell})\| \to 0$$, as $r, \ell \to \infty$ Therefore $$\|(f_{v1} + f'_{v1}, f_{v2} + f'_{v2}, f_{v3} + f'_{v3}, ... f_{vr-1} + f_{vr-1}, f_{vr} + f'_{vr} - (f_{v\ell} + f'_{v\ell})\|$$ $$\leq [\| (f_{v1}, f_{v2}, f_{v3}, ..., f_{vr-1}, f_{vr} - f_{v\ell}) \| + \| (f'_{v1}, f'_{v2}, f'_{v3}, ..., f'_{vr-1}, f'_{vr} - f'_{v\ell}) \|] \rightarrow 0, \text{as } r, \ell \rightarrow \infty$$ This implies that $\{f_{vr} + f'_{vr}\}_{r=1}^{\infty}$ is Cauchy sequence in $(F_{v}, \|., ..., \|)$ Since $\{k_{vr}\}_{r=1}^{\infty}$ be a Cauchy sequence of scalars in K, the scalar field is complete and $\{k_{vr}\}_{r=1}^{\infty}$ is convergent sequence and hence $\{k_{vr}\}_{r=1}^{\infty}$ is bounded. Also we consider $$\parallel (f_{v1}, f_{v2}, f_{v3}, ..., f_{vr-1}, k_{vr} f_{vr} - k_{v\ell} f_{v\ell}) \parallel = \parallel (f_{v1}, f_{v2}, f_{v3}, ..., f_{vr-1}, k_{vr} f_{vr} - k_{v\ell} f_{v\ell} + k_{vr} f_{v\ell} - k_{vr} f_{v\ell}) \parallel = \parallel (f_{v1}, f_{v2}, f_{v3}, ..., f_{vr-1}, k_{vr} f_{vr} - k_{v\ell} f_{v\ell} + k_{vr} f_{v\ell} - k_{v\ell} f_{v\ell}) \parallel = \parallel (f_{v1}, f_{v2}, f_{v3}, ..., f_{vr-1}, (k_{vr} - k_{v\ell}) f_{v\ell}) \parallel \leq [|k_v|| + |k_{vr} - k_{v\ell}| \parallel (f_{v1}, f_{v2}, f_{v3}, ..., f_{vr-1}, f_{v\ell}) \parallel] \rightarrow 0, \text{ as } r, \ell \rightarrow \infty$$ Since $\{k_{vr}\}_{r=1}^{\infty}$ is bounded and $\{f_{vr}\}_{r=1}^{\infty}$ is norm bounded Hence $\{k_{vr}f_{vr}\}_{r=1}^{\infty}$ is a Cauchy sequence in $(Fv, \|..., \|)$. - 2.32. Remark: The norm function is continuous as it follows by 2.31. Theorem. - **2.33** .Example: Let (F_{V_n}, \dots, I) be a fuzzy m-normed linear space. We define continuous t-norm $$\Delta^{F}(f^{1}, f^{2}) = f^{1} \cdot f^{2}$$, $\Delta^{F}(f^{1}, f^{2}) = \min \{f^{1}, f^{2}\}$, for all $f^{1}, f^{2} \in [0, 1]$. $$F_{\nu}\left(f_{v_{1}},f_{v_{2}},f_{v_{3},...},f_{v_{m-1}},f_{v_{m}},f_{t}\right) = \frac{\parallel \left(f_{v_{1}},f_{v_{2}},f,...,f_{v_{m-1}},f_{v_{m}}\right) \parallel}{f_{t} + \parallel
\left(f_{v_{1}},f_{v_{2}},f_{v_{3}},...,f_{v_{m-1}},f_{v_{m}}\right) \parallel} \text{ then the set}$$ $S = \{(F_{\mathcal{V}}, F_{\mathcal{V}}(f_{v_1}, f_{v_2}, f_{v_3, ...}, f_{v_{m-1}}, f_{v_m}, f_t)) / (f_{v_1}, f_{v_2}, f_{v_3, ...}, f_{v_{m-1}}, f_{v_m}, f_t) \in F_{\mathcal{V}}^{M}\} \text{ is a fuzzy m-normed linear space.}$ **Proof:** (1) Obviously for every $f_t \in (-\infty,\infty)$ such that $F_V(f_{v1},f_{v2},f_{v3,...},f_{vm-1},f_{vm},f_t) \ge 0$. $$(2) \ F_{\mathcal{V}} (f_{v_1}, f_{v_2}, f_{v_3, \dots, f_{v_{m-1}}}, f_{v_m}, f_t) = 0 \iff \frac{\parallel f_{v_1}, f_{v_2}, \dots, f_{v_{m-1}}, f_{v_m}) \parallel}{f_t + \parallel (f_{v_1}, f_{v_2}, \dots, f_{v_{m-1}}, f_{v_m}) \parallel} = 0$$ $$\Leftrightarrow \| (f_{v1}, f_{v2}, f_{v3}, ..., f_{vm-1}, f_{vm}) \| = 0$$ \iff $f_{v1}, f_{v2}, f_{v3,...,}f_{vm-1}, f_{vm}$ are linearly dependent if for all $f_t \ge 0$, and $f_t \in (-\infty, \infty)$ $$(3) \ F_{\mathcal{V}} \ (f_{v_1}, f_{v_2}, f_{v_3, \dots}, f_{v_{m-1}}, f_{v_m}, f_t) = \frac{\parallel (f_{v_1}, f_{v_2}, f_{v_3}, \dots, f_{v_{m-1}}, f_{v_m}) \parallel}{f_{v_1} + \parallel (f_{v_1}, f_{v_2}, f_{v_3}, \dots, f_{v_{m-1}}, f_{v_m}) \parallel} = \frac{\parallel (f_{v_1}, f_{v_2}, f_{v_3}, \dots, f_{v_{m-1}}, f_{v_m}) \parallel}{f_{v_1} + \parallel (f_{v_1}, f_{v_2}, f_{v_3}, \dots, f_{v_{m-1}}, f_{v_m}) \parallel} = ...so$$ on Hence it is invariant under any permutation of f_{v1} , f_{v2} , $f_{v3,...}f_{vm-1}$, f_{vm} , f_t . $$(4) F_{\nu} (f_{v1} ,f_{v2} ,f_{v3,...,f_{vm-1}} ,f_{\Delta}f_{vm},f_{t}) = \frac{\parallel (f_{v1},f_{v2},f_{v3},...,f_{vm-1},f_{\Delta}f_{vm}) \parallel}{f_{t} + \parallel (f_{v1},f_{v2},f_{v3},...,f_{vm-1},f_{\Delta}f_{vm}) \parallel}$$ $$= \frac{f_{\Delta} \parallel (f_{v_{1}}, f_{v_{2}}, f_{v_{3}}, ..., f_{v_{m-1}}, f_{v_{m}}) \parallel}{f_{t} + f_{\Delta} \parallel (f_{v_{1}}, f_{v_{2}}, f_{v_{3}}, ..., f_{v_{m-1}}, f_{v_{m}}) \parallel} = \frac{\parallel (f_{v_{1}}, f_{v_{2}}, f_{v_{3}}, ..., f_{v_{m-1}}, f_{v_{m}}) \parallel}{\frac{f_{t}}{f_{\Delta}} + \parallel (f_{v_{1}}, f_{v_{2}}, f_{v_{3}}, ..., f_{v_{m-1}}, f_{v_{m}}) \parallel}$$ $$=F_{\mathcal{V}}\;(f_{v1}\;,f_{v2}\;,f_{v3,\dots,}f_{vm\text{-}1}\;,f_{vm}\;,f_{t},\frac{f_{t}}{|f_{\Delta}|}),\,\text{where}\;f_{\Delta}\text{\in}F$$ (5) Without loss of generality we consider that $F_V(f_{v1},f_{v2},f_{v3,\dots,}f_{vm-1},f_{vm1},f_{t1}) \leq F_V(f_{v1},f_{v2},f_{v3,\dots,}f_{vm-1},f_{vm2},f_{t2})$ $$\Rightarrow \frac{\parallel (f_{v1}, f_{v2}, f_{v3}, ..., f_{vm-1}, f_{vm1}) \parallel}{f_{t1} + \parallel (f_{v1}, f_{v2}, f_{v3}, ..., f_{vm-1}, f_{vm1}) \parallel} \leq \frac{\parallel (f_{v1}, f_{v2}, f_{v3}, ..., f_{vm-1}, f_{vm2}) \parallel}{f_{t2} + \parallel (f_{v1}, f_{v2}, f_{v3}, ..., f_{vm-1}, f_{vm2}) \parallel}$$ $$\Rightarrow f_{t2} \parallel (f_{v1}, f_{v2}, f_{v3}, ..., f_{vm-1}, f_{vm1}) \parallel + [\parallel (f_{v1}, f_{v2}, f_{v3}, ..., f_{vm-1}, f_{vm1}) \parallel . \parallel (f_{v1}, f_{v2}, f_{v3}, ..., f_{vm-1}, f_{vm2}) \parallel] \\ \leq f_{t1} \parallel (f_{v1}, f_{v2}, f_{v3}, ..., f_{vm-1}, f_{vm2}) \parallel + [\parallel (f_{v1}, f_{v2}, f_{v3}, ..., f_{vm-1}, f_{vm1}) \parallel . \parallel (f_{v1}, f_{v2}, f_{v3}, ..., f_{vm-1}, f_{vm2}) \parallel]$$ $$\Rightarrow f_{t2} \parallel (f_{v1}, f_{v2}, f_{v3}, ..., f_{vm-1}, f_{vm1}) \parallel \leq f_{t1} \parallel (f_{v1}, f_{v2}, f_{v3}, ..., f_{vm-1}, f_{vm2}) \parallel$$ $$\Rightarrow f_{t1} \parallel (f_{v1}, f_{v2}, f_{v3}, ..., f_{vm-1}, f_{vm2}) \parallel -f_{t2} \parallel (f_{v1}, f_{v2}, f_{v3}, ..., f_{vm-1}, f_{vm1}) \parallel \geq 0 \qquad(1)$$ Now we consider, $F_V(f_{v1}\,,f_{v2}\,,f_{v3},\ldots,f_{vm-1}\,,f_{vm1}+\,f_{vm2}\,,f_{tl}+\,f_{t2})\,\,\text{-}\,F_V(f_{v1}\,,f_{v2}\,,f_{v3},\ldots,f_{vm-1}\,,f_{vm1}\,,f_{tl})$ $$\Leftrightarrow \frac{\parallel (f_{v_{1}},f_{v_{2}},f_{v_{3}},...,f_{v_{m-1}},f_{v_{m1}}+\ f_{v_{m2}}) \parallel}{f_{t_{1}}+\ f_{t_{2}}+\parallel (f_{v_{1}},f_{v_{2}},f_{v_{3}},...,f_{v_{m-1}},f_{v_{m1}}+\ f_{v_{m2}}) \parallel} - \frac{\parallel (f_{v_{1}},f_{v_{2}},f_{v_{3}},...,f_{v_{m-1}},f_{v_{m1}}) \parallel}{f_{t_{1}}+\parallel (f_{v_{1}},f_{v_{2}},f_{v_{3}},...,f_{v_{m-1}},f_{v_{m1}}) \parallel}$$ $$\Leftrightarrow \left[\| \ (f_{v1},f_{v2},f_{v3},...,f_{vm-l},f_{vm1}+\ f_{vm2}) \ \| \] [f_{t1}+\| \ (f_{v1},f_{v2},f_{v3},...,f_{vm-l},f_{vm1}) \ \| \] - \\ [\| \ (f_{v1},f_{v2},f_{v3},...,f_{vm-l},f_{vm1}) \ \| \] [f_{t1}+\ f_{t2}+\| \ (f_{v1},f_{v2},f_{v3},...,f_{vm-l},f_{vm1}+\ f_{vm2}) \ \| \]$$ $$\Leftrightarrow f_{\iota 1} \, \Box \, (f_{v 1}, f_{v 2}, f_{v 3}, ..., f_{v m - l}, f_{v m 2}) \, \Box \, - f_{\iota 2} \, \Box \, (f_{v 1}, f_{v 2}, f_{v 3}, ..., f_{v m - l}, f_{v m 1}) \, \Box \,(2)$$ From (1) and (2) we obtain $F_{V}\left(f_{v1},f_{v2},f_{v3},...,f_{vm-1},f_{vm1}+f_{vm2},f_{t1}+f_{t2}\right) - F_{V}(f_{v1},f_{v2},f_{v3},...,f_{vm-1},f_{vm1},f_{t1}) \ge 0$ Hence $F_V(f_{v1}, f_{v2}, f_{v3}, ..., f_{vm-1}, f_{vm1} + f_{vm2}, f_{t1} + f_{t2}) \ge min\{ F_V(f_{v1}, f_{v2}, f_{v3}, ..., f_{vm-1}, f_{vm1}, f_{t1}), F_V(f_{v1}, f_{v2}, f_{v3}, ..., f_{vm-1}, f_{vm2}, f_{t2})\}$ (6) Clearly $F(f_{v1}, f_{v2}, f_{v3}, ..., f_{vm-1}, f_{vm}, f_t)$ is a left continuous and non-decreasing function of $f_t \in (-\infty, \infty)$ such that ISSN: 1001-4055 Vol. 45 No. 4 (2024) $$\lim_{m \to \infty} F_v(f_{v1}\,,f_{v2}\,,f_{v3},...,f_{vm-1}\,,f_{vm}\,,f_t) = \lim_{m \to \infty} \frac{\parallel (f_{v1},f_{v2},f_{v3},...,f_{vm-1},f_{vm}) \parallel}{f_t + \parallel (f_{v1},f_{v2},f_{v3},...,f_{vm-1},f_{vm}) \parallel} = 0\;.