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Abstract: 

Second-order nonlinear mass-spring finite element time-dependent systems occurring in science and engineering 

are considered which generally do not have closed-form solutions and are solved using explicit incremental semi-

analytical numerical solution procedures for nonlinear multiple-degree-of-freedom systems. Higher-order 

equivalent differential equations are derived to enable subsequent values of vectors to be updated using explicit 

Taylor series expansions. As the time step tends to zero, the values of displacement and velocity are exact in the 

Taylor series expansions involving as many higher-order derivatives as necessary. The ratio test is done for both 

the displacement and velocity Taylor series, to automatically adjust the size of time increments to ensure the 

algorithm's convergency, accuracy and stability. A linear system of two degrees of freedom was initially solved to 

illustrate how to extend the methods to deal with multiple degrees of freedom systems using matrices and vectors, 

typically obtained in finite element methods. The incremental semi-analytical solution procedures for nonlinear 

multiple-degree-of-freedom systems may be used to check results generated by implicit iterative procedures. 

Further applications of the semi-analytical procedures to time-dependent systems may be extended to time-

independent systems that are differentiable in independent variables, such as partial differential equations with 

many independent variables. 
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1 Introduction 

The study of natural sciences uses experimentation and observation to understand, describe, and predict thenatural 

world. It includes the study of many subjects, such as biology, chemistry, physics, astronomy, and earthscience. 

Integral and differential equations are formulated which are usually nonlinear. Such system equationsinclude the 

van der Pol equation, Lorenz equations, and Schoedinger equations in quantumphysics. The aims andobjectives 

of this study are to accurately solve nonlinear differential equations arising from the mathematicaltheories that 

describe and predict the natural world, where closed-form solutions are not possible, but linearisedequations and 

iterative solution procedures are usually employed. 

This article gives details of robust semi-analytical numerical solution procedures for some nonlinear mass-spring 

finite element time-dependent systems occurring in science and engineering which generally do not have closed-

form solutions. Higher-order equivalent differential equations are derived to enable subsequent values of vectors 

to be updated using explicit Taylor series expansions. As the time step tends to zero, the values of displacement 

and velocity are exact in the Taylor series expansions involving as many higher-order derivatives as necessary. 

The ratio test is done for both the displacement and velocity Taylor series, to automatically adjust the size of time 

increments to ensure the algorithm's convergency, accuracy and stability. A linear system of two degrees of 

freedom is initially solved to illustrate how to extend the methods to deal with multiple degrees of freedom systems 
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using matrices and vectors, typically obtained in finite element methods. Starting by acknowledging the early 

remarkable contributions of the Newmark trapezoidal scheme [1], which possessed limited accuracy and stability 

characteristics, that was used for time-integration of nonlinear finite element analysis of solids and structures, to 

improve solution procedures, such as the improved numerical dissipation of Hilber et. al. [2], consistent tangent 

operators of Simo and Taylor [3], time-stepping schemes of Wood [4], simple second-order accurate implicit 

integration schemes of Bathe et. al. [5], and finite element methods of Zienkiewicz et. al. [6]. More contributions 

on convergence, stability and accuracy are cited in subsequent sections. 

1.1 Implicit schemes 

Zienkiewicz et. al. [6] introduced an implicit generalized Newmark integration scheme from the truncated Taylor 

series expansion of the displacement function 𝑢 and its derivatives, as follows: 

𝑢𝑛+1 = 𝑢𝑛 + ∆𝑡𝑢̇𝑛 + ⋯ +
∆𝑡𝑝

𝑝!
𝑢𝑛

(𝑝)
+ 𝛽𝑝

∆𝑡𝑝

𝑝!
(𝑢𝑛+1

(𝑝)
− 𝑢𝑛

(𝑝)
) 

