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Abstract: In this paper, weimplement a recently developed analytical technique, the modified fractional reduced
differential transform method (MFRDTM),coupled with Adomian polynomials for solving the fractional
Rosenau-Hyman equation.Here the fractional derivatives are described in the Caputo sense.
A numerical comparison between the exact and numerical solutions obtained by MFRDTM reveals that the
present techniqueis effective, straightforward and simple.
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1. Introduction

Recently, many mathematical models related to the theory of fractional differential equations have received
considerable attention from researchers and scientists because of their wide application in science and engineering.
Various definitions of fractional differentiation and integration are available in the literature [1-3].

In this study, we consider the time fractional Rosenau Hyman equation:

D v = tovy + p(v?)ax 1
subject to the initial condition

v(x,0) = f(x) )
Wheret and uare the parameters of convection and nonlinear dispersion terms, respectively.

ais the order of fractional derivative(0 < a < 1), tis the time and X is the spatial coordinate.Such anequation has
been widely used to study the effect of nonlinear dispersion forming patterns in liquid drops when ¢ = 1. Many
research articles [4-10]discuss the exact and approximate analytical methods of the Rosenau-Hyman equation.
Little attention has been given to the time fractional Rosenau-Hyman equation [11-14], and the application of the
time-space fractional Rosenau-Hyman equation is missing in the literature.

2. Fractional derivative and integration

2.1 Definition The Riemann-Liouville integral operator J* of order « > 0 of a function f € C5, 6 = —1 is
defined as

]“f(x):%fox(x—r)“_lf(r) dr, a>0, a€R 3)

@] =0

Here we mention some essential properties of the operator/®.
IffeCs 62-1,ay=0p>—

D] f ) =]* f(x)
@] f(x) = J¥]*f (x)
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2.2 Definition The fractional order derivative of f(t) in the Caputo sense is defined as

DELF(O)] = IPeD"(F (O] = {ﬁf‘:a ST @ e e @
DI f(t) if a=n, neN
Where T'(.) denotes the Gamma function.
For the Caputo fractional derivative, we have the following properties:
(i)D*K = 0, Kisaconstant
@D)Df [af () + bg(®)] = aD{f(t) + bDi g (t)
0 y<a-1
(iii)D*tY ={T(y + Dt “ v a1
Iy —a+1)
Where 'a’ and ‘b’ are the constants.
2.3 Definition The modified Riemann-Liouville derivative of order 'y 'is defined as
I o €= )T F(O) — f()]de y <0
DIF® = ey €=U (6) - F(0)]d6, 0<y<1 (5)
\[For-m @)™, m<y<m+1 mz=1

wheref: R — R is a continuous function.
Below we list some significant properties for the modified Riemann-Liouville derivatives:
(i)D} (a) = 0,y > 0,a is a constant

(i)D{ [cf ()] = D! f(t),y > 0

r(1+p)
r+g-v)

OD{[f(®©g®] = [D{ f®)]g® + fFO[D{ g(®)]
W)D![f(h(®))] = fu(h(©))D h(t)
3. Fractional Reduced Differential Transform Method (FRDTM)

(ii)D tP =

thY, B>y >0

Consider the function of two variables v(x, t)and assume that it can be expressed as v (x,t) = h(x)g(t). Based
on the properties of one-dimensional differential transform, the function v(x, t)[15, 16, 17] can be represented as

v(x,t) = Nizo Vie(x) t* (6)
where V;, (x) is called the t-dimensional spectrum function of v(x, t)and « is the fractional order.

3.1 Definition If v(x, t) is continuously differentiable with respect to t and xin the domain of interest, then

[(D{l)kv(x, t)le=0 )

1
I'(ka+1)

Vi (x) =
where (DF)* = DEDf ... DF, the k-times Caputo fractional order derivative

3.2 Definition The differential inverse transform of V, (x) is defined as

v(x, t) = Tio Vi (Ot (8)
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We combine the Eqgns. (6) and (7), we can write

— " 1 aka ka
v(x,t) = T2, (m [atkav(x, t)]t= 0) t 0<a<l 9)

We summarized some standard theorems of fractional reduced differential transform [19, 20].