$$ **2.34. Definition:** A sequence $\{f_{vr}\}_{r=1}^{\infty}$ in fuzzy m-normed linear space S is said to be convergent to f_v if given that $\delta > 0$, $\delta \in (0,1)$ and $f_t > 0$ there exists appositive number M such that **2.35. Definition:** A sequence $\{f_{vr}\}_{r=1}^{\infty}$ in fuzzy m-normed linear space S is said to be Cauchy sequence if given that $\delta > 0$, and δ in (0,1) and $f_i > 0$ there exists appositive number M such that $$F_V(f_{v1}, f_{v2}, f_{v3}, ..., f_{vm-1}, f_{vm} - f_{v\ell}, f_t) < \delta$$ for all $m, \ell \ge M$. $$\begin{split} F_{N}(\mathbf{f}_{v1}, \mathbf{f}_{v2}, \mathbf{f}_{v3}, \dots, & \mathbf{f}_{vm-1}, \mathbf{f}_{vm} - \mathbf{f}_{v\ell}, \mathbf{f}_{t}) < \delta \text{ for all } m, l \geq M. \\ that is & \lim_{m,l \to \infty} F_{N}(\mathbf{f}_{v1}, \mathbf{f}_{v2}, \mathbf{f}_{v3}, \dots, & \mathbf{f}_{vm-1}, \mathbf{f}_{vm} - \mathbf{f}_{v\ell}, \mathbf{f}_{t}) < \delta \text{ for all } m, l \geq M. \end{split}$$ - 2.36. Theorem: In a fuzzy m-normed linear space S, every convergent sequence is Cauchy sequence. - **2.37. Definition:** A fuzzy m-normed linear space S is said to be complete if every Cauchy sequence in S is convergent. #### 3. MAIN RESULTS AND DISCUSSIONS: 3.1. Definition: Let F_V be a fuzzy right Gamma linear space over F_D a real valued function $\|,...,\|$: $F_V \times F_V \to [0,\infty)$ is called fuzzy Gamma-2-normed linear space over F_D , It is denoted by $(F_V, \|..., \|)$. if it satisfies the following properties for every $f_{v1}, f_{v2} \in F_V$, f_{d1}, f_{d2}, f_{d3} F_D and $f_{\gamma} \in F_\Gamma$ - (1) $\| f_{v1} f_{\gamma} f_{d1}, f_{v2} f_{\gamma} f_{d2} \| = 0 \iff f_{v1}, f_{v2}$ linearly independent over F_D - (2) $\|f_{v1} f_{\gamma} f_{d1}, f_{\sigma} (f_{v2} f_{\gamma} f_{d2})\| = f_{\sigma} \|f_{v1} f_{\gamma} f_{d1}, f_{v2} f_{\gamma} f_{d2}\|, \text{ for any } f_{\sigma} \in F_{\Gamma}$ - $(3) \parallel f_{v1} \ f_{\gamma} \ f_{d1}, \ f_{v2} \ f_{\gamma} f_{d2} + f_{v3} \ f_{\gamma} \ f_{d3} \| \leq \| \ f_{v1} \ f_{\gamma} \ f_{d1}, \ f_{v2} \ f_{\gamma} f_{d2} \| + \| \ f_{v1} \ f_{\gamma} \ f_{d1}, \ f_{v3} \ f_{\gamma} f_{d3} \|$ - **3.2.Definition:** Let F_V be a fuzzy right Gamma linear space over $\ F_D$ a real valued function $\|\cdot\|_{\infty}$: $F_V \times F_V \times F_V \dots \times F_V$ (m-times) $\times [0,\infty)$ is called fuzzy right Gamma-m-normed linear space over F_D if it satisfies the following properties , for any f_{v1} , f_{v2} ,..., f_{vm-1} $f_{vm} \in F_V$, f_{d1} , f_{d2} , f_{d3} ,... f_{dm-1} , $f_{dm} \in F_D$ and $f_{\gamma} \in F_D$ - $(1) \parallel f_{v1} \mid f_{\gamma} \mid f_{d1}, f_{v2} \mid f_{\gamma} \mid f_{d2}, \dots, f_{vm-1} \mid f_{\gamma} \mid f_{dm-1}, f_{vm} \mid f_{\gamma} \mid f_{dm} \mid = 0 \iff f_{v1} \mid f_{v2}, \dots, f_{vm-1} \mid f_{vm} \mid are linearly independent over F_D.$ - (2) $\parallel f_{v1} f_{\gamma} f_{d1}, f_{v2} f_{\gamma} f_{d2}, \dots, f_{vm-1} f_{\gamma} f_{dm-1}, f_{vm} f_{\gamma} f_{dm} \parallel = 0$, is invariant under any permutation of $f_{v1}, f_{v2}, \dots, f_{vm-1} f_{vm}$. - $(3) \parallel f_{v1} \ f_{\gamma} \ f_{d1}, \ f_{v2} \ f_{\gamma} f_{d2}, ..., f_{vm-1} \ f_{\gamma} \ f_{dm-1}, \ f_{\sigma} \ (\ f_{vm} \ f_{\gamma} f_{dm}) \parallel = f_{\sigma} \parallel f_{v1} \ f_{\gamma} \ f_{d1}, \ f_{v2} \ f_{\gamma} f_{d2}, ..., f_{vm-1} \ f_{\gamma} \ f_{dm-1}, \ f_{vm} \ f_{\gamma} f_{dm} \parallel \ ,$ for any $f_{\sigma} \in F_{\Gamma}$ - $(4) \parallel f_{v1} \ f_{\gamma} \ f_{d1}, \ f_{v2} \ f_{\gamma} f_{d2}, \dots, f_{vm-1} \ f_{\gamma} \ f_{dm-1}, \ f_{vm1} \ f_{\gamma} f_{dm1} + f_{vm2} \ f_{\gamma} f_{dm2} \parallel \\ \leq \parallel f_{v1} \ f_{\gamma} \ f_{d1}, \ f_{v2} \ f_{\gamma} f_{d2}, \dots, f_{vm-1} \ f_{\gamma} \ f_{dm-1}, \ f_{vm1} \ f_{\gamma} f_{dm1} \parallel + \parallel f_{v1} \ f_{\gamma} f_{d1}, \ f_{v2} \ f_{\gamma} f_{d2}, \dots, f_{vm-1} \ f_{\gamma} \ f_{dm-1}, \ f_{vm1} \ f_{\gamma} f_{dm1} \parallel + \parallel f_{v1} \ f_{\gamma} f_{dm2} \parallel \\ \leq \parallel f_{v1} \ f_{\gamma} \ f_{d1}, \ f_{v2} \ f_{\gamma} f_{d2}, \dots, f_{vm-1} \ f_{\gamma} \ f_{dm-1}, \ f_{vm1} \ f_{\gamma} f_{dm1} \parallel + \parallel f_{v1} \ f_{\gamma} f_{dm2} \parallel \\ \leq \parallel f_{v1} \ f_{\gamma} \ f_{d1}, \ f_{v2} \ f_{\gamma} f_{d2}, \dots, f_{vm-1} \ f_{\gamma} \ f_{dm-1}, \
f_{vm1} \ f_{\gamma} f_{dm1} \parallel + \parallel f_{v1} \ f_{\gamma} f_{dm2} \parallel \\ \leq \parallel f_{v1} \ f_{\gamma} \ f_{d1}, \ f_{v2} \ f_{\gamma} f_{d2}, \dots, f_{vm-1} \ f_{\gamma} \ f_{dm-1}, \ f_{vm1} \ f_{\gamma} f_{dm1} \parallel + \parallel f_{v1} \ f_{\gamma} f_{dm2} \parallel \\ \leq \parallel f_{v1} \ f_{\gamma} \ f_{d1}, \ f_{v2} \ f_{\gamma} f_{d2}, \dots, f_{vm-1} \ f_{\gamma} \ f_{dm-1}, \ f_{vm1} \ f_{\gamma} f_{dm1} \parallel + \parallel f_{v1} \ f_{\gamma} f_{dm2} \parallel \\ \leq \parallel f_{v1} \ f_{\gamma} \ f_{d1}, \ f_{v2} \ f_{\gamma} f_{d2}, \dots, f_{vm-1} \ f_{\gamma} \ f_{dm-1}, \ f_{vm1} \ f_{\gamma} f_{dm1} \parallel + \parallel f_{v1} \ f_{\gamma} f_{dm2} \parallel \\ \leq \parallel f_{v1} \ f_{v1} \ f_{v2} \ f_{v1} \ f_{v2} \ f_{v2} \ f_{v2} \ f_{v3} \ f_{v4} f_{v4$ It is represented by $(F_V, \|.,..., \|)$ likewise fuzzy left Gamma-m-normed linear space over F_D can be defined a similar manner. 3.3.Definition: Over F_D let F_V be a fuzzy Gamma linear space a real valued function $\|.....\|$: $F_V \times F_V \times F_V \dots \times F_V$ (m-times) $\times [0,\infty)$ is called fuzzy Gamma m-normed linear space over F_D if it is either fuzzy right Gamma-m-normed linear space over F_D or fuzzy left Gamma-m-normed linear space over F_D **3.4. Definition:** Let $(F_V, \|..., \|)$ be a fuzzy Gamma-m-normed linear space and a sequence $\{f_{vr} f_V f_{dr}\}_{r=1}^{\infty}$ in $(F_V, \|..., \|)$ is said to convergence to $f_V f_V f_d \in F_V$ if for every $\mathcal{E} > 0$ there exists appositive number M such that $\|f_{V1} f_V f_{d1}, f_{V2} f_V f_{d2}, ..., f_{Vr-1} f_V f_{dr-1}, f_{Vr} f_V f_{dr} - f_V f_V f_d \| < \mathcal{E}$ That is $$\lim_{r\to 0} \| (f_{vl}f_{\gamma}f_{dl}, f_{v2}f_{\gamma}f_{d2}, f_{v3}f_{\gamma}f_{d3}, \dots, f_{vr-l}f_{\gamma}f_{dr-l}, f_{vr}f_{\gamma}f_{dr} - f_{v}f_{\gamma}f_{d}) \| = 0$$ Which implies that $$\lim_{r \to 0} \| (f_{vl} f_{\gamma} f_{dl}, f_{v2} f_{\gamma} f_{d2}, f_{v3} f_{\gamma} f_{d3},, f_{vr-l} f_{\gamma} f_{dr-l}, f_{vr} f_{\gamma} f_{dr}) \| = f_{v} f_{\gamma} f_{dr} f_{dr$$ Where $f_{v1}, f_{v2}, f_{v3}, \dots, f_{vr-1}, f_{vr}$ and $f_v \in F_V, f_{d1}, f_{d2}, f_{d3}, \dots, f_{dr-1}, f_{dr}$, and $f_d \in F_D, f_v \in F_\Gamma$ **3.5. Definition:** In a fuzzy Gamma-m-normed linear space $(F_V, \|.,...,\|)$ a Sequence $\{f_{vr} f_v f_{dr}\}_{=1}^{\infty}$ is said to be Cauchy sequence if for every $\mathcal{E} > 0$ there exists appositive number M such that $\|(f_{vl}f_v f_{dl}, f_{v2}f_v f_{d2}, f_{v3}f_v f_{d3}, \ldots, f_{vr-l}f_v f_{dr-l}, f_{vr}f_v f_{dr} - f_{v\ell}f_v f_{d\ell})\| < \mathcal{E}$ Whenever $r, \ell \ge M$ and it is represented by $$\lim_{r \to \infty} \| (f_{v1} f_{\gamma} f_{d1}, f_{v2} f_{\gamma} f_{d2}, f_{v3} f_{\gamma} f_{d3}, \dots, f_{vr-1} f_{\gamma} f_{dr-1}, f_{vr} f_{\gamma} f_{dr} - f_{v\ell} f_{\gamma} f_{d\ell}) \| = 0,$$ Where f_{vr} , $f_{v\ell}$, $f_v \in F_V$, f_{dr} , $f_{d\ell}$, $f_d \in F_D$ for $r{=}1,2,3.....