𝑢̇𝑛+1 = 𝑢̇𝑛 + ∆𝑡𝑢̈𝑛 + ⋯ +
∆𝑡𝑝−1

(𝑝 − 1)!
𝑢𝑛

(𝑝)
+ 𝛽𝑝−1

∆𝑡𝑝−1

(𝑝 − 1)!
(𝑢𝑛+1

(𝑝)
− 𝑢𝑛

(𝑝)
) 

(1) 

𝑢𝑛+1
(𝑝−1)

= 𝑢𝑛
(𝑝−1)

+ ∆𝑡𝑢𝑛
(𝑝)

+ 𝛽1∆𝑡 (𝑢𝑛+1
(𝑝)

− 𝑢𝑛
(𝑝)

) 

where𝑢, 𝑢̇, 𝑢̈aredisplacement,velocityandacceleration.Setting𝑝 = 2formstheequivalentNewmarkscheme[1] 

which consists of two recurrence equations of displacement and velocity, and when combined with the governing 

second-order differential equation (4), gives three simultaneous equations in three unknowns. Carrying on from 

these contributions, a forward-backward difference time-integration scheme was developed by Kaunda [7], using 

the Taylor series, for solutions of nonlinear oscillatory systems, giving birth to more accurate implicit generalized 

one-step multiple-value algorithms [7],[8], repeated here for convenience.  

𝑠𝑛+1 + ∑ [
(−1)𝑘

𝑘!
[𝛾1𝑘Δ𝑡

𝑑

𝑑𝑡
]

𝑘

𝑠𝑛+1]
𝑘=𝑝
𝑘=1 = 𝑠∗ = 𝑠𝑛 + ∑ [

1

𝑘!
[𝛽1𝑘Δ𝑡

𝑑

𝑑𝑡
]

𝑘

𝑠𝑛]
𝑘=𝑝
𝑘=1                   

(2) 

𝑣𝑛+1 + ∑ [
(−1)𝑘

𝑘!
[𝛾2𝑘Δ𝑡

𝑑

𝑑𝑡
]

𝑘

𝑣𝑛+1]

𝑘=𝑝−1

𝑘=1

= 𝑣∗ = 𝑣𝑛 + ∑ [
1

𝑘!
[𝛽2𝑘Δ𝑡

𝑑

𝑑𝑡
]

𝑘

𝑣𝑛]

𝑘=𝑝−1

𝑘=1

 

(3) 

where 𝑠 = 𝑥 denotes displacement, 𝑣 = 𝑥̇ ̇ denotes velocity and 𝑎 = 𝑥̈ ̈ represents acceleration. Equations (2) and 

(3) provide the necessary extra equations to solve the differential equation (4) such that there are three equations 

in three unknowns. The implicit algorithms presented in [6],[7],[8], permitted to determine and optimize stability 

and accuracy of the recurrence equations by choosing appropriate tuneable integration parameters, 𝛽𝑝, 𝛾𝑖𝑘 , 𝛽𝑖𝑘. 

Numerical dissipation or algorithmic damping, mostly desired in finite element methods, may also be incorporated 

to filter out high-frequency responses, as considered in Hilber et. al. [2].  

1.2 Explicit schemes 

With supporting literature [6]-[18], on convergence, stability and accuracy, new semi-analytical procedures are 

now proposed for nonlinear multiple-degree-of-freedom systems with emphasis on reliable explicit incremental 

solution procedures, as opposed to iterative schemes, which turn out to be fast and accurate and depend on only 

differentiation (for continuously differentiable functions), as opposed to integration (usually difficult for nonlinear 

equations), to solve nonlinear differential equations. As a result, the stability of the algorithms is conditional and 

for small increments, convergence, stability and accuracy are simultaneously achieved. The explicit algorithm 

being focused in this paper is a subset of the implicit algorithms given by equations (1), (2) and (3), where 𝛽𝑝 =
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0, 𝛾𝑖𝑘 = 0, 𝛽𝑖𝑘 = 0. Semi-analytical methods for the n-th order governing differential equations use higher-order 

equivalent differential equations. For example, the second-order differential equation (4), only displacement and 

velocity recurrence equations (2) and (3), which are associated with prescribed initial conditions, are updated 

using the Taylor series. 

