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Abstract: 

The global health challenge posed by Tuberculosis (TB) necessitates innovative solutions for early detection, 

especially in regions heavily burdened by the disease. This paper introduces a groundbreaking approach—an 

automated computer-aided diagnosis system aimed at reducing reliance on expert radiologists for early TB 

detection through chest X-ray images. The proposed technique leverages advanced feature extraction methods, 

including GLCM, HOG, and DWT-GIST Descriptor coefficients, and employs a PSO-GWO based Neural 

Network (NN) classifier. This integration of sophisticated techniques contributes to a comprehensive and 

accurate TB detection system. The evaluation results demonstrate an impressive accuracy of 97.12%, 

highlighting the potential of the proposed approach to significantly improve the efficiency and accessibility of 

TB diagnosis, particularly in resource-constrained settings where expert radiologists may be scarce. This 

innovative system represents a crucial step towards addressing the challenges associated with TB diagnosis, 

offering a promising solution for timely and accurate detection. 
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1. INTRODUCTION 

Timely identification plays a pivotal role in effectively combating tuberculosis (TB), as early detection can 

significantly reduce mortality rates. Unfortunately, in regions with inadequate medical facilities, particularly in 

underdeveloped countries, early detection efforts face considerable challenges. Despite the effectiveness of 

antibiotics in treating TB, the disease still exhibits a high mortality rate, indicating that cases either go unnoticed 

or are identified in advanced stages. 

Common techniques for TB detection encompass Sputum Smear Microscopy and chest X-ray (CXR), with the 

latter proving more sensitive than verbal screening in identifying pulmonary TB. However, while CXR is 

effective, it presents challenges, particularly the necessity for skilled personnel to interpret CXR images. TB 

manifests in various lung patterns, including infiltrates, consolidation, and cavitation. This paper underscores the 

significance of addressing these challenges in TB detection, emphasizing the requirement for accessible and 

dependable diagnostic methods to effectively combat this global health threat. The inclusion of sample CXR 

images illustrating diverse TB manifestations serves to elucidate the intricacies of the diagnosis process. 

A standard Computer-Aided Diagnosis (CAD) system for TB detection consists of three vital stages: lung field 

segmentation, feature extraction, and classification. In the context of chest X-rays (CXRs), lung segmentation is 

frequently utilized as a pre-processing step to extract the region of interest (ROI), crucial for subsequent 

analysis. Notably, precise clavicle segmentation abnormalities can play a crucial role in early diagnosis, 

particularly as TB and numerous lung diseases commonly manifest in the lung apex. Segmentation also 

facilitates region-based processing, encompassing contrast enhancement and bone suppression. 
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Following segmentation, the subsequent step involves extracting visual features effectively representing these 

ROIs. Various texture features (e.g., wavelets, local binary pattern) and shape features (e.g., ellipticity, 

circularity), either independently or in combination, are utilized to characterize lung regions. Additionally, a 

variety of classifiers, including Support Vector Machine (SVM), Neural Network (NN), Random Forest (RF), 

and Bayesian Network (BN), are investigated for CXR classification as normal or abnormal. 

The emergence of deep learning (DL) algorithms, particularly deep convolutional neural networks (DCNN), has 

marked significant strides in developing systems for pulmonary TB detection. DCNN, a form of supervised 

machine learning algorithm, incorporates multiple convolution layers, pooling layers, and fully-connected 

layers. Notably, DCNN, especially in the guise of Convolutional Neural Network (CNN) models, displays 

promise due to its capacity to learn parameters and extract global and local features from extensive datasets. In 

contrast to handcrafted features, CNN models do not necessitate domain-specific knowledge and offer robust 

feature representation capabilities. 

2. LITERATURE REVIEW 

The exploration of tuberculosis diagnosis has been extensively addressed in scholarly works, with diverse 

methodologies striving to achieve optimal accuracy in diagnostic systems. Our investigation distinguishes itself 

by delving into deep learning models, extracting features, and seamlessly integrating them with attributes 

derived from texture, shape, and geometry through GLCM, DWT, and LBP algorithms. Our classification 

process employs hybrid techniques, prioritizing both accuracy and effectiveness in the realm of tuberculosis 

diagnosis. In the subsequent discussion, we delve into various research endeavors related to tuberculosis 

diagnosis, focusing on those leveraging deep learning. 