$ and $f_\gamma \in F_\Gamma$ - **3.6. Definition:** The fuzzy Gamma-m-normed linear space $(F_V, \|.,...,\|)$ is said to be complete if every Cauchy sequence is convergent in it. - **3.7. Definition:** Let E_V be subset of fuzzy Gamma-m-normed linear space $(F_V, \|.,...,\|)$ and is said to be bounded if there exists a positive real constant η_0 such that $$\|(e_{v1}\ f_{\gamma}\ f_{d1}, e_{v2}\ f_{\gamma}\ f_{d2}, e_{v3}\ f_{\gamma}\ f_{d3}, \ldots, e_{vr\text{-}1}\ f_{\gamma}\ f_{dr\text{-}1}, e_{vr}\ f_{\gamma}\ f_{dr})\ \| \leq \eta_0\ ,$$ for all e_{v1} , e_{v2} , e_{v3} ,..., e_{vr-1} , $e_{vr} \in E_V$, f_{d1} , f_{d2} , f_{d3} ,..., f_{dr-1} , f_{dr} , and $f_d \in F_D$ and $f_v \in F_T$ $B_{\rho 0}(f_{v0}\ f_{\gamma}f_{d0}) = \{(\ f_{v1}\ f_{\gamma}\ f_{d1},\ f_{v2}\ f_{\gamma}f_{d2}, \dots, f_{vm-1}\ f_{\gamma}\ f_{dm-1},\ f_{vm}\ f_{\gamma}f_{dm}) \in F_{V}\ / \|(\ f_{v1}\ f_{\gamma}\ f_{d1},\ f_{v2}\ f_{\gamma}f_{d2}, \dots, f_{vm-1}\ f_{\gamma}\ f_{dm-1},\ f_{vm}\ f_{\gamma}f_{dm}\ -\ f_{v0}\ f_{\gamma}f_{d0}) \| < \rho_{0} \}$ Similarly we can define a closed ball $B_{\rho 0}(f_{v0}\ f_{\gamma}f_{d0}) = \{(\ f_{v1}\ f_{\gamma}\ f_{d1},\ f_{v2}\ f_{\gamma}f_{d2},...,f_{vm-1}\ f_{\gamma}\ f_{dm-1},\ f_{vm}\ f_{\gamma}f_{dm}) \in F_{V}\ / \|(\ f_{v1}\ f_{\gamma}\ f_{d1},\ f_{v2}\ f_{\gamma}f_{d2},...,f_{vm-1}\ f_{\gamma}\ f_{dm-1},\ f_{vm}\ f_{\gamma}f_{dm}) \in F_{V}\ / \|(\ f_{v1}\ f_{\gamma}\ f_{d1},\ f_{v1}\ f_{\gamma}\ f_{d2},...,f_{vm-1},\ f_{vm}\ and\ f_{v0}\in F_{V}\ ,f_{d1},\ f_{d2},\ f_{d3},...,f_{dm-1},\ f_{dm},\ and\ f_{d0}\in F_{D}\ and\ f_{\gamma}\in F_{\Gamma}$ - **3.9. Definition:** In the fuzzy Gamma-m-normed linear space $(F_v, \parallel.,..., \parallel)$ a sequence $\{f_{vr}f_{\gamma}f_{dr}\}_{r=1}^{\infty}$ is said to be bounded or norm bounded if there is a constant η_0 such that that \parallel $(f_{v1}f_{\gamma}f_{d1}, f_{v2}f_{\gamma}f_{d2},...,f_{vr-1}f_{\gamma}f_{dr-1}, f_{vr}f_{\gamma}f_{dr}) \parallel \leq \eta_0$, for all f_{vi} , f_{vj} , $f_{v} \in F_v$, f_{di} , f_{dj} , $f_{d} \in F_D$ for i,j=1,2,..., and $f_{\gamma} \in F_\Gamma$ - **3.10. Remark:** Every convergent sequence is Cauchy and norm bounded in the fuzzy Gamma-m-normed linear space $(F_V, \|.,...,\|)$. - **3.11.Theorem:** Let $(F_V, \|..., \|)$ be a fuzzy Gamma-m-normed linear space and let $\{f_{vr}f_{\gamma}f_{dr}\}_{r=1}^{\infty}$ and $\{f'_{vr}f_{\gamma}f'_{dr}\}_{r=1}^{\infty}$ be two Cauchy sequences in $(F_V, \|..., \|)$ such that ISSN: 1001-4055 Vol. 45 No. 4 (2024) ______ $\|(\ f_{v1}\ f_{\gamma}\ f_{d1},\ f_{v2}\ f_{\gamma}f_{d2},\ldots,f_{vr-1}\ f_{\gamma}\ f_{dr-1},\ f_{vr}\ f_{\gamma}f_{dr}\)\ \| \longrightarrow f_{v}\ f_{\gamma}f_{d}\ ,$ $\hspace{-0.5cm} \parallel \hspace{-0.5cm} (f'_{v1} \ f_{\gamma} \ f'_{d1}, \ f'_{v2} \ f_{\gamma} f'_{d2}, \ \ldots, f'_{vr\text{-}1} \ f_{\gamma} \ f'_{dr\text{-}1}, \ f'_{vr} \ f_{\gamma} f'_{dr} \) \parallel \to f'_{v} \ f_{\gamma} f'_{d} \ , \ as \ r \to \infty \ .$ Let $\{k_{vr}\}_{r=1}^{\infty}$ be a sequence in v where $\mathcal{K}v$ is being the field of scalars be such that $k_{vr} \rightarrow k_v$ as $r \rightarrow \infty$ then the following axioms holds: - $(1) \parallel (f_{v1} f_{\gamma} f_{d1} \pm f^{\prime}_{v1} f_{\gamma} f^{\prime}_{d1}, f_{v2} f_{\gamma} f_{d2} \pm f^{\prime}_{v2} f_{\gamma} f^{\prime}_{d2}, f_{v3} f_{\gamma} f_{d3} \pm f^{\prime}_{v3} f_{\gamma} f^{\prime}_{d3}, \dots, f_{vr} f_{\gamma} f_{dr} \pm f^{\prime}_{vr} f_{\gamma} f^{\prime}_{dr}) \parallel \rightarrow f_{v} f_{\gamma} f_{d} \pm f^{\prime}_{v} f_{\gamma} f^{\prime}_{d}, \text{ as } r \rightarrow \infty$ - $(2) \parallel (f_{v1} \ f_{\gamma} \ f_{d1}, \ f_{v2} \ f_{\gamma} f_{d2}, \dots, f_{vr-1} \ f_{\gamma} \ f_{dr-1}, \ k_{vr} (f_{vr} \ f_{\gamma} f_{dr})) \parallel \rightarrow k_{v} (f_{v} \ f_{\gamma} f_{d}) \ , \ as \ r \rightarrow \infty.$ - (3) Let $\left\{f_{vr}f_{\gamma}f_{dr}\right\}_{r=1}^{\infty}$ and $\left\{f'_{vr}f_{\gamma}f'_{dr}\right\}_{r=1}^{\infty}$ be two Cauchy sequences in $(F_{V}, \|....., \|)$ and $\{k_{vr}\}_{r=1}^{\infty}$ be a Cauchy sequence in F_{V} then $\left\{f_{vr}f_{\gamma}f_{dr} + f'_{vr}f_{\gamma}f'_{dr}\right\}_{r=1}^{\infty}$ and $\left\{k_{vr}f_{vr}f_{\gamma}f_{dr}\right\}_{r=1}^{\infty}$ are also Cauchy sequence in $(F_{V}, \|....., \|)$. **Proof:** (1) We have $\lim_{r \to \infty} \| (f_{vl}f_{\gamma}f_{dl}, f_{v2}f_{\gamma}f_{d2}, f_{v3}f_{\gamma}f_{d3}, ..., f_{vr-l}f_{\gamma}f_{dr-l}, f_{vr}f_{\gamma}f_{dr} - f_{v}f_{\gamma}f_{d}) \| = 0$ and $\lim_{r \to \infty} \| (f'_{v1}f_{\gamma}f'_{d1}, f'_{v2}f_{\gamma}f'_{d2}, f'_{v3}f_{\gamma}f'_{d3}, ..., f'_{vr-1}f_{\gamma}f'_{dr-1}, f'_{vr}f_{\gamma}f'_{dr} - f'_{v}f_{\gamma}f'_{d} \| = 0$ $\begin{array}{lll} \text{Then} & \text{which} & \text{implies} \\ & \parallel (f_{v_l}f_{y}f_{d_l}\pm f^{\prime}_{v_l}f_{y}f^{\prime}_{d_l}, \ f_{v_2}f_{y}f_{d_2}\pm f^{\prime}_{v_2}f_{y}f^{\prime}_{d_2}, \ f_{v_3}f_{y}f_{d_3}\pm f^{\prime}_{v_3}f_{y}f^{\prime}_{d_3},...,f_{v_r}f_{y}f_{d_r}\pm f^{\prime}_{v_r}f_{y}\ f^{\prime}_{d_r}-(\ f_{v}f_{y}f_{d}\pm f^{\prime}_{v}f_{y}f^{\prime}_{d}))\, \parallel \end{array}$ $\leq [\| \left(f_{v_l} f_{\gamma} f_{d_l}, f_{v_2} f_{\gamma} f_{d_2}, f_{v_3} f_{\gamma} f_{d_3}, ..., f_{v_{r-l}} f_{\gamma} f_{d_{r-l}}, f_{v_r} f_{\gamma} f_{d_r} - f_v f_{\gamma} f_{d_r} \right) \| + \| \left(f^{'}_{v_l} f^{'}_{\gamma} f^{'}_{d_l}, f^{'}_{v_2} f^{'}_{\gamma} f^{'}_{d_2}, f^{'}_{v_3} f^{'}_{\gamma} f^{'}_{d_3}, ..., f^{'}_{v_{r-l}} f^{'}_{\gamma} f^{'}_{d_r} - f^{'}_{v} f^{'}_{\gamma} f^{'}_{d} \right) \|] \rightarrow 0$ as $r \rightarrow \infty$ Hence $\| (f_{v1}f_{r}f_{d1} \pm f'_{v1}f_{r}f'_{d1}, f_{v2}f_{r}f_{d2} \pm f'_{v2}f_{r}f'_{d2}, f_{v3}f_{r}f_{d3} \pm f'_{v3}f_{r}f'_{d3}, ..., f_{vr}f_{r}f_{dr} \pm f'_{vr}f_{r}f'_{dr}) \| \rightarrow f_{v}f_{r}f_{d} \pm f'_{v}f_{r}f'_{d}$ as $r \rightarrow \infty$. $(2) \ \text{Given that} \ k_{vr} \rightarrow k_{v0} \ \text{as} \ r \rightarrow \infty \ \Rightarrow |k_{vr} - k_{v0}| \rightarrow 0, \ \text{as} \ r \rightarrow \infty \ \text{then there exists a constant} \ \lambda \ \text{such that} \ |k_{vr}| \leq \lambda \ \text{for all} \ r.$ Now we consider $\|(f_{v1} f_{\gamma} f_{d1}, f_{v2} f_{\gamma} f_{d2}, ..., f_{vr-1} f_{\gamma} f_{dr-1}, k_{vr} (f_{vr} f_{\gamma} f_{dr}) - k_{v0} (f_{v0} f_{\gamma0} f_{d0}))\|$ $= \| (f_{v1} \ f_{\gamma} \ f_{d1}, \ f_{v2} \ f_{\gamma} f_{d2}, \ldots, f_{vr-1} \ f_{\gamma} \ f_{dr-1}, \ k_{vr} (\ f_{vr} \ f_{\gamma} f_{dr}) - \ k_{vr} (\ f_{v0} \ f_{\gamma0} f_{d0}) + \ k_{vr} (f_{v0} \ f_{\gamma0} f_{d0}) - \ k_{v0} (f_{v} \ 0 f_{\gamma0} f_{d0})) \ \|$ $\leq \|(f_{v1}\ f_{\gamma}\ f_{d1},\ f_{v2}\ f_{\gamma}f_{d2},...,f_{vr-1}\ f_{\gamma}\ f_{dr-1},\ k_{vr}(\ f_{vr}\ f_{\gamma}f_{dr}-\ f_{v0}\ f_{\gamma0}f_{d0}))\ \|+\|(f_{v1}\ f_{\gamma}\ f_{d1},\ f_{v2}\ f_{\gamma}f_{d2},...,f_{vr-1}\ f_{\gamma}\ f_{dr-1},\ (k_{vr}\ -k_{v0})f_{v}\
0f_{\gamma0}f_{d0})\ \|+\|k_{vr}\ -k_{v0}\|\|(f_{v1}\ f_{\gamma}\ f_{d1},\ f_{v2}\ f_{\gamma}f_{d2},...,f_{vr-1}\ f_{\gamma}\ f_{dr-1},\ f_{v}\ 0f_{\gamma0}f_{d0})\ \|\leq |k_{vr}|\|(f_{v1}\ f_{\gamma}\ f_{d1},\ f_{v2}\ f_{\gamma}f_{d2},...,f_{vr-1}\ f_{\gamma}\ f_{dr-1},\ f_{v}\ 0f_{\gamma0}f_{d0})\ \|+\|k_{vr}\ -k_{v0}\|\|(f_{v1}\ f_{\gamma}\ f_{d1},\ f_{v2}\ f_{\gamma}f_{d2},...,f_{vr-1}\ f_{\gamma}\ f_{dr-1},\ f_{v}\ 0f_{\gamma0}f_{d0})\ \|\leq |k_{vr}|\|f_{v1}\|f_{v1}\|f_{v1}\|f_{v1}\|f_{v2}\|f_{v$ $\mid k_{vr} \text{ - } k_{v0} | \mathbb{I} \left(f_{v1} \ f_{\gamma} \ f_{d1}, \ f_{v2} \ f_{\gamma} f_{d2}, \ldots, f_{vr\text{-}1} \ f_{\gamma} \ f_{dr\text{-}1}, \ f_{v} \ 0 f_{\gamma 0} f_{d0} \ \right) \ \| \rightarrow 0 \ , \ as \ r \rightarrow \infty.$ So $\|(f_{v1}\ f_{\gamma}\ f_{d1},\ f_{v2}\ f_{\gamma}f_{d2},...,f_{vr-1}\ f_{\gamma}\ f_{dr-1},\ k_{vr}(\ f_{vr}\ f_{\gamma}f_{dr}\))\ \| \longrightarrow k_{v0}(f_{v}\ 0f_{\gamma0}f_{d0}),\ as\ r \longrightarrow \infty.