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Abstract: - The investigation focuses onset of convection in a horizontal layer saturated nanofuid with magnetic 

field. The non-dimensional governing equations is solved using the normal mode technique, resulting in an 

eigenvalue problem. The eigenvalue problem for linear instability is solved using the one-term Galerkin approach 

which gives the analytical expression for Rayleigh number. Neutral curves are drawn for both steady and 

oscillatory instability for all physical parameters. 
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1. Introduction 

Due to its practical uses in a range of geological processes, including liquid re-injection, mi-gration, subsurface 

nuclear waste disposal, and drying processes, double-diffusive convective phenomena is a topic of great interest 

for researchers [1-2]. The double-diffusive instability of a Newtonian fluid in a horizontal layer has also been 

studied in great detail. Likewise, numerous materials exhibit non-Newtonian behaviour, such as paints, mud, clay, 

honey, blood, and hair gel, making non-Newtonian fluid convective events intriguing [3]. Numerous models, 

including the power-law model, the Maxwell model, the Jeffrey model, and other viscoplastic fluid models, are 

available in the literature to analyse the characteristics of non-Newtonian fluids [3]. 

The beginning of convection in a porous layer saturated with Oldroyd fluid was covered by Malashetty and Swamy 

[4]. It was possible to derive the analytical conditions for finite amplitude, steady, and stable convections. Using 

the thermal non-equilibrium effect, Malashetty et al. [5] and Kumar and Bhadauria [6] extended the same problem. 

The double-diffusive convective motion of a Maxwell liquid was studied by Awad et al. [7]. They come to the 

conclusion that the critical Rayleigh number falls by using the Maxwell parameter as a stand-in. Wang and Tan 

[8] investigated convective instability for non-Newtonian liquid in a porous layer using a modified Maxwell-

Darcy model. Internally heated double diffusive instability in a non-Newtonian form of coupled stress fluid 

flooded porous layer was examined by Gaikwad and Kouser [9]. They found that the internal Rayleigh number 

stabilises the system. 

Gaikwad and Dhanraj [10] investigated the effects of anisotropy and internal heating on the binary Maxwell liquid 

in a permeable layer. on a recent work, Yadav et al. [11] discovered the chemical reaction effect on the 

thermosolutal internally heated convection of a Maxwell fluid in a porous layer. They found that the Damkohler 

number has distinct effects on oscillatory and steady convection. 

The current paper examines the beginning of magneto convection in a nanofluid. We write fundamental equations 

in section 2. Linear instability is covered in Section 3. The following parts provide the results and conclusions.  

2.Mathematical formulation  
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Consider a heated, infinitely thin, horizontal layer of nanofluid with thickness ′d′ that is con fined by the planes z 

= 0 and z = d. It is assumed that each boundary wall is impermeable and has perfect heat conductivity. The 

volumetric fraction φ and temperature T of nanoparticles are assumed to be T0 and φ0 at z = 0 and T1 and φ1 at z 

= d, respectively (T0 > T1). The assumed reference temperature is T1. The governing equations are: 

                                                              ∇ ⋅ 𝐕 = 0,                                                                                                            (1) 

              ρ0 (
∂𝐕

∂t
+ (𝐕 ⋅ ∇)𝐕) = −∇P + σ1(𝐕 × B0 êz) × B0 êz 

                                                               +[ϕρp + (1 − ϕ)ρ0(1 − β(T − T1))]𝐠,                                                  (2)   

              (
∂

∂t
+ (𝐕 ⋅ ∇))ϕ = DB∇

2ϕ +
DT

T1
∇2T,                                                                                                       (3)  

              ρc (
∂

∂t
+ (𝐕 ⋅ ∇)) T = κT∇

2T + ρpcp [DB∇ϕ ⋅ ∇T +
DT

T1
∇T ⋅ ∇T].                                                             (4) 

were 

{
 
 
 
 
 
 

 
 
 
 
 
 
𝐕 − velocity of nanofluid;                                       cp − nanofluid specific heat ;

μ − Coefficient of fluid viscosity;                           ρf − density of base fluid ;
T − temperature of nanofluid;                               ρ − Density ;
T1 − reference temperature;                                  P − Pressure ;
ρp − nanoparticle density;                                      ρ0 − reference density;

ϕ − volumetric fraction of nanoparticles;          t − time ;
hp − specific enthalpy of the nanoparticle;      𝐠 − the accelaration due to gravity

eẑ = (0,0,1) − unit vector along the vertical axis  ;

. β − thermal expansion coefficient  ;
κT − thermal conductivity of nanofluid;  
DT − thermophoretic diffusion coefficient of nanoparticles;
DB − Brownian diffusion coefficient of nanoparticles.