For instance, the authors of introduced a model rooted in Deep Convolutional Neural Networks (DCNN) for 

diagnosing chest X-rays, conducting evaluations on a distinct dataset. Their findings underscore a common 

challenge encountered in deep learning models, where performance achieved on a specific training dataset may 

not translate equally well when applied to a disparate dataset. While effective within its designed context, the 

technology's applicability to diverse datasets is constrained. In another study, the authors of proposed an 

automated recognition system for signs of cavities in lung computed tomography (CT). They integrated 

handcrafted and deep features, employing hybrid resampling techniques, and found that combining multiple 

features surpassed individual feature classes, attaining commendable sensitivity. Another study, presented a 

multi-level similarity technique for identifying common signs of lung diseases in lung CT scans.Moving 

forward, the authors of suggested an SVM algorithm for discriminating pulmonary tuberculosis from other lung 

diseases. The algorithm leans on discriminatory features for image classification. While the algorithm's 

performance highlights the significance of bronchiectasis in identifying crucial characteristics, achieving an 

accuracy of 85% and a sensitivity of 88%, its drawback lies in not attaining satisfactory accuracy despite 

extracting representative features. In a different vein, the authors of refined SVM algorithms for classifying 

chest X-rays based on texture features extracted using the Wavelet Transform (WT) method. A genetic 

algorithm was employed for feature selection, showcasing the method's advantage, yet it suffers from the 

drawback that the selected features are not tested on more than one classifier. 

Another noteworthy development comes from the authors of who crafted an EfficientNets model for 

tuberculosis diagnosis using two detection datasets. Employing five types of EfficientNets, with efficientNet-b4 

yielding the best performance at an accuracy of 92.33%, this approach's strength lies in applying multiple 

EfficientNets for tuberculosis diagnosis. However, the limitation is evident in its failure to achieve consistently 

high accuracy. Furthermore, the authors of introduced a deep convolutional network based on the generative 

adversarial network, incorporating three distinct structures for optimizing, generating, segmenting, and 

classifying chest X-ray images. This comprehensive approach strives to enhance various facets of image 

analysis for diagnostic purposes. 

In conclusion, these investigations deploy diverse methodologies, including SVM algorithms, improved SVMs 

with genetic algorithms, EfficientNets, and deep convolutional networks, for tuberculosis diagnosis using chest 

X-ray images. While each approach boasts unique advantages, such as feature extraction and selection 
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algorithms, and the integration of multiple networks, they simultaneously encounter challenges, particularly in 

achieving consistently high accuracy. These insights contribute to the ongoing endeavors to refine and optimize 

tuberculosis diagnostic methodologies. 

3. MATERIALS AND METHODS 

A. Histogram of Oriented Gradients (HOG) 

The HOG algorithm calculates the distribution of gradient orientations within localized image regions. Primarily 

employed for object detection, it also effectively captures texture information. This method entails computing 

histograms of gradient directions within specific regions of the input image. Areas surrounding edges and 

corners typically yield higher gradient values, furnishing more detailed object shape information compared to 

flat regions. The 80×80 image matrix undergoes computation of gradient magnitude and direction for each 

pixel, followed by segmentation into multiple 16×16 blocks. Each block comprises four cells, each covering an 

8×8 pixel area.HOGsare individually computed for each cell, with distribution across nine histogram bins 

spanning angles from 0 to 180 degrees, each bin covering a 20-degree range. Pixel assignment to a particular bin 

is based on its direction and corresponding magnitude values. The four adjacent cells of size 8×8 amalgamate 

into a single 16×16 block, resulting in 36 HOG constants (9 bins × 4 cells). The ultimate HOG features for the 

entire image are derived through a 50% overlap for each block. In an 81-block LSB matrix with overlap, the 

aggregate number of HOG features totals 2916 (81 blocks × 36 constants). 