$ (3) We have $\left\{f_{vr}f_{\gamma}f_{dr}\right\}_{r=1}^{\infty}$ and $\left\{f'_{vr}f_{\gamma}f'_{dr}\right\}_{r=1}^{\infty}$ be two Cauchy sequences in $(F_{v}, \|....., \|)$ then $\|(f_{v1}f_{\gamma}f_{d1}, f_{v2}f_{\gamma}f_{d2}, ..., f_{vr-1}f_{\gamma}f_{dr-1}, f_{vr}f_{\gamma}f_{dr} - f_{v\ell}f_{\gamma}f_{d\ell})\| \rightarrow 0$, as $r, \ell \rightarrow \infty$ and $\| (f'_{v1} f_{\gamma} f'_{d1}, f'_{v2} f_{\gamma} f'_{d2}, \dots, f'_{vr-1} f_{\gamma} f'_{dr-1}, f'_{vr} f_{\gamma} f'_{dr} - f'_{v\ell} f_{\gamma} f'_{d\ell}) \| \to 0 \text{ ,as } r, \ell \to \infty$ Therefore $\|(f_{v1}f_{\gamma}f_{d1}+f_{v1}^{\prime}f_{\gamma}f_{d1}^{\prime},f_{v2}f_{\gamma}f_{d2}+f_{v2}^{\prime}f_{\gamma}f_{d2}^{\prime},f_{v3}f_{\gamma}f_{d3}+f_{v3}^{\prime}f_{\gamma}f_{d3}^{\prime},...,f_{vr}f_{\gamma}f_{dr}+f_{vr}^{\prime}f_{\gamma}f_{dr}^{\prime}-(f_{v\ell}f_{\gamma}f_{d\ell}\pm f_{v\ell}f_{\gamma}f_{d\ell})\|$ $\leq \parallel (f_{v1} \ f_{\gamma} \ f_{d1}, f_{v2} \ f_{\gamma} f_{d2}, \ldots, f_{vr-1} \ f_{\gamma} \ f_{dr-1}, f_{vr} \ f_{\gamma} f_{dr} - f_{v\ell} \ f_{\gamma} f_{d\ell}) \parallel + \parallel (f'_{v1} \ f_{\gamma} \ f'_{d1}, f'_{v2} \ f_{\gamma} f'_{d2}, \ldots, f'_{vr-1} \ f_{\gamma} \ f'_{dr-1}, f'_{vr} \ f_{\gamma} f'_{dr} - f'_{v\ell} \ f_{\gamma} f'_{d\ell}) \parallel \rightarrow 0$ $, as \ r, \ell \rightarrow \infty$ This implies that $\{f_{vr}f_{\gamma}f_{dr} + f'_{vr}f_{\gamma}f'_{dr}\}_{r=1}^{\infty}$ is Cauchy sequence in $(F_{v}, \|.,...,\|)$. Since $\{k_{vr}\}_{r=1}^{\infty}$ be a Cauchy sequence of scalars in F_V the scalar field is complete and $\{k_{vr}\}_{r=1}^{\infty}$ is convergent sequence and hence $\{k_{vr}\}_{r=1}^{\infty}$ is bounded. ISSN: 1001-4055 Vol. 45 No. 4 (2024) Also we consider $\| (f_{v1} f_{\gamma} f_{d1}, f_{v2} f_{\gamma} f_{d2}, ..., f_{vr-1} f_{\gamma} f_{dr-1}, k_{vr} (f_{vr} f_{\gamma} f_{dr}) - k_{v\ell} (f_{v\ell} f_{\gamma} f_{d\ell})) \|$ $= \| (\ f_{v1}\ f_{\gamma}\ f_{d1}, f_{v2}\ f_{\gamma}f_{d2}, \ldots, f_{vr-1}\ f_{\gamma}\ f_{dr-1}, \ k_{vr}(f_{vr}\ f_{\gamma}f_{dr}\) -\ k_{vr}\ (f_{v\ell}\ f_{\gamma}f_{d\ell}) +\ k_{vr}\ (f_{v\ell}\ f_{\gamma}f_{d\ell}) -k_{v\ell}\ (f_{v\ell}\ f_{\gamma}f_{d\ell}) -\ k_{v\ell}\ (f_{v\ell}\$ $\leq \ \| \ (\ f_{v1} \ f_{\gamma} \ f_{d1}, f_{v2} \ f_{\gamma} f_{d2}, \ldots, f_{vr\text{-}1} \ f_{\gamma} \ f_{dr\text{-}1}, k_{vr} (f_{vr} \ f_{\gamma} f_{dr} \ \text{-} \ f_{v\ell} \ f_{\gamma} f_{d\ell})) \ \| +$ $\|(\ f_{v1}\ f_{\gamma}\ f_{d1}, f_{v2}\ f_{\gamma}f_{d2}, \dots, f_{vr\text{-}1}\ f_{\gamma}\ f_{dr\text{-}1}, (\ k_{vr}\ \text{-}\ k_{v\ell}\) (f_{v\ell}\ f_{\gamma}f_{d\ell}))\ \|$ $\leq \mid k_{vr} \mid \parallel (f_{v1} \ f_{\gamma} \ f_{d1}, f_{v2} \ f_{\gamma} f_{d2}, \ldots, f_{vr-1} \ f_{\gamma} \ f_{dr-1}, \ f_{vr} \ f_{\gamma} f_{dr} - f_{v\ell} \ f_{\gamma} f_{d\ell}) \parallel + \mid k_{vr} - k_{v\ell} \mid \parallel (f_{v1} \ f_{\gamma} \ f_{d1}, f_{v2} \ f_{\gamma} f_{d2}, \ldots, f_{vr-1} \ f_{\gamma} \ f_{dr-1}, \ f_{v\ell} \ f_{\gamma} f_{d\ell}) \parallel \rightarrow 0, \\ \text{as } r, \ell \rightarrow \infty$ Since $\{k_{vr}\}_{r=1}^{\infty}$ is bounded and $\{f_{vr}f_{\gamma}f_{dr}\}_{r=1}^{\infty}$ is norm bounded . Hence $\{k_{vr}f_{vr}f_{\gamma}f_{dr}\}_{r=1}^{\infty}$ is a Cauchy sequence in $(F_{V}, \|.,...,\|)$. - 3.12. Remark: The norm function is continuous as it follows by 3.11. Theorem. - **3.13. Definition:** let F_V Gamma linear space over a field F. A fuzzy subset F_F of $F_V \times F_V \times \times F_V$ F_V (m-times) \times (- ∞ , ∞) and the pair (F_V, F_Γ) is called fuzzy Gamma-m-normed linear space and $F_V \times F_V \times \times F_V \times F_V$ (m-times) \times (- ∞ , ∞) is called as a fuzzy m-norm on F_V if and only if - $(1) \ F_{\Gamma}(f_{v1} \ f_{\gamma} \ f_{d1}, f_{v2} \ f_{\gamma} f_{d2}, \ldots, f_{vm-1} \ f_{\gamma} \ f_{dm-1}, f_{vm} \ f_{\gamma} f_{dm} \ , f_{t}) \geq 0 \ , \ \text{for all} \ \ f_{t} \in (-\infty, \infty).$ - (2) $F_{\Gamma}(f_{v1}\ f_{\gamma}\ f_{d1}, f_{v2}\ f_{\gamma}f_{d2}, \dots, f_{vm-1}\ f_{\gamma}\ f_{dm-1}, f_{vm}\ f_{\gamma}f_{dm}\ , f_{t}) = 0$ if and only if $f_{v1}\ f_{\gamma}\ f_{d1}, f_{v2}\ f_{\gamma}f_{d2}, \dots, f_{vm-1}\ f_{\gamma}\ f_{dm-1}, f_{vm}\ f_{\gamma}f_{dm}$ are linearly dependent if for all $f_{t} \geq 0$, and $f_{t} \in (-\infty, \infty)$. - $(3) \ F_{\Gamma}(f_{v1} \ f_{\gamma} \ f_{d1}, f_{v2} \ f_{\gamma} f_{d2}, ..., f_{vm-1} \ f_{\gamma} \ f_{dm-1}, \ f_{vm} \ f_{\gamma} f_{dm} \ , f_t) \ \ is invariant under any permutation of the content of$ - $f_{v1} \ f_{\gamma} \ f_{d1}, f_{v2} \ f_{\gamma} f_{d2}, \dots, f_{vm-1} \ f_{\gamma} \ f_{dm-1}, \ f_{vm} \ f_{\gamma} f_{dm} \ , f_t.$ - $(4) \ F_{\Gamma}(f_{v1} \ f_{\gamma} \ f_{d1}, f_{v2} \ f_{\gamma} f_{d2}, \dots, f_{vm-1} \ f_{\gamma} \ f_{dm-1}, \ f_{\Delta} \ (f_{vm} \ f_{\gamma} f_{dm}) \ , f_{t}) = F_{\Gamma}(f_{v1} \ f_{\gamma} \ f_{d1}, \ f_{v2} \ f_{\gamma} f_{d2}, \dots, f_{vm-1} \ f_{\gamma} \ f_{dm-1}, \ f_{vm} \ f_{\gamma} f_{dm} \ , \frac{f_{t}}{|f_{\Delta}|}) \quad where f_{\Delta} \in F.$ - $(5) \; F_{\Gamma}(f_{v1} \; f_{\gamma} \; f_{d1}, f_{v2} \; f_{\gamma} f_{d2}, \ldots, f_{vm-1} \; f_{\gamma} \; f_{dm-1}, f_{vm1} \; f_{\gamma} f_{dm1} + \; f_{vm2} \; f_{\gamma} f_{dm2} \; , \; f_{t1} + \; f_{t2}) \\ \geq min \{ \; F_{\Gamma}(f_{v1} \; f_{\gamma} \; f_{d1}, f_{v2} \; f_{\gamma} f_{d2}, \ldots, f_{vm-1} \; f_{\gamma} \; f_{dm-1}, f_{vm1} \; f_{\gamma} f_{dm1} + \; f_{vm2} \; f_{\gamma} f_{dm2} \; , \; f_{t1} + \; f_{t2}) \\ \geq min \{ \; F_{\Gamma}(f_{v1} \; f_{\gamma} \; f_{d1}, f_{v2} \; f_{\gamma} f_{d2}, \ldots, f_{vm-1} \; f_{\gamma} \; f_{dm-1}, f_{vm1} \; f_{\gamma} f_{dm1} + \; f_{vm2} \; f_{\gamma} f_{dm2} \; , \; f_{t1} + \; f_{t2}) \\ \geq min \{ \; F_{\Gamma}(f_{v1} \; f_{\gamma} \; f_{d1}, f_{v2} \; f_{\gamma} f_{d2}, \ldots, f_{vm-1} \; f_{\gamma} \; f_{dm-1}, f_{vm1} \; f_{\gamma} f_{dm1} + \; f_{vm2} \; f_{\gamma} f_{dm2} \; , \; f_{t1} + \; f_{t2}) \\ \geq min \{ \; F_{\Gamma}(f_{v1} \; f_{\gamma} \; f_{d1}, f_{v2} \; f_{\gamma} f_{d2}, \ldots, f_{vm-1} \; f_{\gamma} \; f_{dm-1}, f_{vm1} \; f_{\gamma} f_{dm1} + \; f_{vm2} \; f_{\gamma} f_{dm2} \; , \; f_{vm1} \; f_{\gamma} f_{dm1} + \; f_{vm2} \; f_{\gamma} f_{dm2} \; , \; f_{vm1} \; f_{vm2} \; f_{\gamma} f_{dm2} \; , f_{\sigma} f_{\sigma}$ f_{vm-1} f_{γ} f_{dm-1} , f_{vm1} f_{γ} f_{dm1} , f_{t1} , f_{t1} , f_{Γ} f_{v1} f_{γ} f_{d1} , f_{v2} f_{γ} f_{d2} ,..., f_{vm-1} f_{γ} f_{dm-1} , f_{vm2} f_{γ} f_{dm2} , f_{t2} - $(6) \ F_{\Gamma}(f_{vl}f_{\gamma}f_{dl},f_{v2}f_{\gamma}f_{d2},\ \dots f_{vm-l}f_{\gamma}f_{dm-l},f_{vm}f_{\gamma}f_{dm},\ f_{t}) \ \text{is a left continuous and non-decreasing function of} \\ f_{t} \in (-\infty,\infty) \ \text{such that} \ \lim_{r\to 0} F_{\Gamma}(f_{vl}f_{\gamma}f_{dl},f_{v2}f_{\gamma}f_{d2},f_{v3}f_{\gamma}f_{d3},\dots ,f_{vm-l}f_{\gamma}f_{dm-l},f_{vm}f_{\gamma}f_{dm},f_{t}) = 0$ - **3.14. Example:** Let $(F_V, \|.,..., \|)$ be a fuzzy Gamma-m- normed linear space. We define continuous t-norm $\Delta^F(f^1, f^2) = f^1 \cdot f^2 \cdot \Delta^F(f^1, f^2) = \min\{f^1, f^2\}$, for all $f^1, f^2 \in [0,1]$. $$F_{\Gamma}(f_{vl}f_{\gamma}f_{dl},f_{v2}f_{\gamma}f_{d2},\ \dots f_{vm-l}f_{\gamma}f_{dm-l},f_{vm}f_{\gamma}f_{dm},\ f_{t}) = \frac{\parallel
(f_{vl}f_{\gamma}f_{dl},f_{v2}f_{\gamma}f_{d2},\dots,f_{vm-l}f_{\gamma}f_{dm-l},f_{vm}f_{\gamma}f_{dm})\parallel}{f_{t} + \parallel (f_{vl}f_{\gamma}f_{dl},f_{v2}f_{\gamma}f_{d2},\dots,f_{vm-l}f_{\gamma}f_{dm-l},f_{vm}f_{\gamma}f_{dm})\parallel}$$ then the set S={(F_V , $F_\Gamma(f_{vl}f_\gamma f_{dl}, f_{v2}f_\gamma f_{d2}, \dots f_{vm-l}f_\gamma f_{dm-l}, f_{vm}f_\gamma f_{dm}, f_t)$)/ $(f_{vl} f_\gamma f_{dl}, f_{v2} f_\gamma f_{d2}, \dots f_{vm-l} f_\gamma f_{dm-l}, f_{vm}f_\gamma f_{dm}, f_t)$ or the set is (F_V, F_Γ) a fuzzy Gamma-m-normed linear space. **Proof:** (1) Obviously for every $f_t \in (0,\infty)$ $$\begin{split} & \| \left(f_{\mathbf{v}_{l}} f_{\gamma} f_{\mathbf{d}_{l}}, f_{\mathbf{v}_{2}} f_{\gamma} f_{\mathbf{d}_{2}}, \ldots, f_{\mathbf{v}_{m-l}} f_{\gamma} f_{\mathbf{d}_{m-l}}, f_{\mathbf{v}_{m}} f_{\gamma} f_{\mathbf{d}m} \right) \| \geq 0 \\ & \Leftrightarrow \left[\frac{\| \left(f_{\mathbf{v}_{l}} f_{\gamma} f_{\mathbf{d}_{l}}, f_{\mathbf{v}_{2}} f_{\gamma} f_{\mathbf{d}_{2}}, \ldots, f_{\mathbf{v}_{m-l}} f_{\gamma} f_{\mathbf{d}_{m-l}}, f_{\mathbf{v}_{m}} f_{\gamma} f_{\mathbf{d}m} \right) \| \\ & \Leftrightarrow F_{\Gamma} \left(f_{\mathbf{v}_{l}} f_{\gamma} f_{\mathbf{d}_{l}}, f_{\mathbf{v}_{2}} f_{\gamma} f_{\mathbf{d}_{2}}, \ldots, f_{\mathbf{v}_{m-l}} f_{\gamma} f_{\mathbf{d}_{m-l}}, f_{\mathbf{v}_{m}} f_{\gamma} f_{\mathbf{d}m} \right) \| \\ & \Leftrightarrow F_{\Gamma} \left(f_{\mathbf{v}_{l}} f_{\gamma} f_{\mathbf{d}_{l}}, f_{\mathbf{v}_{2}} f_{\gamma} f_{\mathbf{d}_{2}}, \ldots, f_{\mathbf{v}_{m-l}} f_{\gamma} f_{\mathbf{d}_{m-l}}, f_{\mathbf{v}_{m}} f_{\gamma} f_{\mathbf{d}m} \right) \| \\ & \Rightarrow