3.3 Properties If V,(x) is the fractional reduced differential transform of the function v(x, t) then
DOIfv(x, t) =af(x,t) £ bg(x,t) then Vi, (x) = aF(x) £ bGi(x), a,b€ER
(IDIfv(x,t) = f(x, t)g(x, t) then Ve (x) = X, —o Fie, (X)Gpep, (x)

(i) If v(x, t) = x™f(x,t) then Vi (x) = x™F, (x)

OF(x)

. of (x,t)
(iv) If v(x, £) = 22 then V, (x) = Z£

Fa(k+n)+1
I'(ak+1)

) fv(x, t) = D*u(x,t) then V, (x) = Fiin(x), meN, a€R

4. Basic Idea of the Modified FRDTM

To illustrate the basic idea of the Modified FRDTM, we consider the following fractional differential equation:
Di*v(x,t) + Llv(x,t)] + N[v(x,t)] = h(x,t), t >0, xR, (n—1)<a<n (10)
Subject to the initial condition

v(x,0) = Vo(x) = f(x)

na

where D** = 9 Llv(x,t)] a general linear term, N{v(x, t)] a general nonlinear term and h(x, t) isa source

T atna’

function.

First, we operate a complex fractional transformation [18] to reduce the fractional differential equation (6) into an
ordinary differential equation.

DFv(x,t) + Llv(x,t)] + N[v(x,t)] = h(x,t), T>0, x€el (11)

In the above equation, the nonlinear functionN[v(x, t)]is approximated by the series of Adomian polynomials
Ai[14], k=0,1,2,...

N[v(x,t)] = Xg=o Ak (12)
Now substituting the Egns.(8) and (12 ) in to the Eqn.(6) and operating Riemann-Liouville integral to both sides

of the Egn.(6) we have
> Vk(x)t"“] -
k=0

J® Eizo Hi () t*e (13)

whereH,, (x) is the differential transform ofh(x, t).

D @tk = £ - JR
k=0

Z Ak(VOI Vl! o Vk)tka] -
k=0

We now successfully obtain thefollowing recursive relation
Vo(x) = f(x)and
Viear () = =R [Vie() o] = A () e — Hy () e, 2 0 (14)

Fa(k+1)+1 ra(k+1)+1 ra(k+1)+1’
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which leads to the determination of the components V; (x), V,(x), ... ..
Finally, summing these components, we obtain the approximate solution v(x, t) by the truncated series

v(x,t) = lim 0, (x,t) = X570V, ()P4 (15)

where p is the order of convergence of the above series

5. Numerical Simulation

To test the efficiency and simplicity of the present numerical method, we consider the fractional order Rosenau-
Hyman equation.

DV = VUyyy + VU + 30, Vs (16)
Withthe initial the condition

— __8 2 (%
v(x,0) =Vy(x) = —gk cos (Z) a7

According to MFRDTM, we can construct the following recursive relation for the Eqgn. (16),

Vri () = Tka +1 4
k) e Da+ 17k

WhereAk = vkvkxxx + Ukvkx + 3vkkaxx

The first few Adomian polynomials are given by

Ay = VgV, T VoVo, + 3V, V0o,

Ay = vy, T VoVe,,, T V1V, + VoVy, + 301,00, + 300,V

Ay = VgV, T V1V, T VoV, + VaVo, + V1V1, + VoV, + 3V, Vg, + 3V, V1, + 300,02,
A3 = V3V, F VUV, H V1V, F VoV, T VsV, VoV vV, Ve, +
3v3,V0,,t3V,, V1, + 3V, 0, + 30,03,

Ay =040, + V3V, F V2V F V1Vs F VoVs F VsV FV3V, + V05 +

V1 Vs, + VoVy, + 304V, + 303, 0y, + 3V, vy 30,03+ 3V, Vs,

Utilizing the recursive relation together with Adomian polynomials, we can obtain the transformed components
Vi, Vs, .. ...of the series solution as follows:

vV, = —Ekzsin (E) !