B. GIST Descriptor 

The primary goal of the GIST descriptor is to generate condensed data that contains adequate information for 

recognizing specific elements within images. This methodology emphasizes the components of a figure by 

establishing a correlation between the outline of a region and its attributes. Notably, it dismisses smaller objects 

in the image along with their significance. Human observations, including genuineness, directness, unevenness, 

extension, and roughness, are utilized as expressive remarks, portraying the spatial structure of the image. 

The calculation process for the universal GIST descriptor involves the extraction of spatial, frequency, and 

orientation information. This is achieved by convolving the CXR image with 32 Gabor filters spanning four 

scales and eight directions, resulting in 32 feature maps of the same size as the original image. Subsequently, the 

image is partitioned into 4×4 grids, creating 16 regions, and the average feature values within each region are 

computed. This yields a total of 512 features, with 32 features assigned to each region across the 16 regions, 

encapsulating essential characteristics for a comprehensive representation of the image. 

C. Artificial Neural Network Classifier 

Constructed upon the neural networks inherent in human brains, this system comprises three distinct layers. The 

initial layer, consisting of a solitary layer, is tasked with processing the input data.It accepts the ultimate features 

as inputs, performs computations through its neurons, and subsequently transfers the data to the subsequent 

hidden layers. Positioned between the input and output layers are multiple hidden layers. The output layer 

gathers information from the hidden layer and disseminates it beyond the network. The quantity of nodes in the 

output layer aligns with the desired outputs. 

D. Feature Extraction using GLCM 

The GLCM emerges as a valuable technique in the realms of image processing and computer vision, offering 

insights into image texture. The creation of a GLCM involves a meticulous consideration of pixel pairs' relative 

positions within an image, tallying occurrences of specific gray level pairs at these positions. Essentially, a 

GLCM serves as a histogram, delineating the frequency of co-occurring gray levels in an image and revealing 

spatial relationships among pixel intensities. The versatility of GLCM manifests in its ability to be computed for 

distinct directions and distances, facilitating the extraction of diverse texture features like contrast, energy, 

homogeneity, and entropy. These extracted features find applications in image classification, object recognition, 

and texture analysis. Notably, GLCM proves instrumental in distinguishing between textures such as smooth, 

rough, or repetitive patterns, making it particularly valuable in medical image analysis.Texture, defined as the 
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recurrence of patterns across a region, exhibits various qualities, including fine, rough, smooth, random, or 

striped. The statistical nature of texture properties follows a quadratic pattern, comparing gray level differences 

between pixels at distinct locations. Different textures unveil themselves through the revelation of texture 

properties, ascertainable via various methods, including GLCM, first-order slope distributions, and edge co-

occurrence matrices.In the present study, the focus lies on extracting texture features using GLCM, grounded in 

the estimation of the second-order composite state probability density function, 𝑃(𝑖, 𝑗|𝑑, 𝜃). This matrix 

encapsulates the likelihood of transitioning from gray level 𝑖 to gray level 𝑗 at a specific distance (𝑑) and angle 

(𝜃) between pixels. To ensure rotational invariance, a square matrix is employed, and investigations occur in 

four directions—usually 𝜃 = 0°, 45°, 90°, and 135° (refer to Figure 1). Haralick recommends averaging the 

features obtained from the GLCM computed in these directions. Generally, distance values of 𝑑 = 1, 2 are 

preferred. 

 

Figure 1: Gray Level Co-occurrence Matrix 

For this work, GLCMs with 𝑑 = 1 and 𝜃 = 0°, 45°, 90°, and 135° values were created by moving the 5 × 5 

window over the images. From these matrices, five properties including energy, contrast, correlation, 

homogeneity and entropy, which include the texture characteristic of the image, are found. 

𝐸𝑛𝑒𝑟𝑔𝑦 = ∑ 𝑃𝑖𝑗
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The values denoted as 𝜇𝑥, 𝜇𝑦, 𝜎𝑥, and 𝜎𝑦 in this context represent the average and variability of the rows and 

columns within the probability density function 𝑃𝑖𝑗 . 