 

                                                       

Subject to the boundary conditions 

                                                 
𝐕 = 0,   T = 1,   ϕ = 0  at  z = 0,
𝐕 = 0,   T = 0,   ϕ = 1  at  z = 1.

}                                                                       (5)     

The following non-dimensional parameters are introduced: 

  (x′, y′, z′) =
1

d
(x, y, z),        t′ =

αt

d2
,  P′ =

d2P

μα
, 

 (u′, v′, w′) =
d

α
(u, v,w),  T′ =

T−T1

T0−T1
, ϕ′ =

ϕ−ϕ0

ϕ1−ϕ0
. 

    where     α =
1

ρC
. 

The non-dimensional form of Eqs. (1), (2), (3) and (4) are 

                                                  ∇′ ⋅ 𝐕′ = 0,                                                                                                           (6) 

1

Pr
(
∂𝐕′

∂t′
+ (𝐕′ ⋅ ∇′)𝐕′) = ∇′P′ + ∇′2𝐕′ − Rm eẑ + RTT′ eẑ − Rnϕ′ eẑ 

                                                                                             +Ha2[(𝐕′ × êz) × êz],                                             (7) 

                     (
∂

∂t′
+ (𝐕′ ⋅ ∇′)) ϕ′ =

NA

Le
∇′2T′ +

1

Le
∇′2ϕ′,                                                                                       (8) 

                (
∂

∂t′
+ (𝐕′ ⋅ ∇′)) T′ = ∇′2T′ +

NB

Le
(∇′T′ ⋅ ∇′ϕ′) +

NANB

Le
(∇′T′ ⋅ ∇′T′).                                                  (9) 
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where 

{
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 RT =

ρ0gβd
3(T0 − T1)

μα
− Rayleigh number;

Rn =
(ρp − ρf0)(ϕ1 − ϕ0)gd

3

μα
− Concentration Rayleigh number;

Rm =
[ρpϕ0 + ρf0(1 − ϕ0)]gd

3

μα
− Basic density Rayleigh number ;

NA =
DT(T0 − T1)

DBT1(ϕ1 − ϕ0)
− Modified diffusivity ratio;

NB =
ρpCP

ρC
(ϕ1 − ϕ0) − Modified particle density increment  ;

Ha2 =
σ1B0

2d2

μ
− Hartmann number ;       

 Le =
α

DB
−  Lewis number  ;              Pr =

ν

α
− Prandtl number.

 

 

2.1 Basic State 

It is assumed that the basic state of the nanofluid is time independent and is described by 

                                               𝐕b = 0,  ϕb = 0,  Tb = 1 − z.                                                                               (10) 

For small disturbances onto the basic state, we assume that 

  𝐕′ = 𝐕b + 𝐕,       P′ = Pb + P,          T′ = Tb + T,          ϕ
′ = ϕb + ϕ.                                                        (11) 

 

3. Linear stability analysis 

By substituting Eq. (11) into Eqs. (14)-(17), we obtain 

                                                       𝛻 ⋅ 𝐕 = 0,                                                                                                      (12) 

      
1

𝑃𝑟

𝜕𝐕

𝜕𝑡
= 𝛻𝑃 + 𝛻2𝐕 − 𝑅𝑚 𝑒𝑧̂ + 𝑅𝑇𝑇 𝑒𝑧̂ − 𝑅𝑛𝜙 𝑒𝑧̂ + 𝐻𝑎

2[(𝐕 × 𝑒̂𝑧) × 𝑒̂𝑧],                                                    (13)              

                                        
𝜕𝑇

𝜕𝑡
−𝑤 = 𝛻2𝑇,                                                                                                             (14)   

                                     
𝜕𝜙

𝜕𝑡
=

1

𝐿𝑒
𝛻2𝜙 +

𝑁𝐴

𝐿𝑒
𝛻2𝑇.                                                                                                   (15)                                                             

By Taking the third components of curl of (13) and curl of curl of (13), we obtain, 

                                   (
1

Pr

∂

∂t
− ∇2 + 𝐻𝑎2)ωz = 0,                                                                                                   

(
1

Pr

∂

∂t
∇2 − ∇4 + +Ha2

∂2

∂z2
)ω − RT∇h

2T + Rn∇h
2ϕ = 0,                                                                                     (17)        