1.3 Article organization 

The article is organized as follows: Section 2 develops the solution of nonlinear vector-valued oscillatory systems. 

Sections 3.1 and 3.2develop a two-degrees-of-freedom system, and extension to multiple-degree-of-freedom 

systems using mass, damping and stiffness matrices such as those obtained from finite element methods. Section 

4 presents and discusses the results, and Section 5 draws conclusions. 

2 Nonlinear vector-valued oscillatory system 

The differential equation describing a nonlinear vector-valued oscillatory system may have the general form  

𝑥̈ + 𝑓(𝑥̇, 𝑥, 𝑡) = 0; 𝑥(0) = 𝑥0; 𝑥̇(0) = 𝑥̇0; 𝑡 = 𝑡0(4) 

The superposed dot on 𝑥, represents differentiation concerning time, 𝑡, and double-dot represents the second 

derivative. Closed-form solutions of most nonlinear systems do not exist. A semi-analytical solution of non-linear 

mass-spring finite element time-dependent systems occurring in science and engineering, which  generally do not 

have closed-form solutions, is now considered.  

2.1 Semi-analytical procedures for nonlinear vector-valued differential equations 

For the above equations, in general homogeneous or non-homogeneous forms, the solution procedure is carried 

out as follows: 

𝑥̈ = 𝑓(𝑥̇, 𝑥, 𝑡); 𝑥(0) = 𝑥0; 𝑥̇(0) = 𝑥̇0 

𝑥 =
𝑑

𝑑𝑡
𝑓(𝑥̇, 𝑥, 𝑡) = 𝑓̇(𝑥̈, 𝑥̇, 𝑥, 𝑡) 

𝑥(4) =
𝑑2

𝑑𝑡2
𝑓(𝑥̇, 𝑥, 𝑡) = 𝑓̈(𝑥, 𝑥̈, 𝑥̇, 𝑥, 𝑡) 

(5) 

𝑥(5) =
𝑑3

𝑑𝑡3
𝑓(𝑥̇, 𝑥, 𝑡) = 𝑓(𝑥(4), 𝑥, 𝑥̈, 𝑥̇, 𝑥, 𝑡) 

⋯ 

𝑥(𝑁) =
𝑑(𝑁−2)

𝑑𝑡(𝑁−2)
𝑓(𝑥̇, 𝑥, 𝑡) 

These form higher-order equivalent differential equations [9] which are used in the solution of the waveform of 

the nonlinear vectors. Further higher-order derivatives may be necessary to increase accuracy, for 𝑁 → ∞. For the 

implicit iterative algorithms involving higher order derivatives exceeding the order of the differential equation, 

initial conditions of the vectors are determined at the beginning of each iteration, where the higher order equivalent 

differential equations come in handy. In contrast, for explicit algorithms, subsequent vector values of 

displacements, 𝑥𝑖, and velocities, 𝑥̇𝑖,aredetermined and updated recursively from the explicit Taylor series 

expansions  

𝑥𝑛+1 = 𝑥𝑛 + ∆𝑡𝑥̇𝑛 +
∆𝑡2

2!
𝑥̈𝑛 +

∆𝑡3

3!
𝑥𝑛 + ⋯ ;  𝑛 = (0,1,2,3, … ) 

(6) 
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𝑥̇𝑛+1 = 𝑥̇𝑛 + ∆𝑡𝑥̈𝑛 +
∆𝑡2

2!
𝑥𝑛 +

∆𝑡3

3!
𝑥(4) + ⋯ ;  𝑛 = (0,1,2,3, … ) 

where the analytically obtained acceleration and higher-order derivatives are evaluated from the higher-order 

equivalent differential equations (5). This is the first time in the procedure where errors are committed in the 

algorithm because of terminating the Taylor series at an upper summation limit of 𝑁 ≪ ∞.. Then, for each of the 

above equations, the solution procedure recursively proceeds as follows: 