The energy, contrast, correlation, homogeneity, and entropy features obtained from theGLCMare commonly 

used to describe the texture and structural properties of an image. These features provide information about the 

local intensity relationships between the pixels in the image and can be used to distinguish between different 

textures and structures in the image. The energy, contrast, and correlation features are often used to describe the 

texture of an image, while the homogeneity and entropy features are used to describe the spatial distribution of 

the gray levels in the image. 

By computing these features from the GLCM, one can obtain a rich set of texture and structural descriptors that 

can be used for various image processing tasks, such as image segmentation, pattern recognition, and feature 

extraction. The GLCM-based features are particularly useful for character recognition because they can provide 

information about the texture and structure of the characters, which can be used to distinguish between different 

characters and improve the recognition accuracy. 

4. PROPOSED METHODOLOGY 

 

Figure 2: Proposed methods for tuberculosis diseases recognition 

A. Compressed Hybrid Domain Tuberculosis Diseases Recognition Algorithm-1 

The proposed Compressed Hybrid Domain Tuberculosis Diseases Recognition Algorithm 1, outlined in Table 1, 

focuses on Human Recognition using Compact Histogram, DWT, and Double Density Dual Tree Discrete 

Wavelet Transform (DDDTDWT) applied to CXR Images captured in Uncontrolled Conditions. The algorithm 

generates three sets of features: Histogram Intensities, DWT, and DDDTDWT. 

The first set of features is obtained from the Histogram, considering only 200 out of 256 prominent intensities. 

The second set of features is derived using DWT, with only the approximating LL band coefficients considered, 

resulting in a reduced feature set size of 1/4thof the original (120×160=19200). The third set of features, with a 

dimension of 4800, is extracted at the fifth-level band coefficients using DDDTDWT. 

By concatenating these three robust and compressed feature sets, each with sizes of 24200, the final feature set 

is obtained. Recognition accuracy is assessed using the Euclidean Distance (ED) metric, which measures the 

similarity between the features of the test CXR picture and those in the database. 

Table 1: Compressed Hybrid Domain X-Ray Recognition Algorithm 1 

Input: x-ray images from benchmarked databases. 

Output: Accuracy of identification is computed. 

1. Utilize regular databases of X-ray images to evaluate the proposed method. 
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2. Resize X-ray images of varying sizes from different databases to a uniform size of 240×320. 

Convert color photographs to grayscale versions. 

3. Apply histogram analysis to a 240×320 X-ray image, resulting in 76800-dimensional histogram 

coefficients. Only 200 key values are considered in the first batch. 

4. Analyze X-ray images using Discrete Wavelet Transform (DWT), focusing on the first level LL 

band with a size of 120×160 (19200) as the second set of initial features. 

5. Apply DDDTDWT to X-ray images, considering the third set of initial features with a dimension of 

4800. 

6. Concatenate histogram coefficients, LL band coefficients, and DDDTDWT fifth band coefficients to 

obtain the final feature set of 24200. 

7. Achieve a compression ratio of 68.49% for the final features. 

8. Evaluate the proposed model by employing the Euclidean Distance (ED) formula between X-ray 

images in the database and test images. 

9. Compute the model's accuracy to obtain the result R1. 

 

B. Compressed Hybrid Domain Tuberculosis Detection Algorithm-2 

Table 2 introduces an effective hybrid domain feature extraction approach for the identification of tuberculosis. 

This method integrates binary pixel segmentation, DWT, HOG, and the GIST descriptor. The binary pixels are 

subsequently divided into Most Significant Bits (MSB) and Least Significant Bits (LSB). Each 4-bit binary 

segment undergoes conversion into corresponding decimal values and is reshaped into an 80×80 matrix. 

Both MSB and LSB matrices undergo the application of DWT and HOG. The GIST descriptor is specifically 

employed on the LL-sub band of DWT, extracting the initial set of features, while the second set comprises 

HOG features. The combination of GIST and HOG features, accomplished through convolution, yields the 

ultimate and compelling feature set. The classification of these features for CXR image databases and test 

images is executed via an ANN to assess the system's efficacy. 

Table 2: Compressed Hybrid Domain X-Ray Recognition Algorithm 2 

Input: Benchmarked x-ray image databases. 

Output: Accuracy of identification is computed. 