3 2/T1l+a«a

V, = k;cos (;) ﬁ

Vs = kE‘Lsin (;) Iq-l-;b’a
V,=— ’I—:cos (g) mimand so on.
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Table 1. Approximate solution of R.H.Eqgn.obtained by eighth iterate MFRDTM method for a« = 0.5,

0.7, 1 and absolute error when k = 0.5

X t a=0.5 a=0.7 a=1 Absolute Error
0.4 —1.312145142 —1.310730062 —1.304979051 1.11022 x 10715
n/ 0.6 —1.314290777 —1.316024886 —1.313795239 2.57571 x 10714
4
0.8 —1.314814942 —1.319101011 —1.320993942 3.42392 x 10713
1.0 —1.314313275 —1.320505078 —1.326557167 2.51865 x 1012
0.4 —1.209148762 —1.19933163 —1.182778052 1.11022 x 10715
n/ 0.6 —1.221190375 —1.216132042 —1.203223634 490718 x 10714
2
0.8 —1.230135568 —1.229789775 —1.222328102 6.51700 x 10713
1.0 —1.237086178 —1.241129521 —1.240043707 4.82902 x 10712
0.4 —1.023564402 —1.006839786 —0.982003772 1.44328 x 10715
3n/ 0.6 —1.043668766 —1.032588076 —1.010966094 6.50590 x 1014
4 0.8 —1.05967316 —1.054748150 —1.039067846 8.61533 x 10713
1.0 —1.073017881 —1.074297201 —1.066238790 6.40398 x 10712
0.4 —0.783645596 —0.762559668 —0.733222277 1.99840 x 10715
0.6 —0.808752004 —0.793335893 —0.766292088 7.06101 x 1014
Vs
0.8 —0.829379077 —0.820624637 —0.799112887 9.40358 x 10713
1.0 —0.847086295 —0.845406827 —0.831602639 7.00417 x 10712

Table 2. Approximate solution of R.H.Eqgn.obtained by eighth iterate MFRDTM method for & = 0.5,

0.7, 1 and absolute error when k = 1

X t a=0.5 a=0.7 a=1 Absolute Error
04 —2.618349506 —2.641343393 —2.641987884 6.84785 x 10713
- 0.6 —2.595556740 —2.634428866 —2.660942021 2.56505 x 10711
/4 0.8 —2.567622713 —2.614945895 —2.666631130 3.32512 x 10710
1.0 —2.537051191 —2.586159127 —2.658998367 2.40917 x 107°°
04 —2.501283616 —2.489937857 —2.444656205 1.30295 x 10712
- 0.6 —2.518006617 —2.531191158 —2.512652335 495639 x 10711
/2 0.8 —2.522358280 —2.555200131 —2.568865099 6.52883 x 10710
1.0 —2.519102459 —2.566139834 —2.612732835 4.80971 x 1079
371/4 04 —2.206407883 —2.162449766 —2.078135693 1.72306 x 10712
0.6 —2.260100725 —2.245590455 —2.184822022 6.59317 x 107!
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0.8 —2.296075577 —2.309436224 —2.283000557 8.73859 x 10710
1.0 —2.320631127 —2.358436926 —2.371690326 6.47801 x 10799
04 —1.778614463 —1.708736214 —1.598225774 1.88071 x 10712
0.6 —1.861102899 —1.821106874 —1.727360275 7.22626 x 1071
" 0.8 —1.923224095 —1.915069499 —1.852557788 9.61798 x 10710
1.0 —1.971852655 —1.994671288 —1.972567377 7.16010 x 1079
6. Conclusion

We presented an approximate analytical method to obtain the numerical solution of the R-H Equation using the
Modified fractional reduced differential transform method. Numerical computations are performed using the
Mathematicapackage. From the test results, we observed that the present techniquegives the solution in the form
of a rapidlyconvergent series withoutperturbation or discretization.
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