                                     ω − (
∂

∂t
− ∇2) = 0,                                                                                                         (18)  

                              
NA

Le
∇2T + (

∂

∂t
−

1

Le
∇2)ϕ = 0.                                                                                                 (19)  

Where                     ∇h
2=

∂2

∂x2
+

∂2

∂y2
       

 And                      ∇2=
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
 

Let us introduce the normal modes by writing the perturbations in the form of 

                           (ω, T, ϕ) = (ω, T, ϕ)Sin(nπz)ei(lx+my)+σt.                                                                               (20) 

Substituting the above normal mode solution into the equations (17)- (19), then we get 

                       (
σ

Pr
δ2 − δ4 + Ha2π2)ω − RTq

2T + Rnq2ϕ = 0,                                                                        (21) 
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                                 ω − (σ + δ2)T = 0,                                                                                                            (22) 

                          
NA

Le
δ2T + (σ +

1

Le
δ2)T = 0.                                                                                                       (23) 

Where                         {
q2 = l2 +m2 is the wave number,
σ = ιω,

δ2 = π2 + q2.
 

Requiring zero determinant of the above system, one obtains, 

                        𝑅𝑇 =
(𝛿2+𝑖𝜔)(𝑃𝑟𝛿4+𝜄𝑖𝜔+𝜋2𝑃𝑟𝐻𝑎2)

𝑃𝑟𝑞2
−

𝑅𝑛𝛿2𝑁𝐴

𝛿2+𝑖𝐿𝑒𝜔
                                                                                  (24) 

3.1. stationary convection 

Substituting 𝜔= 0 in Eq. (24), then we get 

                                             RTsc =
δ6+π2δ2Ha2

q2
− RnNA                                                                                    (25) 

For Newtonian liquids, in the absence of magnetic effect, the above formula becomes 

                                                       RTsc =
δ6

q2
                                                                                                       (26)  

which is well agreed with Chandrasekhar [1]. 

3.2. Oscillatory 

To find the 𝑅𝑇 for oscillatory convection we find the roots of imaginary part of Rayleigh number. On substituting 

roots into the real part of Rayleigh number we get the 𝑅𝑇 for oscillatory convection. 

                        RToc =
δ2(δ4+Le2ω2)(Prδ4−ω2+π2PrHa2)−Prq2Rnδ4NA

Prq2(δ4+Le2ω2)
                                                                      (27) 

    where 

                                        ω2 =
δ2(−δ2−

LePrq2RnNA
(1+Pr)δ4+π2Pr𝐻𝑎2

)

Le2
                                                                                       (28) 

 

4. Results and Conclusions 

 

 
Figure 1: Neutral curves for the different values of 𝐇𝐚𝟐 and for the fixed values of 𝐍𝐀 = 𝟐, 𝐏𝐫 = 𝟓, 𝐑𝐧 =

𝟎. 𝟐, 𝐋𝐞 = 𝟏𝟎 at the onset of stationary convection. 
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Figure 2: Neutral curves for the different values of NA and for the fixed values of 𝐇𝐚𝟐 = 𝟐, 𝐏𝐫 = 𝟏𝟎,𝐑𝐧 =

𝟎. 𝟐, 𝐋𝐞 = 𝟏𝟎 at the onset of stationary convection. 

 

Figure 3: Neutral curves for the different values of 𝐑𝐧 and for the fixed values of 𝐍𝐀 = 𝟐,𝐏𝐫 = 𝟖,𝐇𝐚𝟐 =
𝟐, 𝐋𝐞 = 𝟏𝟎 at the onset of stationary convection. 

 

Figure 4: Neutral curves for the different values of 𝐇𝐚𝟐 and for the fixed values of 𝐍𝐀 = 𝟓, 𝐏𝐫 = 𝟏𝟎, 𝐑𝐧 =
𝟎. 𝟐, 𝐋𝐞 = 𝟓 at the onset of stationary convection. 
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Figure 5: Neutral curves for the different values of 𝐏𝐫 and for the fixed values of 𝐍𝐀 = 𝟒,𝐇𝐚
𝟐 = 𝟐, 𝐑𝐧 =

𝟎. 𝟐, 𝐋𝐞 = 𝟓 at the onset of stationary convection. 

 

Figure 6: Neutral curves for the different values of 𝐋𝐞 and for the fixed values of 𝐍𝐀 = 𝟓, 𝐏𝐫 = 𝟏𝟎, 𝐑𝐧 =
𝟎. 𝟐, 𝐇𝐚𝟐 = 𝟒 at the onset of stationary convection. 