𝑥̈ = 𝑓(𝑥̇, 𝑥, 𝑡);  𝑥(𝑛) = 𝑥𝑛; 𝑥̇(𝑛) = 𝑥̇𝑛;  𝑛 = (0,1,2,3, … ) 

(7) 

⋯ 

𝑥(𝑁) =
𝑑(𝑁−2)

𝑑𝑡(𝑁−2)
𝑓(𝑥̇, 𝑥, 𝑡) 

where the newly accepted sub-initial conditions are 𝑥(𝑛) = 𝑥𝑛; 𝑥̇(𝑛) = 𝑥̇𝑛;  𝑛 = (1,2,3, … ). Note that 

finitedifference methods, such as central difference, backward difference or implicit schemes, are not used in the 

above algorithm. The procedure is therefore an explicit incremental forward difference method using the Taylor 

series updates. Clearly, as the time-step, ∆𝑡 → 0, the values of displacement and velocity are exact in the Taylor 

series expansions involving as many higher-order derivatives as necessary, for 𝑁 → ∞. The explicit algorithm 

convergence, stability, accuracy and speed depend on the size of the time step and the number of higher-order 

derivatives included. For most practical examples, this is not a setback when compared with implicit algorithms. 

The convergence may be tested using the ratio test for both the displacement and velocity Taylor series which 

have to be updated. The stability is conditional depending on the size of the time step. 

2.2 Practical termination of and error in recurrence equations 

Ideally, the recurrence equations should be terminated at 𝑁 → ∞. Practically, for the most accurate results  

𝑥𝑛+1 = 𝑥𝑛 + ∆𝑡𝑥̇𝑛 +
∆𝑡2

2!
𝑥̈𝑛 +

∆𝑡3

3!
𝑥𝑛 + ⋯ +

∆𝑡𝑁

𝑁!
𝑥𝜁𝑥

(𝑁)
;   𝜁𝑥 = 𝑛 (1 +

1

𝑁 + 1
) ∈ [𝑛, 𝑛 + 1] 

(8) 

𝑥̇𝑛+1 = 𝑥̇𝑛 + ∆𝑡𝑥̈𝑛 +
∆𝑡2

2!
𝑥𝑛 + ⋯ +

∆𝑡𝑁−1

(𝑁 − 1)!
𝑥𝜁𝑥̇

(𝑁)
;   𝜁𝑥̇ = 𝑛 (1 +

1

𝑁
) ∈ [𝑛, 𝑛 + 1] 

where 𝜁𝑥 represents the point where the last term is evaluated, at time, 𝑡𝜁forthedisplacement, and similarly, 𝜁𝑥̇, for 

velocity, and 𝑁is the highest power of ∆t for each series, respectively. The best estimate for 𝜁 is elegantly derived 

in Irons et. al. [14]. The errors for displacement and velocity recurrence equations are, respectively, of order 

O(
∆𝑡𝑁

𝑁!
𝑥𝜁𝑥

(𝑁)
)and O(

∆𝑡𝑁−1

(𝑁−1)!
𝑥𝜁𝑥̇

(𝑁)
). 

2.3 Radius of convergence and adaptive time stepping 

The mathematical ratio test may be defined [18] for a power series cantered at 𝑥 = 𝑎 by the radius of convergence 

lim
𝑛→∞

𝑅 =
|𝐶𝑛|

|𝐶𝑛+1|
 

(9) 

In this article, the following algorithm was adopted:  

lim
𝑛→∞

𝑅1 =
|𝐶𝑛−1|

|𝐶𝑛|
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(10) 

lim
𝑛→∞

𝑅2 =
|𝐶𝑛−2|

|𝐶𝑛−1|
 

lim
𝑛→∞

𝑅3 =
|𝐶𝑛−3|

|𝐶𝑛−2|
 

Then, the radius of convergence adopted was, 𝑅 = 𝑚𝑖𝑛(𝑅1, 𝑅2, 𝑅3, , … ).  