F_{\Gamma} \left(f_{\mathbf{v}_{l}} f_{\gamma} f_{\mathbf{d}_{l}}, f_{\mathbf{v}_{2}} f_{\gamma} f_{\mathbf{d}_{2}}, \ldots, f_{\mathbf{v}_{m-l}} f_{\gamma} f_{\mathbf{d}_{m-l}}, f_{\mathbf{v}_{m}} f_{\gamma} f_{\mathbf{d}m} \right) \| \\ & \Rightarrow F_{\Gamma} \left(f_{\mathbf{v}_{l}} f_{\gamma} f_{\mathbf{d}_{l}}, f_{\mathbf{v}_{2}} f_{\gamma} f_{\mathbf{d}_{2}}, \ldots, f_{\mathbf{v}_{m-l}} f_{\gamma} f_{\mathbf{d}_{m-l}}, f_{\mathbf{v}_{m}} f_{\gamma} f_{\mathbf{d}m} \right) \| \\ & \Rightarrow F_{\Gamma} \left(f_{\mathbf{v}_{l}} f_{\gamma} f_{\mathbf{d}_{l}}, f_{\mathbf{v}_{2}} f_{\gamma} f_{\mathbf{d}_{2}}, \ldots, f_{\mathbf{v}_{m-l}} f_{\gamma} f_{\mathbf{d}_{m-l}}, f_{\mathbf{v}_{m}} f_{\gamma} f_{\mathbf{d}_{m}} \right) \| \\ & \Rightarrow F_{\Gamma} \left(f_{\mathbf{v}_{l}} f_{\gamma} f_{\mathbf{d}_{l}}, f_{\mathbf{v}_{2}} f_{\gamma} f_{\mathbf{d}_{2}}, \ldots, f_{\mathbf{v}_{m-l}} f_{\gamma} f_{\mathbf{d}_{m-l}}, f_{\mathbf{v}_{m}} f_{\gamma} f_{\mathbf{d}_{m}} \right) \| \\ & \Rightarrow F_{\Gamma} \left(f_{\mathbf{v}_{l}} f_{\gamma} f_{\mathbf{d}_{l}}, f_{\mathbf{v}_{2}} f_{\gamma} f_{\mathbf{d}_{2}}, \ldots, f_{\mathbf{v}_{m-l}} f_{\gamma} f_{\mathbf{d}_{m-l}}, f_{\mathbf{v}_{m}} f_{\gamma} f_{\mathbf{d}_{m}} \right) \| \\ & \Rightarrow F_{\Gamma} \left(f_{\mathbf{v}_{l}} f_{\gamma} f_{\mathbf{d}_{l}}, f_{\mathbf{v}_{2}} f_{\gamma} f_{\mathbf{d}_{2}}, \ldots, f_{\mathbf{v}_{m-l}} f_{\gamma} f_{\mathbf{d}_{m-l}}, f_{\mathbf{v}_{m}} f_{\gamma} f_{\mathbf{d}_{m}} \right) \| \\ & \Rightarrow F_{\Gamma} \left(f_{\mathbf{v}_{l}} f_{\gamma} f_{\mathbf{d}_{l}}, f_{\mathbf{v}_{2}} f_{\gamma} f_{\mathbf{d}_{2}}, \ldots, f_{\mathbf{v}_{m-l}} f_{\gamma} f_{\mathbf{d}_{m-l}}, f_{\mathbf{v}_{m}} f_{\gamma} f_{\mathbf{d}_{m}} \right) \| \\ & \Rightarrow F_{\Gamma} \left(f_{\mathbf{v}_{l}} f_{\gamma} f_{\mathbf{d}_{l}}, f_{\mathbf{v}_{m}} f_{\gamma} f_{\mathbf{d}_{m}} \right) \| \\ & \Rightarrow F_{\Gamma} \left(f_{\mathbf{v}_{l}} f_{\gamma} f_{\mathbf{d}_{m}}, f_{\mathbf{v}_{m}} f_{\gamma} f_{\mathbf{d}_{m}} \right) \| \\ & \Rightarrow F_{\Gamma} \left(f_{\mathbf{v}_{l}} f_{\gamma} f_{\mathbf{d}_{m}} f_{\gamma} f_{\mathbf{d}_{m}} \right) \| \\ & \Rightarrow F_{\Gamma} \left(f_{\mathbf{v}_{l}} f_{\gamma} f_{\mathbf{d}_{m}} \right) \| \\ & \Rightarrow F_{\Gamma} \left(f_{\mathbf{v}_{l}} f_{$$ (2) We have Vol. 45 No. 4 (2024) $F_{\Gamma}(f_{v_{1}}f_{\gamma}f_{d_{1}},\ f_{v_{2}}f_{\gamma}f_{d_{2}},\f_{v_{m-l}}f_{\gamma}f_{d_{m-l}},\ f_{v_{m}}f_{\gamma}f_{d_{m}},\ f_{t}) = 0 \\ \Leftrightarrow \frac{\parallel (f_{v_{1}}f_{\gamma}f_{d_{1}},f_{v_{2}}f_{\gamma}f_{d_{2}},...,f_{v_{m-l}}f_{\gamma}f_{d_{m-l}},f_{v_{m}}f_{\gamma}f_{d_{m}}) \parallel}{f_{t} + \parallel (f_{v_{1}}f_{\gamma}f_{d_{1}},f_{v_{2}}f_{\gamma}f_{d_{2}},...,f_{v_{m-l}}f_{\gamma}f_{d_{m-l}},f_{v_{m}}f_{\gamma}f_{d_{m}}) \parallel} = 0$ $$\Leftrightarrow \parallel (f_{v_1}f_{_{\gamma}}f_{_{d1}},f_{v_2}f_{_{\gamma}}f_{_{d2}},...,f_{v_{m-1}}f_{_{\gamma}}f_{_{dm-1}},f_{v_m}f_{_{\gamma}}f_{_{dm}}) \parallel = 0$$ $\Longleftrightarrow f_{vl}f_{\gamma}f_{dl}, \ f_{v2}f_{\gamma}f_{d2}, \ \dots f_{vm-l}f_{\gamma}f_{dm-l}, \ f_{vm}f_{\gamma}f_{dm} \ \text{are linearly dependent if for all} \ f_t \geq 0, \ \text{and} \ f_t \ \text{in} \ (-\infty, \infty) \ .$ $$(3) \qquad F_{\Gamma}(f_{vl}f_{\gamma}f_{dl},\ f_{v2}f_{\gamma}f_{d2},\f_{vm-l}f_{\gamma}f_{dm-l},\ f_{vm}f_{\gamma}f_{dm},\ f_{t}) = \frac{\parallel (f_{vl}f_{\gamma}f_{dl},f_{v2}f_{\gamma}f_{d2},...,f_{vm-l}f_{\gamma}f_{dm-l},f_{vm}f_{\gamma}f_{dm}) \parallel}{f_{t} + \parallel (f_{vl}f_{\gamma}f_{dl},f_{v2}f_{\gamma}f_{d2},...,f_{vm-l}f_{\gamma}f_{dm-l},f_{vm}f_{\gamma}f_{dm}) \parallel} = \frac{\parallel (f_{vl}f_{\gamma}f_{dl},f_{v2}f_{\gamma}f_{d2},...,f_{vm-l}f_{\gamma}f_{dm-l},f_{vm}f_{\gamma}f_{dm}) \parallel}{f_{t} + \parallel (f_{vl}f_{\gamma}f_{dl},f_{v2}f_{\gamma}f_{d2},...,f_{vm-l}f_{\gamma}f_{dm},f_{vm-l}f_{\gamma}f_{dm-l}) \parallel} = F_{\Gamma}(f_{vl}f_{\gamma}f_{dl},\ f_{v2}f_{\gamma}f_{d2},....,f_{vm}f_{\gamma}f_{dm},f_{vm-l}f_{\gamma}f_{dm-l},\ f_{t}) =so\ on.$$ This proves that $F_{\Gamma}(f_{vl}f_{\gamma}f_{dl}, f_{v2}f_{\gamma}f_{d2}, ...f_{vm-l}f_{\gamma}f_{dm-l}, f_{vm}f_{\gamma}f_{dm}, f_{t})$ is invariant under any permutation of $f_{vl}f_{\gamma}f_{dl}, f_{v2}f_{\gamma}f_{d2}, ...f_{vm-l}f_{\gamma}f_{dm-l}, f_{vm}f_{\gamma}f_{dm}$. ## (4) Now we assume that LHS $$F_{\Gamma}(f_{vl}f_{\gamma}f_{dl},\ f_{v2}f_{\gamma}f_{d2},...,f_{vm-l}f_{\gamma}f_{dm-l},k_{\Delta}(f_{vm}f_{\gamma}f_{dm}),f_{t}) = \frac{\parallel (f_{vl}f_{\gamma}f_{dl},f_{v2}f_{\gamma}f_{d2},...,f_{vm-l}f_{\gamma}f_{dm-l},k_{\Delta}(f_{vm}f_{\gamma}f_{dm}))\parallel}{f_{t}+\parallel (f_{vl}f_{\gamma}f_{dl},f_{v2}f_{\gamma}f_{d2},...,f_{vm-l}f_{\gamma}f_{dm-l},k_{\Delta}(f_{vm}f_{\gamma}f_{dm}))\parallel}$$ $$=\frac{k_{\Delta}\, \|\, (f_{vl}f_{\gamma}f_{dl},f_{v2}f_{\gamma}f_{d2},...,f_{vm-l}f_{\gamma}f_{dm-l},(f_{vm}f_{\gamma}f_{dm})\, \|}{f_{t}+k_{\Delta}\, \|\, (f_{vl}f_{\gamma}f_{dl},f_{v2}f_{\gamma}f_{d2},...,f_{vm-l}f_{\gamma}f_{dm-l},(f_{vm}f_{\gamma}f_{dm})\, \|}\\ =\frac{\|\, (f_{vl}f_{\gamma}f_{dl},f_{v2}f_{\gamma}f_{d2},...,f_{vm-l}f_{\gamma}f_{dm-l},(f_{vm}f_{\gamma}f_{dm})\, \|}{\frac{f_{t}}{|k_{\Delta}\,|}+\|\, (f_{vl}f_{\gamma}f_{dl},f_{v2}f_{\gamma}f_{d2},...,f_{vm-l}f_{\gamma}f_{dm-l},(f_{vm}f_{\gamma}f_{dm})\, \|}\\ =\frac{\|\, (f_{vl}f_{\gamma}f_{dl},f_{v2}f_{\gamma}f_{d2},...,f_{vm-l}f_{\gamma}f_{dm-l},(f_{vm}f_{\gamma}f_{dm})\, \|}{\frac{f_{vl}f_{\gamma}f_{dl}}{|k_{\Delta}\,|}+\|\, (f_{vl}f_{\gamma}f_{dl},f_{v2}f_{\gamma}f_{d2},...,f_{vm-l}f_{\gamma}f_{dm-l},(f_{vm}f_{\gamma}f_{dm})\, \|}\\ =\frac{\|\, (f_{vl}f_{\gamma}f_{dl},f_{v2}f_{\gamma}f_{dl},f_{v2}f_{\gamma}f_{d2},...,f_{vm-l}f_{\gamma}f_{dm-l},(f_{vm}f_{\gamma}f_{dm})\, \|}{\frac{f_{vl}f_{\gamma}f_{dl}}{|k_{\Delta}\,|}+\|\, (f_{vl}f_{\gamma}f_{dl},f_{v2}f_{\gamma}f_{dl},f_{v2}f_{\gamma}f_{dl},...,f_{vm-l}f_{\gamma}f_{dm-l},(f_{vm}f_{\gamma}f_{dm})\, \|}\\ =\frac{\|\, (f_{vl}f_{\gamma}f_{dl},f_{v2}f_{\gamma}f_{dl},f_{v2}f_{\gamma}f_{dl},f_{v2}f_{\gamma}f_{dm-l},(f_{vm}f_{\gamma}f_{dm})\, \|}{\frac{f_{vl}f_{\gamma}f_{dl}}{|k_{\Delta}\,|}+\|\, (f_{vl}f_{\gamma}f_{dl},f_{v2}f_{\gamma}f_{dl},f_{v2}f_{\gamma}f_{dm-l},(f_{vm}f_{\gamma}f_{dm})\, \|}\\ =\frac{\|\, (f_{vl}f_{\gamma}f_{dl},f_{v2}f_{\gamma}f_{dl},f_{v2}f_{\gamma}f_{dl},f_{v2}f_{\gamma}f_{dm-l},(f_{vm}f_{\gamma}f_{dm-l},f_{vm}f_{\gamma}f_{dm-l},(f_{vm}f_{\gamma}f_{dm-l},f_{vm}f_{\gamma}f_{dm-l},f_{vm}f_{\gamma}f_{dm-l},(f_{vm}f_{\gamma}f_{dm-l},f_{vm}f_{\gamma}f_{dm-l},f_{vm}f_{\gamma}f_{dm-l},f_{vm}f_{\gamma}f_{dm-l},f_{vm}f_{\gamma}f_{dm-l},f_{vm}f_{\gamma}f_{dm-l},f_{vm}f_{\gamma}f_{dm-l},f_{vm}f_{\gamma}f_{dm-$$ $$= F_{\Gamma}(f_{v1} \ f_{\gamma} \ f_{d1}, \ f_{v2} \ f_{\gamma} f_{d2}, \ \dots \ f_{vm-1} \ f_{\gamma} \ f_{dm-1}, \ f_{vm} \ f_{\gamma} f_{dm} \ , \frac{f_t}{|k_{\Delta}|}) \ , \ where \ k_{\Delta} \ in = RHS$$ ## (5) Without loss of generality we consider that $$F_{\Gamma}(f_{v1}\ f_{\gamma}\ f_{d1}, f_{v2}\ f_{\gamma}f_{d2}, \dots, f_{vm-1}\ f_{\gamma}\ f_{dm-1},\ f_{vm1}\ f_{\gamma}f_{dm1}\ ,\ f_{s}) \leq F_{\Gamma}(f_{v1}\ f_{\gamma}\ f_{d1},\ f_{v2}\ f_{\gamma}f_{d2}, \dots, f_{vm-1}\ f_{\gamma}\ f_{dm-1},\ f_{vm2}\ f_{\gamma}f_{dm2}\ ,\ f_{t})$$ $$\Leftrightarrow \parallel (f_{v_1}f_{_{v}}f_{_{d1}},f_{v_2}f_{_{v}}f_{_{d2}},...,f_{v_{m-1}}f_{_{v}}f_{_{dm-1}},f_{v_{m1}}f_{_{v}}f_{_{dm1}}) \parallel (f_{_{t}}+\parallel (f_{v_1}f_{_{v}}f_{_{d1}},f_{v_2}f_{_{v}}f_{_{d2}},...,f_{v_{m-1}}f_{_{v}}f_{_{dm-1}},f_{v_{m2}}f_{_{v}}f_{_{dm2}}) \parallel)$$ $$\leq \parallel (f_{v1}f_{v}f_{d1},f_{v2}f_{v}f_{d2},...,f_{vm-1}f_{v}f_{dm-1},f_{vm2}f_{v}f_{dm2}) \parallel (f_{s}+\parallel (f_{v1}f_{v}f_{d1},f_{v2}f_{v}f_{d2},...,f_{vm-1}f_{v}f_{dm-1},f_{vm1}f_{v}f_{dm1}) \parallel)$$ $$\iff f_{_t} \parallel (f_{_{\text{vl}}} f_{_{\gamma}} f_{_{\text{dl}}}, f_{_{\text{v2}}} f_{_{\gamma}} f_{_{\text{d2}}}, \ldots, f_{_{\text{vm-l}}} f_{_{\gamma}} f_{_{\text{dm-l}}}, f_{_{\text{vml}}} f_{_{\gamma}} f_{_{\text{dm1}}}) \parallel \leq f_s \parallel (f_{_{\text{vl}}} f_{_{\gamma}} f_{_{\text{dl}}}, f_{_{\text{v2}}} f_{_{\gamma}} f_{_{\text{d2}}}, \ldots, f_{_{\text{vm-l}}} f_{_{\gamma}} f_{_{\text{dm-l}}}, f_{_{\text{vm2}}} f_{_{\gamma}} f_{_{\text{dm2}}}) \parallel f_{_{\text{vm}}} f_{_{\text{vm}$$