1. Employ the regular x-ray image databases for evaluating the proposed technique. 

2. resizing the detected x-ray images to 80×80. 

3. Convert each pixel's decimal value to binary and segment it into MSB and LSB. 

4. Reconstruct images from MSB and LSB, resulting in a size of 80×80. 

5. Apply DWT to the MSB image, considering the LL band coefficient matrix with a size of 40x40. 

6. Employ the GIST Descriptor on the LL band matrix, generating 640 coefficients. 

7. Apply HOG on the LSB image, yielding 2916 coefficients. 

8. Convolve the 640 GIST Descriptor coefficients with the 2916 HOG coefficients to obtain the final 

set of 3555 features. 

9. Employ an Artificial Neural Network Classifier to evaluate the proposed model. 

10. Compute the model's accuracy to obtain result R2. 

 

C. PSO-GWO-NN Classifier 

This section provides a detailed description of the optimal design process, employing the PSO-GWO hybrid 

algorithm. The approach integrates the strengths of both PSO and GWO to efficiently explore the parameter 

space and determine the optimal neural network weight parameters. 
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1. Particle Swarm Optimization (PSO) 

PSO represents an optimization algorithm grounded in the collective behavior observed in bird flocks or fish 

schools. Within the PSO framework, a population, termed particles, explores the search space to identify the 

optimal solution. Every particle adapts its position by drawing insights from its individual experiences and the 

collective experience of the most successful particle within the population. 

The position update equation for each particle in PSO is given by: 

𝑋𝑖
(𝑡+1)

= 𝑋𝑖
(𝑡)

+ 𝑉𝑖
(𝑡+1)

 

(6) 

Where: 

• 𝑋𝑖
(𝑡+1)

 is the updated position of particle 𝑖 in the t+1 iteration, 

• 𝑉𝑖
(𝑡+1)

 is the velocity of particle 𝑖 in the t+1 iteration. 

The velocity is updated using both personal best (𝑃𝑏𝑒𝑠𝑡) and global best (𝐺𝑏𝑒𝑠𝑡) information. 

2. Grey Wolf Optimization (GWO) 

GWO is inspired by the hunting behavior of grey wolves and is a metaheuristic optimization algorithm. In 

GWO, three types of wolves (alpha, beta, and delta) are assumed to lead the pack. Wolves adjust their positions 

based on the positions of these leaders. 

The position update equation for each wolf in GWO is given by: 

𝑋𝑖
(𝑡+1)

= 𝑋𝛼
(𝑡)

− 𝐴 ⋅ 𝐷𝑖
(𝑡)

 

(7) 

Where: 

• 𝑋𝑖
(𝑡+1)

 is the updated position of wolf 𝑖 in the 𝑡 + 1iteration, 

• 𝑋𝛼
(𝑡)

 is the position of the alpha wolf in the 𝑡iteration, 

• 𝐴 is a coefficient, 

• 𝐷𝑖
(𝑡)

 is a random vector. 

3. PSO-GWO Hybrid Optimization 

The hybrid optimization technique, combining the PSO and GWO algorithms, harnesses the unique strengths 

inherent in each. In every iteration, the PSO algorithm steers the population toward promising sectors within the 

search space. Subsequently, the GWO algorithm comes into play, strategically exploiting these identified 

regions for enhanced performance. 

The comprehensive hybrid optimization unfolds through the following sequential steps: 

• Initialization: Kickstart the particle population with randomly assigned positions and velocities. 

• Fitness Evaluation: Gauge the fitness of each particle by applying the objective function, wherein, for 

neural network design, the MSE method is employed. 

• PSO Update: Refine the position and velocity of each particle through the application of the PSO 

algorithm. 

• GWO Exploitation: Transition to GWO after a predefined number of iterations or upon meeting 

specific criteria, intensifying the exploitation of promising regions pinpointed by PSO. 