1. If 𝑅 = ∞, then the series converges for all 𝑥 

2. If0 < 𝑅 < ∞,thentheseriesconvergesforall⌊𝑥 − 𝑎⌋ < 𝑅 

3. If 𝑅 = 0, then the series converges only for 𝑥 = 𝑎 

The ratio test needs to be done for both the displacement and velocity Taylor series, to automatically adjust the 

size of time increments to ensure convergency, accuracy and stability of the algorithm, for example, monitoring 

that the increment, ∆𝑡 < 𝑅. If the time step is prescribed at the beginning of the algorithm such that ∆𝑡 ≥ 𝑅, the 

ratio test could be applied to adjust the time step appropriately, especially in the first-time increment. Repeating 

the ratio test after every time step may increase the overall execution time and cost of the algorithm. Some adaptive 

time stepping has been used by Y. Wang et. al. [19].  

3 Vector-valued differential functionals 

3.1 Two-degrees-of-freedom systems (2-dof) 

A linear second-order  

 

 system subjected to a history of loading𝑓𝑖(𝑡), initial conditions of displacement 𝑥𝑖(0), and velocity 𝑥̇𝑖(0) forms 

a vector-valued function, and is shown in Figure 1.  

 

Figure 1: 2-dof: Mass-spring-damper system 

Hence 

[
𝑚11 𝑚12

𝑚21 𝑚22
] {

𝑥̈1

𝑥̈2
} + [

𝑏11 𝑏12

𝑏21 𝑏22
] {

𝑥̇1

𝑥̇2
} + [

𝑘11 𝑘
𝑘21 𝑘

] {
𝑥1

𝑥2
} = {

𝑓1

𝑓2
} 



Tuijin Jishu/Journal of Propulsion Technology 
ISSN: 1001-4055 
Vol. 45 No. 4 (2024) 
___________________________________________________________________ 

2388 
 
 

(11) 

which is differentiated once concerning time to get a third-order differential equation, and so on, to form higher-

order equivalent differential equations [9]. 

[
𝑚11 𝑚12

𝑚21 𝑚22
] {

𝑥1

𝑥2
} + [

𝑏11 𝑏12

𝑏21 𝑏22
] {

𝑥̈1

𝑥̈2
} + [

𝑘11 𝑘
𝑘21 𝑘

] {
𝑥̇1

𝑥̇2
} = {

𝑓1̇

𝑓2̇

} 

(12) 

After differentiating the third-order differential equation concerning time a fourth-order system is obtained, and 

further differentiation results in higher-order differential equations  

𝑑𝑁

𝑑𝑡𝑁
{[

𝑚11 𝑚12

𝑚21 𝑚22
] {

𝑥̈1

𝑥̈2
} + [

𝑏11 𝑏12

𝑏21 𝑏22
] {

𝑥̇1

𝑥̇2
} + [

𝑘11 𝑘
𝑘21 𝑘

] {
𝑥1

𝑥2
} = {

𝑓1

𝑓2
}} 

(13) 

These form higher-order equivalent differential equations [9] which are used in the solution of the waveform of 

the nonlinear vectors, using the semi-analytical procedures considered in Section 2.1. Further higher-order 

derivatives may be necessary to increase accuracy. The eigenvalues 𝜆, are determined from the eigenvalue 

problem or eigenproblem 

𝐴𝑣 = 𝜆𝑣                                                                                                                                                                                  

(14) 

Where 

𝐴 = [
𝑚11 𝑚12

𝑚21 𝑚22
]

−1

[
𝑘11 𝑘
𝑘21 𝑘

] 

(15) 

and the corresponding natural frequencies are𝜔𝑖 = 𝜆
𝑖

1

2 , and 𝑣 is the eigenvector of the eigenproblem. Vector values 

of displacements, 𝑥𝑖, and velocities, 𝑥̇𝑖 are then determined and updated recursively from the explicit Taylor series 

expansions 

𝑥𝑛+1 = 𝑥𝑛 + ∆𝑡𝑥̇𝑛 +
∆𝑡2

2!
𝑥̈𝑛 +

∆𝑡3

3!
𝑥𝑛 + ⋯ ;  𝑛 = (0,1,2,3, … ) 