$$\Leftrightarrow f_{_t} \parallel (f_{_{v1}}f_{_{\gamma}}f_{_{d1}},f_{_{v2}}f_{_{\gamma}}f_{_{d2}},\ldots,f_{_{vm-1}}f_{_{\gamma}}f_{_{dm-1}},f_{_{vm1}}f_{_{\gamma}}f_{_{dm1}}) \parallel -f_{_s} \parallel (f_{_{v1}}f_{_{\gamma}}f_{_{d1}},f_{_{v2}}f_{_{\gamma}}f_{_{d2}},\ldots,f_{_{vm-1}}f_{_{\gamma}}f_{_{dm-1}},f_{_{vm2}}f_{_{\gamma}}f_{_{dm2}}) \parallel \leq 0$$ $$\Leftrightarrow f_s \parallel (f_{v_1}f_{v_2}f_{d_1}, f_{v_2}f_{v_2}f_{d_2}, \dots, f_{v_{m-1}}f_{v_r}f_{d_{m-1}}, f_{v_{m2}}f_{v_r}f_{d_{m2}}) \parallel -f_t \parallel (f_{v_1}f_{v_r}f_{d_1}, f_{v_2}f_{v_r}f_{d_2}, \dots, f_{v_{m-1}}f_{v_r}f_{d_{m-1}}, f_{v_{m1}}f_{v_r}f_{d_{m1}}) \parallel \geq 0....(1)$$ Consider again without loss of generality $F_{\Gamma}(f_{v1}\ f_{\gamma}\ f_{d1},f_{v2}\ f_{\gamma}f_{d2},...,f_{vm-1}\ f_{\gamma}\ f_{dm-1},\ f_{vm1}\ f_{\gamma}f_{dm1}+\ f_{vm2}\ f_{\gamma}f_{dm2},f_s+f_t)-F_{\Gamma}(f_{v1}f_{\gamma}f_{d1},f_{v2}f_{\gamma}f_{d2},...,f_{vm-1}f_{\gamma}f_{dm-1},f_{vm1}f_{\gamma}f_{dm1},f_s)=$ $$\frac{\parallel (f_{v_1}f_{\gamma}f_{d_1},f_{v_2}f_{\gamma}f_{d_2},...,f_{v_{m-1}}f_{\gamma}f_{d_{m-1}},f_{v_{ml}}f_{\gamma}f_{d_{ml}} + f_{v_{m2}}f_{\gamma}f_{d_{m2}}) \parallel}{f_s + f_t + \parallel (f_{v_1}f_{\gamma}f_{d_1},f_{v_2}f_{\gamma}f_{d_2},...,f_{v_{m-1}}f_{\gamma}f_{d_{m-1}},f_{v_{ml}}f_{\gamma}f_{d_{ml}} + f_{v_{m2}}f_{\gamma}f_{d_{m2}}) \parallel} - \frac{\parallel (f_{v_1}f_{\gamma}f_{d_1},f_{v_2}f_{\gamma}f_{d_2},...,f_{v_{m-1}}f_{\gamma}f_{d_{m-1}},f_{v_{ml}}f_{\gamma}f_{d_{ml}}) \parallel}{f_s + \parallel (f_{v_1}f_{\gamma}f_{d_1},f_{v_2}f_{\gamma}f_{d_2},...,f_{v_{m-1}}f_{\gamma}f_{d_{m-1}},f_{v_{ml}}f_{\gamma}f_{d_{ml}}) \parallel}$$ ISSN: 1001-4055 Vol. 45 No. 4 (2024) $$=\frac{ \parallel (f_{v_1}f_{\gamma}f_{d_1},\ f_{v_2}f_{\gamma}f_{d_2},...,f_{v_{m-1}}f_{\gamma}f_{d_{m-1}},f_{v_{ml}}f_{\gamma}f_{d_{ml}}+f_{v_{m2}}f_{\gamma}f_{d_{m2}}) \parallel (f_s+\parallel (f_{v_1}f_{\gamma}f_{d_1},\ f_{v_2}f_{\gamma}f_{d_2},...,f_{v_{m-1}}f_{\gamma}f_{d_{m-1}},f_{v_{ml}}f_{\gamma}f_{d_{ml}}) \parallel) - \parallel (f_{v_1}f_{\gamma}f_{d_1},f_{v_2}f_{\gamma}f_{d_2},...,f_{v_{m-1}}f_{\gamma}f_{d_{m-1}},f_{v_{ml}}f_{\gamma}f_{d_{m-1}},f_{v_{ml}}f_{\gamma}f_{d_{ml}}) \parallel) } \\ = \frac{ ...f_{v_{m-1}}f_{\gamma}f_{d_{m-1}},f_{v_{ml}}f_{\gamma}f_{d_{ml}}) \parallel ((f_s+f_t)+\parallel (f_{v_1}f_{\gamma}f_{d_1},f_{v_2}f_{\gamma}f_{d_2},...,f_{v_{m-1}}f_{\gamma}f_{d_{m-1}},f_{v_{ml}}f_{\gamma}f_{d_{m1}}+f_{v_{m2}}f_{\gamma}f_{d_{m2}}) \parallel) }{ (f_s+\parallel (f_{v_1}f_{\gamma}f_{d_1},f_{v_2}f_{\gamma}f_{d_2},...,f_{v_{m-1}}f_{\gamma}f_{d_{m-1}},f_{v_{ml}}f_{\gamma}f_{d_m}) \parallel) [(f_s+f_t)+\parallel (f_{v_1}f_{\gamma}f_{d_1},f_{v_2}f_{\gamma}f_{d_2},...,f_{v_{m-1}}f_{\gamma}f_{d_{m-1}},f_{v_{ml}}f_{\gamma}f_{d_{m-1}},f_{v_{ml}}f_{\gamma}f_{d_{m-1}},f_{v_{ml}}f_{\gamma}f_{d_{m-1}},f_{v_{ml}}f_{\gamma}f_{d_{m-1}},f_{v_{m}}f_{\gamma}f_{d_{m-1}}) \parallel) }] }$$ $$\Leftrightarrow \frac{f_{s} \parallel (f_{v_{1}}f_{y}f_{d_{1}},\ f_{v_{2}}f_{y}f_{d_{2}},...,f_{v_{m-1}}f_{y}f_{d_{m-1}},f_{v_{m2}}f_{y}f_{d_{m2}}) \parallel -f_{r} \parallel (f_{v_{1}}f_{y}f_{d_{1}},f_{v_{2}}f_{y}f_{d_{2}},...,f_{v_{m-1}}f_{y}f_{d_{m-1}},f_{v_{m1}}f_{y}f_{d_{m1}}) \parallel}{(f_{s} + \parallel (f_{v_{1}}f_{y}f_{d_{1}},\ f_{v_{2}}f_{y}f_{d_{2}},...,f_{v_{m-1}}f_{y}f_{d_{m-1}},f_{v_{m1}}f_{y}f_{d_{m1}}) \parallel) [(f_{s} + f_{1}) + \parallel (f_{v_{1}}f_{y}f_{d_{1}},f_{v_{2}}f_{y}f_{d_{2}},...,f_{v_{m-1}}f_{y}f_{d_{m-1}},f_{v_{m1}}f_{y}f_{d_{m1}}) \parallel]} \geq 0$$ $$\frac{\parallel (f_{v_1}f_{_{y}}f_{_{d_1}},f_{_{v_2}}f_{_{y}}f_{_{d_2}},...,f_{_{v_{m-l}}f_{_{y}}}f_{_{d_{m-l}}},f_{_{v_ml}}f_{_{y}}f_{_{d_{ml}}}+f_{_{v_{m2}}f_{_{y}}f_{_{d_{m2}}})\parallel}{f_s+f_t+\parallel (f_{v_1}f_{_{y}}f_{_{d_1}},f_{v_2}f_{_{y}}f_{_{d_2}},...,f_{_{v_{m-l}}f_{_{y}}}f_{_{d_{m-l}}},f_{_{v_ml}}f_{_{y}}f_{_{d_{ml}}}+f_{_{v_{m2}}f_{_{y}}f_{_{d_{m2}}})\parallel}-\frac{\parallel (f_{v_1}f_{_{y}}f_{_{d_1}},f_{v_2}f_{_{y}}f_{_{d_2}},...,f_{_{v_{m-l}}f_{_{y}}}f_{_{d_{m-l}}},f_{_{v_ml}}f_{_{y}}f_{_{d_{ml}}})\parallel}{f_s+\parallel (f_{v_1}f_{_{y}}f_{_{d_1}},f_{v_2}f_{_{y}}f_{_{d_2}},...,f_{_{v_{m-l}}f_{_{y}}}f_{_{d_{m-l}}},f_{_{v_ml}}f_{_{y}}f_{_{d_{ml}}})\parallel}\geq 0$$ $$\Leftrightarrow \frac{\parallel (f_{v1}f_{y}f_{d1},f_{v2}f_{y}f_{d2},...,f_{vm-1}f_{y}f_{dm-1},f_{vm1}f_{y}f_{dm1}+f_{vm2}f_{y}f_{dm2}) \parallel}{f_{s}+f_{t}+\parallel (f_{v1}f_{y}f_{d1},f_{v2}f_{y}f_{d2},...,f_{vm-1}f_{y}f_{dm-1},f_{vm1}f_{y}f_{dm1}+f_{vm2}f_{y}f_{dm2}) \parallel} \geq \frac{\parallel (f_{v1}f_{y}f_{d1},f_{v2}f_{y}f_{d2},...,f_{vm-1}f_{y}f_{dm-1},f_{vm1}f_{y}f_{dm1}) \parallel}{f_{s}+\parallel (f_{v1}f_{y}f_{d1},f_{v2}f_{y}f_{d2},...,f_{vm-1}f_{y}f_{dm-1},f_{vm1}f_{y}f_{dm1}) \parallel}$$ $\iff F_{\Gamma}(f_{v1}\ f_{\gamma}\ f_{d1}, f_{v2}\ f_{\gamma}f_{d2},..,f_{vm-1}\ f_{\gamma}\ f_{dm-1},\ f_{vm1}\ f_{\gamma}f_{dm1} +\ f_{vm2}\ f_{\gamma}f_{dm2}\ ,\ f_{s} +\ f_{t}) \geq F_{\Gamma}(f_{v1}\ f_{\gamma}\ f_{d1},\ f_{v2}\ f_{\gamma}f_{d2},...,f_{vm-1}\ f_{\gamma}\ f_{dm-1},\ f_{vm1}\ f_{\gamma}f_{dm1},\ f_{s})\\ (2)$ From (1) and (2) we obtain $F_{\Gamma}(f_{v1}\ f_{\gamma}\ f_{d1}, f_{v2}\ f_{\gamma}f_{d2}, \dots, f_{vm-1}\ f_{\gamma}\ f_{dm-1},\ f_{vm1}\ f_{\gamma}f_{dm1} +\ f_{vm2}\ f_{\gamma}f_{dm2}\ ,\ f_s +\ f_t) \\ \geq min\{\ F_{\Gamma}(f_{v1}\ f_{\gamma}\ f_{d1},\ f_{v2}\ f_{\gamma}f_{d2}, \dots, f_{vm-1}\ f_{\gamma}\ f_{dm-1}, f_{vm1}\ f_{\gamma}f_{dm2}\ ,\ f_t) \\ \geq f_{\gamma}f_{dm1},\ f_s),\ F_{\Gamma}(f_{v1}\ f_{\gamma}\ f_{d1},\ f_{v2}\ f_{\gamma}f_{d2}, \dots, f_{vm-1}\ f_{\gamma}\ f_{dm-1}, f_{vm2}\ f_{\gamma}f_{dm2}\ ,\ f_t) \\ \}$ (6) We have clearly $$F_{\Gamma}(f_{v_1}f_{v_2}f_{d1}, f_{v_2}f_{v_2}f_{d2}, \dots, f_{v_{m-1}}f_{v_m}f_{dm-1}, f_{v_m}f_{v_m}f_{dm}, f_{t_m})$$, is a left continuous and non-decreasing function of $\,f_t$ in $(-\infty,\infty)$ such that $$\lim_{m \to \infty} F_{\Gamma}(f_{v1}f_{\gamma}f_{d1}, f_{v2}f_{\gamma}f_{d2}, \dots f_{vm-1}f_{\gamma}f_{dm-1}, f_{vm}f_{\gamma}f_{dm}, f_{t})$$ $$= \lim_{m \to \infty} \frac{\| \left(f_{vl} f_{\gamma} f_{dl}, f_{v2} f_{\gamma} f_{d2}, \ldots, f_{vm-l} f_{\gamma} f_{dm-l}, f_{vm} f_{\gamma} f_{dm} \right) \|}{f_{t} + \| \left(f_{vl} f_{\gamma} f_{dl}, f_{v2} f_{\gamma} f_{d2}, \ldots, f_{vm-l} f_{\gamma} f_{dm-l}, f_{vm} f_{\gamma} f_{dm} \right) \|} = 0$$ **3.15.Definition:** Let (F_V,F_Γ) be the fuzzy Gamma-m-normed linear space , a sequence $\left\{f_{vr}f_{\gamma}f_{dr}\right\}_{r=1}^{\infty}$ in (F_V,F_Γ) is convergent to $f_vf_{\gamma}f_d$ if for every δ in (0,1) and f_t in $(0,\infty)$ there exists appositive number M such that $$\begin{split} &F_{\Gamma}(f_{v_{1}}f_{\gamma}f_{d1},f_{v_{2}}f_{\gamma}f_{d2},...,f_{v_{r-1}}f_{\gamma}f_{dr-1},f_{v_{r}}f_{\gamma}f_{dr}-\ f_{v}f_{\gamma}f_{d},f_{t})<\delta\ ,\ \text{for all}\ r\ \geq M\\ &\Rightarrow lim\,F_{\Gamma}(f_{v_{1}}f_{\gamma}f_{d1},f_{v_{2}}f_{\gamma}f_{d2},...,f_{v_{r-1}}f_{\gamma}f_{dr-1},f_{v_{r}}f_{\gamma}f_{dr}-\ f_{v}f_{\gamma}f_{d},f_{t})=0 \end{split}$$ $\textbf{3.16.Definition:} \ \, \text{Let} \ \, (F_V,F_\Gamma) \ \, \text{be the fuzzy Gamma-m-normed linear space} \ \, , \ \, \text{a sequence} \ \, \left\{f_{vr}f_{\gamma}f_{dr}\right\}_{r=1}^{\infty} \ \, \text{in} \ \, ((F_V,F_\Gamma) \text{is said to be Cauchy sequence} \quad \, \text{if for every } \delta \ \, \text{is in} \ \, (0,1) \ \, \text{and} \quad \, f_t \in (0,\infty) \ \, \text{there exists appositive number } M \ \, \text{such that} \\ F_\Gamma(f_{v1}f_{\gamma}f_{d1},f_{v2}f_{\gamma}f_{d2},\ldots,f_{vr-1}f_{\gamma}f_{dr-1},f_{vr} \ \, f_{\gamma}f_{dr},\ \, f_{t}) < \delta \ \, \text{,for all } r \ \, , \ell \geq M \ \, , \\ \\ \end{array}$ That is $$\lim_{r \to \infty} F_{\Gamma}(f_{v1}f_{\gamma}f_{d1}, f_{v2}f_{\gamma}f_{d2}, \dots, f_{vr-1}f_{\gamma}f_{dr-1}, f_{vr}f_{\gamma}f_{dr} - f_{v\ell}f_{\gamma}f_{d\ell}, f_{t}) = 0$$ - **3.17. Definition:** A fuzzy Gamma-m-normed linear space (F_V, F_Γ) is said to be complete if every Cauchy sequence in (F_V, F_Γ) is convergence sequence. - **3.18. Theorem:** Let (F_V, F_Γ) be the fuzzy Gamma-m-normed linear space and let $\{f_{vr}f_{\gamma}f_{dr}\}_{r=1}^{\infty}$ be a sequence in it then - (2) Every convergence sequence is a Cauchy sequence in (F_V,F_Γ) . **Proof:** Suppose a sequence $\{f_{vr}f_{\gamma}f_{dr}\}_{r=1}^{\infty}$ convergence to $f_{v}f_{\gamma}f_{d}$ if fix $f_{t} > 0$, then for any given δ in (0,1) there is a positive integer $r \ge M$, such that $$\begin{split} &F_{\Gamma}(f_{vl}f_{\gamma}f_{dl},f_{v2}f_{\gamma}f_{d2},\ldots,f_{vr-l}f_{\gamma}f_{dr-l},f_{vr}f_{\gamma}f_{dr}-f_{v}f_{\gamma}f_{d},f_{t})<\delta \text{ , for all } r\geq M\\ &\Rightarrow F_{\Gamma}(f_{vl}f_{\gamma}f_{dl},f_{v2}f_{\gamma}f_{d2},\ldots,f_{vr-l}f_{\gamma}f_{dr-l},f_{vr}f_{\gamma}f_{dr}-f_{v}f_{\gamma}f_{d},f_{t})\rightarrow 0, \text{ as } r\rightarrow \infty.\\ &that \text{ is } \lim_{r\rightarrow\infty}F_{\Gamma}(f_{vl}f_{\gamma}f_{dl},f_{v2}f_{\gamma}f_{d2},\ldots,f_{vr-l}f_{\gamma}f_{dr-l},f_{vr}f_{\gamma}f_{dr},f_{t})=f_{v}f_{\gamma}f_{d} \end{split}$$ Conversely if for each $f_t \in (0,\infty)$ $F_{\Gamma}(f_{v1}f_{\gamma}f_{d1},f_{v2}f_{\gamma}f_{d2},...,f_{vr-1}f_{\gamma}f_{dr-1},f_{vr}\ f_{\gamma}f_{dr}-f_v\ f_{\gamma}f_{d},f_t) \rightarrow 0$, as $r \rightarrow \infty$ then for every δ in (0,1)there exists positive integer $r \geq M$, such that $F_{\Gamma}(f_{v1}f_{\gamma}f_{d1},f_{v2}f_{\gamma}f_{d2},...,f_{vr-1}f_{\gamma}f_{dr-1},f_{vr}\ f_{\gamma}f_{dr}-f_v\ f_{\gamma}f_{d},f_t) < \delta$, for all $r \geq M$, Hence a sequence $\{f_{vr}f_{\gamma}f_{dr}\}_{r=1}^{\infty}$ is convergence to $f_{v}f_{\gamma}f_{d}$ in (F_{V},F_{Γ}) (2) Suppose a sequence $\left\{f_{vr}f_{\gamma}f_{dr}\right\}_{r=1}^{\infty}$ is convergence in (F_{V},F_{Γ}) and if it is convergence to $f_{v}f_{\gamma}f_{d}$. Let f_{t} in $(0,\infty)$ and $0<\mathcal{E}<1$ then we choose δ is in (0,1)such that δ
Δ^{F} $\delta<\mathcal{E}$, since $\left\{f_{vr}f_{\gamma}f_{dr}\right\}_{r=1}^{\infty}$ is convergence to $f_{v}f_{\gamma}f_{d}$ Which implies that there exists positive integer $r \ge M$, such that $$F_{\Gamma}(f_{v1}f_{\gamma}f_{d1},f_{v2}f_{\gamma}f_{d2},...,f_{vr-1}f_{\gamma}f_{dr-1},f_{vr}f_{\gamma}f_{dr}-f_{v}f_{\gamma}f_{d},\frac{f_{t}}{2})<\delta, \text{ for all } r \geq M,$$ We consider that $$\begin{split} &F_{\Gamma}(f_{vl}f_{\gamma}f_{dl},f_{v2}f_{\gamma}f_{d2},...,f_{vr-l}f_{\gamma}f_{dr-l},f_{vr}f_{\gamma}f_{dr}-f_{v\ell}f_{\gamma}f_{d\ell},f_{t})\\ &=F_{\Gamma}(f_{vl}f_{\gamma}f_{dl},f_{v2}f_{\gamma}f_{d2},...,f_{vr-l}f_{\gamma}f_{dr-l},f_{vr}f_{\gamma}f_{dr}-f_{v}f_{\gamma}f_{d}+f_{v}f_{\gamma}f_{d}-f_{v\ell}f_{\gamma}f_{d\ell},\frac{f_{t}+f_{t}}{2})\\ &\leq \{F_{\Gamma}(f_{vl}f_{\gamma}f_{dl},f_{v2}f_{\gamma}f_{d2},...,f_{vr-l}f_{\gamma}f_{dr-l},f_{vr}f_{\gamma}f_{dr}-f_{v}f_{\gamma}f_{d},\frac{f_{t}}{2})\Delta^{F}F_{\Gamma}(f_{vl}f_{\gamma}f_{dl},f_{v2}f_{\gamma}f_{d2},...,f_{vr-l}f_{\gamma}f_{d\ell}-f_{v}f_{\gamma}f_{d},\frac{f_{t}}{2})\}\\ &<\mathcal{S}\Delta^{F}\mathcal{S}\\ &<\mathcal{E}, \text{for all } r\;,\ell\geq M \end{split}$$ Therefore $\{f_{vr}f_{\gamma}f_{dr}\}_{r=1}^{\infty}$ is a cauchy sequence in (F_{V},F_{Γ}) . - **3.19. Remark:** The following examples **3.21.Example and 3.22.Example** shows that there may exist cauchy sequence in the fuzzy Gamma-m-normed linear space (F_V, F_Γ) which is not convergent. - **3.20. Remark**: For the following examples **3.21.Example and 3.22.Example** consider a fuzzy Gamma-m-normed linear space (F_V, F_Γ) as in previous **3.14. Example**. - **3.21.Example:** Let (F_V, F_Γ) be the fuzzy Gamma-m-normed linear space , a sequence $\left\{f_{vr}f_{\gamma}f_{dr}\right\}_{r=1}^{\infty}$ in (F_V, F_Γ) then a sequence $\left\{f_{vr}f_{\gamma}f_{dr}\right\}_{r=1}^{\infty}$ is a convergence in (F_V, F_Γ) a sequence $\left\{f_{vr}f_{\gamma}f_{dr}\right\}_{r=1}^{\infty}$ is a convergence in $(F_V, \|..., \|)$ **Proof:** We have a sequence $\{f_{vr}f_{\gamma}f_{dr}\}_{r=1}^{\infty}$ is also a convergence in (F_{V},F_{Γ}) $$\lim_{r \to \infty} F_{\Gamma}(f_{vl}f_{\gamma}f_{dl}, f_{v2}f_{\gamma}f_{d2}, f_{v3}f_{\gamma}f_{d3}, \dots, f_{vr-l}f_{\gamma}f_{dr-l}, f_{vr}f_{\gamma}f_{dr} - f_{v}f_{\gamma}f_{d}, f_{t}) = 0$$ $$\Leftrightarrow \lim_{r \to \infty} \frac{ \parallel (f_{v_{1}}f_{\gamma}f_{d1}, f_{v_{2}}f_{\gamma}f_{d2}, \dots, f_{v_{r-1}}f_{\gamma}f_{dr-1}, f_{v_{r}}f_{\gamma}f_{dr} - f_{v}f_{\gamma}f_{d}) \parallel}{f_{t} + \parallel (f_{v_{1}}f_{\gamma}f_{d1}, f_{v_{2}}f_{\gamma}f_{d2}, \dots, f_{v_{m-1}}f_{\gamma}f_{dr-1}, f_{v_{r}}f_{\gamma}f_{dr} - f_{v}f_{\gamma}f_{d}) \parallel} = 0$$ $$\Leftrightarrow \lim_{r \to \infty} \| (f_{v_1} f_{\gamma} f_{d_1}, f_{v_2} f_{\gamma} f_{d_2}, \dots, f_{v_{r-1}} f_{\gamma} f_{d_{r-1}}, f_{v_r} f_{\gamma} f_{d_r} - f_{v} f_{\gamma} f_{d}) \| = 0$$ Hence a sequence $\{f_{vr}f_{\gamma}f_{dr}\}_{r=1}^{\infty}$ is a convergence in $(F_{V}, \|.,...,\|)$. Conversely we have a sequence $\{f_{vr}f_{\gamma}f_{dr}\}_{r=1}^{\infty}$ is a convergence in $(F_{v}, \|.,...,\|)$ $$\Leftrightarrow \lim_{r \to \infty} \| (f_{v_1} f_{\gamma} f_{d_1}, f_{v_2} f_{\gamma} f_{d_2}, \dots, f_{v_{r-1}} f_{\gamma} f_{d_{r-1}}, f_{v_r} f_{\gamma} f_{d_r} - f_{v} f_{\gamma} f_{d}) \| = 0$$ $$\iff \lim_{r \to \infty} \frac{ \parallel (f_{v_{l}}f_{\gamma}f_{d_{1}}, f_{v_{2}}f_{\gamma}f_{d_{2}}, \ldots, f_{v_{r-l}}f_{\gamma}f_{d_{r-l}}, f_{v_{r}}f_{\gamma}f_{d_{r}} - f_{v}f_{\gamma}f_{d}) \parallel}{f_{t} + \parallel (f_{v_{l}}f_{\gamma}f_{d_{l}}, f_{v_{2}}f_{\gamma}f_{d_{2}}, \ldots, f_{v_{m-l}}f_{\gamma}f_{d_{r-l}}, f_{v_{r}}f_{\gamma}f_{d_{r}} - f_{v}f_{\gamma}f_{d}) \parallel} = 0$$ $$\lim_{r \to \infty} F_{\Gamma}(f_{vl}f_{\gamma}f_{dl}, f_{v2}f_{\gamma}f_{d2}, f_{v3}f_{\gamma}f_{d3}, \dots, f_{vr-l}f_{\gamma}f_{dr-l}, f_{vr}f_{\gamma}f_{dr} - f_{v}f_{\gamma}f_{d}, f_{t}) = 0$$ Hence a sequence $\{f_{vr}f_{\gamma}f_{dr}\}_{r=1}^{\infty}$ is also a convergence in (F_V, F_Γ) . **3.22.Example**: Let (F_V, F_Γ) be the fuzzy Gamma-m-normed linear space , a sequence $\left\{f_{vr}f_{\gamma}f_{dr}\right\}_{r=1}^{\infty}$ in (F_V, F_Γ) then a sequence $\left\{f_{vr}f_{\gamma}f_{dr}\right\}_{r=1}^{\infty}$ is a Cauchy sequence in (F_V, F_Γ) a sequence $\left\{f_{vr}f_{\gamma}f_{dr}\right\}_{r=1}^{\infty}$ is a Cauchy sequence in $(F_V, \|..., \|)$. **Proof:** Suppose a sequence $\{f_{vr}f_{v}f_{dr}\}_{v=1}^{\infty}$ is a Cauchy sequence in (F_{v},F_{Γ}) $$\lim_{r \to \infty} F_{\Gamma}(f_{v_1} f_{\gamma} f_{d_1}, f_{v_2} f_{\gamma} f_{d_2}, \dots, f_{v_{r-1}} f_{\gamma} f_{d_{r-1}}, f_{v_r} f_{\gamma} f_{d_r} - f_{v_\ell} f_{\gamma} f_{d_\ell}, f_t) = 0$$ $$\Leftrightarrow \lim_{r,\ell \to \infty} \frac{ \parallel (f_{v1}f_{y}f_{d1},f_{v2}f_{y}f_{d2},\ldots,f_{vr-1}f_{y}f_{dr-1},f_{vr}f_{y}f_{dr}-f_{v\ell}f_{y}f_{d\ell}) \parallel}{f_{t} + \parallel (f_{v1}f_{y}f_{d1},f_{v2}f_{y}f_{d2},\ldots,f_{vm-1}f_{y}f_{dr-1},f_{vr}f_{y}f_{dr}-f_{v\ell}f_{y}f_{d\ell}) \parallel} = 0$$ $$\lim_{r,\ell\to\infty} \| (f_{v_1}f_{\gamma}f_{d_1}, f_{v_2}f_{\gamma}f_{d_2}, \dots, f_{v_{r-1}}f_{\gamma}f_{d_{r-1}}, f_{v_r}f_{\gamma}f_{d_r} - f_{v\ell}f_{\gamma}f_{d\ell}) \| = 0$$ Hence a sequence $\left\{f_{vr}f_{\gamma}f_{dr}\right\}_{r=1}^{\infty}$ is a Cauchy sequence in (F_v, ||.,...,.