 

Figure 7: Neutral curves for the different values of 𝐑𝐧 and for the fixed values of 𝐍𝐀 = 𝟐,𝐏𝐫 = 𝟐,𝐇𝐚𝟐 =
𝟐, 𝐋𝐞 = 𝟑 at the onset of stationary convection. 
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Figure 8: Neutral curves for the different values of 𝐍𝐀 and for the fixed values of 𝐇𝐚𝟐 = 𝟒, 𝐏𝐫 = 𝟐, 𝐑𝐧 =
𝟎. 𝟐, 𝐋𝐞 = 𝟓 at the onset of stationary convection. 

It is investigated how a magnetic field affects the convective instability of a Casson nanofluid. To our 

knowledge, no prior research has been done on the current issue. The Rayleigh number (𝑅𝑇), Hartmann number 

(𝐻𝑎2), Lewis number (𝐿𝑒), Prandtl number (𝑃𝑟), Modified diffusivity ratio (NA)and Concentration Rayleigh 

number (𝑅𝑛) are the non-dimension controlling parameters of the start of the convection. Using the Galerkin 

approach, the eigenvalue problem for linear stability analysis is resolved, providing the analytical equation for the 

Rayleigh number. For all physical parameters, neutral curves are constructed for both steady and oscillatory 

instability. 

Figs. 1-3 shows the neutral curves in the plane (𝑅𝑇𝑠𝑐 , 𝑞). Lewis number and Prandtl number does not 

show any effect on the neutral curves in the plane (𝑅𝑇𝑠𝑐, 𝑞), because, 𝑅𝑇𝑠𝑐 is independent of 𝑃𝑟 and 𝐿𝑒. In Fig. 1, 

neutral curves have been shown for distinct values of 𝐻𝑎2 at the onset of stationary convection. From Fig. 1, it is 

observed that as 𝐻𝑎2 increases the neutral curves move upward monotonically and indicating that instability in 

the system. Hence, an enhance value of 𝐻𝑎2 has a stabilizing effect in the system. Neutral curves for distinct 

values of the NA and 𝑅𝑛 in the plane (𝑅𝑇𝑠𝑐 , 𝑞) have been shown in Figs. 2 and 3 respectively. According to these, 

as NA and 𝑅𝑛 increases critical 𝑅𝑇𝑠𝑐 decreases. Means that, NA and 𝑅𝑛 have a destabilizing effect in the system. 

  The neutral curves at the onset of oscillatory convection have shown in Figs. 4-8 for the distinct values 

of physical parameters. A stabilizing effect of 𝐻𝑎2 on oscillatory convection can be observed in Fig. 4. The same 

behavior is observed in stationary convection. Effect of 𝑃𝑟 on 𝑅𝑇𝑜𝑐 has shown in Fig. 5. Critical 𝑅𝑇𝑠𝑐 decreases as 

𝑃𝑟 increases, indicating that an enhance in the value of 𝑃𝑟 advances the onset of convection. In Fig. 6, neutral 

curves have been shown for distinct values of 𝐿𝑒 at the onset of oscillatory convection. It is shown that the Critical 

𝑅𝑇𝑠𝑐 is a decreasing function of 𝐿𝑒. Hence, 𝐿𝑒 has destabilizing effect on the flow. Neutral curves for distinct 

values of the 𝑁𝑎 and 𝑅𝑛 in the plane (𝑅𝑇𝑜𝑐 , 𝑞) have been shown in Figs. 7 and 8 respectively. According to these, 

as 𝑁𝑎 and 𝑅𝑛 increases critical 𝑅𝑇𝑠𝑐 increases. Means that, NA and 𝑅𝑛 have the stabilizing effect in the system. 

4.1. Conclusions 

This work considers the convective instability problem of a nanofluid with magnetic effects with linear 

evaluations. The Galerkin method is used to study the linear theory. Remarkably, there is no appreciable effect of 

the Prandtl number Pr and Lewis number Le on stationary convection. However, the Hartmann number Ha2 

stabilize the flow whereas the, concentration Rayleigh number Rn and modified diffusivity ratio NA destabilizes 

the flow. However, in oscillatory convection, it is discovered that the concentration Rayleigh number Rn, modified 

diffusivity ratio NA, Lewis number Le and Prandtl Pr destabilize the flow while and Hartmann number Ha2 

stabilize it.  
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