(16) 

𝑥̇𝑛+1 = 𝑥̇𝑛 + ∆𝑡𝑥̈𝑛 +
∆𝑡2

2!
𝑥𝑛 +

∆𝑡3

3!
𝑥(4) + ⋯ ;  𝑛 = (0,1,2,3, … ) 

where the exact vector values of acceleration and higher-order derivatives are evaluated from the higher-order 

equivalent differential equation. 

3.2 Multiple-degrees-of-freedom systems (m-dof) 

Vector-valued functions can be handled easily using matrices and vectors, such as mass matrices, 𝑀, damping 

matrices, 𝐵, and stiffness matrices, 𝐾, for example, obtained from finite-element methods such that 

[M]{a}  +  [B]{v}  +  [K]{s}  =  {f}            (17) 

where {𝑎}, {𝑣}, {𝑠}, {𝑓}, are acceleration, velocity, displacement, and force vectors, respectively, and where the 

exact values of higher-order derivatives are evaluated analytically from the higher-order equivalent differential 

equations.  
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4 Discussion of results 

Figure 2 shows a graph of displacement vs time for a linear two-degrees-of-freedom system taken from Thomson 

[16]with: 𝑚11 = 𝑚1 = 100,𝑚12 = 𝑚21 = 0,𝑚22 = 𝑚2 = 25;𝑏11 = 𝑏12 = 𝑏21 = 𝑏22 = 0;𝑘11 = 54000,𝑘12 =

𝑘21 = −18000, 𝑘22 = 18000; 𝑓1 = 0,𝑓2 = 400.  

 

Figure 2: Graph of displacement vs time: 2-dof system 

The eigenvalues were found as, 𝜆1 = 258.9, with the corresponding fundamental natural frequency, 𝜔1 = 16.09 

rad/s, and 𝜆2 = 1001.1 with the corresponding natural frequency, 𝜔2 = 31.6 rad/s. The results given in Thomson 

[16] are confirmed. 

A finite element example was taken from Y. Wang et. al. [19], which was a multiple-degree-of-freedom mass-

spring system with up to 1500 nonlinear springs, whose details are shown in Table 1. 

 

The system governing equations are given by those in Section 3.2, where each element of the spring matrix, K, is 

a nonlinear function of displacement, 𝑢𝑖, as shown in the table, and the system does not have damping. 
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Figure 3 shows a graph of displacement vs time for a 10-dof system solved using a fixed time step of ∆𝑡 = 1𝑒 −

03(s). The CPU time was 2.197(s) for the duration of simulation of 10π(s) or 5 periodic cycles. The corresponding 

phase trajectory is shown in Figure 4, with a duration of 2π(s).  

 

Figure 3: Graph of displacement vs time: 10-dof system 

 

Figure 4: Graph of velocity vs displacement 
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Figure 5: Graph of displacement vs time: 100-dof system 

 given a prescribed ∆𝑡 = 1𝑒 − 02(s); with an adaptive time stepping scheme used was based on the radius of 

convergence and ratio test, 281.5945e − 06 ≤ ∆t ≤ 1e − 03(s). The CPU time was 254.616(s), whereas for a fixed 

∆t = 1e − 3(s), the CPU time was reduced to 69.094(s), for the same duration of simulation of 10π(s). The 

corresponding phase trajectory is shown in Figure 6, with a duration of 2π(s). 
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Figure 6: Graph of velocity vs displacement: 100-dof system 

 

Figure 7: Graph of displacement vs time: 200-dof system 

 given a prescribed ∆𝑡 = 1𝑒 − 02(s); with adaptive time stepping scheme used, 281.5945e − 06 ≤ ∆t ≤ 1e − 03(s). 