||). Conversely we prove that a sequence $\{f_{vr}f_{\gamma}f_{dr}\}_{r=1}^{\infty}$ is a Cauchy sequence in (F_{V},F_{Γ}) when it is a Cauchy sequence in $(F_{V},\|...,\|)$ if for every $\mathcal{E} > 0$ there exists appositive number M suchthat $$\Leftrightarrow \parallel (f_{v_1}f_{_{\boldsymbol{\gamma}}}f_{_{\boldsymbol{d}1}},f_{_{\boldsymbol{v}2}}f_{_{\boldsymbol{\gamma}}}f_{_{\boldsymbol{d}2}},\ldots,f_{_{\boldsymbol{v}r-1}}f_{_{\boldsymbol{\gamma}}}f_{_{\boldsymbol{d}r-1}},f_{_{\boldsymbol{v}r}}f_{_{\boldsymbol{\gamma}}}f_{_{\boldsymbol{d}r}}-f_{_{\boldsymbol{v}\ell}}f_{_{\boldsymbol{\gamma}}}f_{_{\boldsymbol{d}\ell}})\parallel < \varepsilon, \ \ \text{whenever } r,\ell \ \geq M$$ $$\Leftrightarrow \left| \frac{\parallel (f_{vl}f_{\gamma}f_{dl},f_{v2}f_{\gamma}f_{d2},...,f_{vr-l}f_{\gamma}f_{dr-l},f_{vr}f_{\gamma}f_{dr}-f_{v\ell}f_{\gamma}f_{d\ell}) \parallel}{f_{t} + \parallel (f_{vl}f_{\gamma}f_{dl},f_{v2}f_{\gamma}f_{d2},...,f_{vm-l}f_{\gamma}f_{dr-l},f_{vr}f_{\gamma}f_{dr}-f_{v\ell}f_{\gamma}f_{d\ell}) \parallel} \right| < \varepsilon, \text{ whenever } r,\ell \geq M$$ $$\Leftrightarrow \left|F_{\Gamma}(f_{vl}f_{\gamma}f_{dl},f_{v2}f_{\gamma}f_{d2},...,f_{vr-l}f_{\gamma}f_{dr-l},f_{vr}f_{\gamma}f_{dr}-f_{v\ell}f_{\gamma}f_{d\ell},\ f_{t})\right| < \varepsilon,\ whenever\ r,\ell\ \geq M$$ Hence a sequence $\left\{f_{vr}f_{\gamma}f_{dr}\right\}_{r=1}^{\infty}$ is a Cauchy sequence in (F_{V},F_{Γ}) . **3.23.Theorem:** In a fuzzy Gamma-m-normed linear space (F_V, F_Γ) , every Cauchy sequence has a convergent subsequence is complete. **Proof:** Let (F_V, F_Γ) be the fuzzy Gamma-m-normed linear space and let a sequence $\{f_{vr}f_{\gamma}f_{dr}\}_{r=1}^{\infty}$ is a Cauchy sequence in (F_V, F_Γ) . Let $\left\{f_{vr\ell}f_{\gamma}f_{dr\ell}\right\}_{r=1}^{\infty}$ be a subsequence of $\left\{f_{vr}f_{\gamma}f_{dr}\right\}_{r=1}^{\infty}$ and it is convergence to f_v f_{γ} f_d .now we need to prove that the sequence $\left\{f_{vr}f_{\gamma}f_{dr}\right\}_{r=1}^{\infty}$ is convergence to f_v f_{γ} f_d , for this let \mathcal{E} in (0,1) and $f_t \in (0,\infty)$, choose δ is in (0,1) such that δ Δ^F $\delta < \mathcal{E}$. ISSN: 1001-4055 Vol. 45 No. 4 (2024) We have the sub-sequence $\left\{f_{vr\ell}f_{\gamma}f_{dr\ell}\right\}_{r=1}^{\infty}$ is also convergent to $f_v f_{\gamma} f_d$, there exists a $r,\ell > M$ such that $F_{\Gamma}(f_{v1}f_{\gamma}f_{d1},f_{v2}f_{\gamma}f_{d2},...,f_{vr-1}f_{\gamma}f_{dr-1},f_{v\ell}f_{\gamma}f_{d\ell}-f_v f_{\gamma} f_d,\frac{1}{2}f_t) < \delta$ for all $r,\ell \geq M$. $\begin{aligned} & \text{Now} \quad F_{\Gamma}(f_{v1}f_{\gamma}f_{d1},f_{v2}f_{\gamma}f_{d2},\dots,f_{vr-1}f_{\gamma}f_{dr-1}, \quad f_{v\ell} \quad f_{\gamma}f_{d\ell} \quad -f_{\mathbf{v}} \ f_{\gamma} \ f_{d}, \quad f_{t}) \\ & = F_{\Gamma}(f_{v1}f_{\gamma}f_{d1},f_{v2}f_{\gamma}f_{d2},\dots,f_{vr-1}f_{\gamma}f_{dr-1}, \quad f_{v\ell} \quad f_{\gamma}f_{d\ell} - f_{\mathbf{v}} \ f_{\gamma} \ f_{d}, \quad f_{t}) \\ & = F_{\Gamma}(f_{v1}f_{\gamma}f_{d1},f_{v2}f_{\gamma}f_{d2},\dots,f_{vr-1}f_{\gamma}f_{dr-1}, \quad f_{v\ell} \quad f_{\gamma}f_{d\ell} - f_{\mathbf{v}} \ f_{\gamma} \ f_{d}, \quad f_{t}) \\ & = F_{\Gamma}(f_{v1}f_{\gamma}f_{d1},f_{v2}f_{\gamma}f_{d2},\dots,f_{vr-1}f_{\gamma}f_{dr-1}, \quad f_{v\ell} \quad f_{\gamma}f_{d\ell} - f_{\mathbf{v}} \ f_{\gamma} \ f_{d}, \quad f_{t}) \\ & = F_{\Gamma}(f_{v1}f_{\gamma}f_{d1},f_{v2}f_{\gamma}f_{d2},\dots,f_{vr-1}f_{\gamma}f_{dr-1}, \quad f_{v\ell} \quad f_{\gamma}f_{d\ell} - f_{\mathbf{v}} \ f_{\gamma}f_{d\ell} - f_{\mathbf{v}} \ f_{\gamma} \ f_{d}, \quad f_{\tau}) \\ & = F_{\Gamma}(f_{v1}f_{\gamma}f_{d1},f_{v2}f_{\gamma}f_{d2},\dots,f_{vr-1}f_{\gamma}f_{dr-1}, \quad f_{v\ell} \quad f_{\gamma}f_{d\ell} - f_{\mathbf{v}} \ f_{\gamma}f_{d\ell} - f_{\mathbf{v}} \ f_{\gamma}f_{d}, \quad f_{\tau}) \\ & = F_{\Gamma}(f_{v1}f_{\gamma}f_{d1},f_{v2}f_{\gamma}f_{d2},\dots,f_{vr-1}f_{\gamma}f_{dr-1}, \quad f_{v\ell} \quad f_{\gamma}f_{d\ell} - f_{\mathbf{v}} \ f_{\gamma}f_{\ell} f_{\mathbf$ Therefore a sequence $\{f_{vr}f_{\gamma}f_{dr}\}_{r=1}^{\infty}$ is convergence to f_v f_{γ} f_d in (F_V,F_Γ) Hence it is complete. #### 4. Discussion and Conclusion In this research paper, we convicted the concept of fuzzy gamma ring, fuzzy gamma vector space and using this also introduced the notion of fuzzy Gamma m-normed linear space and produced a detailed axioms with theory of fuzzy n-normed linear space. In fuzzy Gamma m-normed linear
space obtained some results on cauchy and convergence sequence. Also provided theorems of completeness sequence and Cauchy sequence in fuzzy Gamma m-normed linear space. This work can be extended to Banach fuzzy gamma linear space by introducing the concepts of completeness in fuzzy Gamma m-normed linear space. #### References - [1] Nobusawa.N., 'on generalization of the ring theory' , Osaka J. Math. 1,185-190,1978.https://scholar.google.com/scholar_lookup?title=On+a+generalization+of+the+ring+theory& authorName=Nobuo+Nobusawa&publication_year=1964&issue=1&volume=1&journal=Osaka+Journ al+of+Mathematics&pages=81-89&issn=0030-6126 - [2] Barnes W., "On the Γ-rings of Nobusawa", Pacific Journal of Mathematics. Sep1;18(3):411-422. 1966DOI: 10.2140/pjm.1966.18.411 - [3] Gahler, S., "Lineare 2-Normierte Raume", Mathematische Nachrichten, 28,143.1965. http://dx.doi.org/10.1002/mana.19640280102 - [4] Bag, T & Samanta, T. K.., "Finite dimensional fuzzy normed linear spaces", The Journal of Fuzzy Mathematics, 11(3), 687-70.2003.http://afmi.or.kr/papers/2013/vol-06_no-02/afmi-6-2(227--453)/afmi-6-2(271--283)-h-120903.pdf - [5] S.C.Cheng., J. N.Mordeson., "Fuzzy linear operators and fuzzy normed linear spaces", Bull. Cal. Math. Soc, 86, 429-436. 1994. - [6] C.Felbin., "Finite dimensional Fuzzy normed linear spaces", Fuzzy sets and systems,48,239-248. 1992.https://doi.org/10.1016/01650114(92)90338-5 - [7] Hendra Gunawan and M. Mashadi., "On n-normed spaces", international J. Math. & Sci., 27, no. 10,631-639. 2001.https://doi.org/10.1155/S0161171201010675 - [8] K. Atanassov., "Intuitionistic fuzzy sets. Fuzzy Sets and Systems", Volume 20, Issue 1., Pages 87-96. August 1986.https://doi.org/10.1016/S01650114(86)80034-3 - [9] K.Katsaras and Dar B Liu., "Fuzzy vector spaces and fuzzy topological vector spaces", Journal of mathematical analysis and applications., 58, 135-146. 1977. https://doi.org/10.1016/0022247X(77)90233-5 - [10] Demirci. M., "Smooth groups", fuzzy sets and systems ,117,431-437, feb-2001. https://doi.org/10.1016/S01650114(98)00391-1 - [11]Demirci.M., "Smooth subgroups and smooth homomorphisms", fuzzy sets and systems,117,439-446,2001. https://doi.org/10.1016/S01650114(98)00392-3 - [12] AL.Narayanan and S.Vijayabalaji, "Fuzzy n-normed linear space", International . J. Math & Math.Sci. No.24,3963-3977.2006. https://doi.org/10.1155/IJMMS.2005.3963 [13] Vijayabalaji, Srinivasan & Sivaramakrishnan, S. & Kalaiselvan, Shanmugam., "n-NORMED LEFT Γ-LINEAR SPACE" International Journal of Applied Engineering Research. 10. 10-14. 2015.https://www.researchgate.net/publication/314408944_n-NORMED_LEFT_G-LINEAR_SPACE [14]G.S. Rhie, B. M. Choi and S. K. Song, "On the completeness of fuzzy normed linear spaces", Math. Japonica, 45, no. 1, 32-37. 1997. - [15] S. Vijayabalaji, S. Anitha Shanthi and N. Thillaigovindan., "Interval valued fuzzy n-normed linear space", Journal of Fundamental Sciences, 4, 287-297. 2008. - https://www.researchgate.net/publication/276245270 Interval valued fuzzy n- normed linear space - [16] S. Vijayabalaji, N. Thillaigovindan and Young-Bae Jun, "Intuitionistic fuzzy n-normed linear space", Bulletin of the Korean Mathematical Society, 44,291-308. 2007 DOI:10.4134/BKMS.2007.44.2.291 - [17] Reddy, B. S., "Fuzzy anti 2-normed linear space", Journal of Mathematics Research, 3(2), 137-144. 2011a. - (http://dx.doi.org/10.5539/jmr.v3n2p137)DOI:10.5539/jmr.v3n2p137 - [18] Reddy, B. S., "Fuzzy anti n-normed linear space", Journal of Mathematics and Technology, 2(1), 14-26, 2011b. - [19]S Kalaiselvan., S.Shivaramakrishnan and S.Vijayabalaji., "n-normed left gamma-linear space", International Journal of Engineering Research, 10(72), 64-75. 2015 - [20]Lotfi Aliasker Zadeh., "Fuzzy sets", information and control, 8, 338353.1965. http://dx.doi.org/10.1016/S0019-9958(65)90241-X