The CPU time was 965.138(s), whereas a CPU time reduced to 258.764(s) for a fixed ∆𝑡 = 1𝑒 − 03(s), for the 

same duration of simulation of 10π(s). The corresponding phase trajectory is shown in Figure 8, with a duration 

of 6π(s).  

 

Figure 8: Graph of velocity vs displacement: 200-dof system 

Figure 9 shows a graph of displacement vs time for: a 500-dof system; prescribed ∆𝑡 = 1𝑒 − 02(s); with adaptive 

time stepping scheme used, 281.5945e − 06 ≤ ∆t ≤ 1e − 03(s). The CPU time was, 5380.668(s), and for a fixed 

∆𝑡 = 1𝑒 − 03(s), the CPU time reduced to 1478.304(s), for the same duration of simulation of 10π(s). The graph 

shows that steady-state conditions were not reached, and the displacement kept on increasing in this duration. 
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Figure 9: Graph of displacement vs time: 500-dof system 

Figure 10 shows a graph of displacement vs time for a 1000-dof system solved using a fixed time step of ∆𝑡 =

1𝑒 − 03(s). The CPU time was 6485.748(s). The graph shows that steady-state conditions were reached within 

the duration of simulation of 10π(s).  

 

Figure 10: Graph of displacement vs time: 1000-dof system 

While the CPU time is much greater than that of Y. Wang et. al. [19] having a time-step of 0.01(s), the graphs 

showed the same results, supporting the proof of concept for this incremental explicit method of solution which 

inevitably requires small time steps for both accuracy and stability. The theoretical truncation errors for 

displacement and velocity Taylor series recurrence equations used, were respectively, of O(
∆𝑡𝑁

𝑁!
𝑥𝜁𝑥

(𝑁)
)and 

O(
∆𝑡𝑁−1

(𝑁−1)!
𝑥𝜁𝑥̇

(𝑁)
), with 𝑁 = 10. The graphs revealed that for a small number of degrees of freedom, such as 10-dof, 

the response is sinusoidal, whereas for many degrees of freedom, for example, greater than 100-dof, the responses 
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departed from the sinusoidal curves. For the examples solved here, the fixed prescribed time step resulted in less 

CPU time as shown in Table 2, mostly because, for the adaptable time stepping implemented, far smaller time 

steps were applied automatically, based on the radius of convergence and ratio test for optimal accuracy and 

stability. 

 

5 Conclusions 

Second order, 𝑥̈ = 𝑓(𝑥̇, 𝑥, 𝑡), nonlinear mass-spring finite element time-dependent systems have been solved 

using explicit incremental semi-analytical solutions for nonlinear multiple-degree-of-freedom systems. Higher 

order equivalent differential equations were formulated and then subsequent values of vectors were updated us- 

ing explicit Taylor series expansions. Clearly, as the time-step, ∆𝑡 → 0, the values of displacement and velocity 

are exact in the Taylor series expansions involving as many higher order derivatives as necessary. The ratio test 

was done for both the displacement and velocity Taylor series, for the purpose of automatically adjusting the size 

of time increments to ensure convergency, accuracy and stability of the algorithm, for example, monitoring that 

the increment, ∆𝑡 < 𝑅. If the time step was prescribed at the beginning of the algorithm such that ∆𝑡 ≥ 𝑅, the 

ratio test could be applied to adjust the time-step appropriately. 

A linear system of two-degrees-of-freedom, taken from Thomson [16], was initially solved to illustrate how to 

extend the methods to deal with multiple-degrees-of-freedom systems using matrices and vectors, which are 

typically obtained in finite element methods, as shown in Table 1 with corresponding results shown in Figures 3, 

5, 7, 9 and 10. 

The incremental semi-analytical solution procedures for nonlinear multiple-degree-of-freedom systems may be 

used to check results generated by implicit iterative procedures. It is recommended that further applications of the 

semi-analytical procedures to time-dependent systems be extended to time-independent systems that are 

differentiable in terms of independent variables, such as partial differential equations having many independent 

variables.  
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