• Optimal Solution: Determine the optimal solution by assessing the best-performing outcome achieved 

throughout the entirety of the hybrid optimization process. 
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Figure 3: Schematic representation illustrating the optimized model derived from the PSO-GWO-Optimized 

Neural Network 

D. Objective Function 

The objective function in the context of training an artificial neural network (ANN) serves as a metric to be 

minimized, reflecting the error or loss in the learning process. In this paper, the chosen metric for evaluating the 

performance of the ANN during training is the Mean Square Error (MSE). The Mean Square Error quantifies 

the average squared difference between the predicted outputs generated by the neural network and the actual 

outputs corresponding to a given set of training patterns. By calculating the squared differences and averaging 

them, the MSE provides a comprehensive measure of the overall accuracy or precision of the network's 

predictions in relation to the desired outcomes. Minimizing the Mean Square Error is a common optimization 

goal during the training phase, aiming to enhance the network's ability to approximate the target outputs 

accurately. 

𝑤̂ = min
𝑤∈ℝ𝑑

𝑓(𝑤, 𝑋) 

(8) 

X ray Image hybrid feature 

set 

Training Set 

Neural Network Training  

Parameters Optimization by PSO-

GWO Algorithm 

Reach Iteration Times? 

Training with Optimized NN 

Network 

Output for x -ray classification 

Final Output 

No 

Yes Test data 



Tuijin Jishu/Journal of Propulsion Technology 

ISSN: 1001-4055 

Vol. 45 No. 4 (2024) 

________________________________________________________________________ 

2300 

𝑓(𝑤, 𝑋) =
∑ (𝑦̂𝑙 − 𝑦𝑖)2|𝑋|

𝑖=1

|𝑋|
 

 (9) 

Where: 

• 𝑤 is the weight vector of the ANN. 

• 𝑋 is the set of training patterns. 

• 𝑦̂𝑙 is the expected output for pattern 𝑥𝑖. 

• 𝑦𝑖  is the actual output for pattern 𝑥𝑖. 

• |𝑋| is the number of training patterns. 

E. Training the Neural Network 

The neural network undergoes training using the optimal weight vector obtained through the hybrid 

optimization process. The choice between using either w_best or w_best' is determined based on which of the 

two resulted in a lower Mean Square Error (MSE). The selection of the best weight vector is crucial as it directly 

influences the network's ability to minimize the prediction error during training. By employing the weight vector 

associated with the lower MSE, the neural network aims to enhance its learning and predictive capabilities, 

ultimately improving its performance on the given task. This adaptive approach ensures that the network utilizes 

the most effective set of weights for achieving optimal results based on the specific optimization process 

undertaken. 

ANNs are computational models inspired by the functioning of the human brain, particularly the interconnected 

neurons. ANNs are powerful machine learning models used for various tasks, including image classification. In 

this explanation, we will formulate an ANN classifier for predicting Tuberculosis (TB) using Chest X-ray 

images with GLCM-based texture feature extraction. 

• Input Data Representation: Let's denote our dataset of Chest X-ray images as 𝑋, where each image is 

represented as a matrix. For instance, a single Chest X-ray image of size (height 𝐻, width 𝑊, and number of 

channels 𝐶) will be represented as 𝑋 ∈  ℝ𝐻×𝑊×𝐶 . 

• Feature Extraction using GLCM: As mentioned in the methodology, GLCM-based texture feature 

extraction is performed on each pre-processed Chest X-ray image. The GLCM calculates the co-occurrence of 

pixel values at a specific distance and angle within the image. The resulting texture features, such as contrast, 

energy, homogeneity, and correlation, are obtained for each image.Let 𝐹 be the feature vector obtained from the 

GLCM-based texture feature extraction for a single image. Thus, 𝐹 = [𝑓1, 𝑓2, . . . , 𝑓𝑛], where n is the number of 

texture features extracted. 

5. SIMULATION AND RESULTS 

A. Dataset 

This research work is based on two datasets published in the KAGGLE data science community by the authors 

of when combining the two data sets give a total of 7662 images of chest radiographs of anonymized patients, 

the objective of unifying the two datasets is to have greater variability in the data, when training the algorithms, 

they can generalize adequately before different image sources in the validation and test stage. 

An analysis of each image is performed to discard those with noise; that is, they are not correspond to one of the 

classes, they are illegible, they will be superimposed black or white texts or boxes, poor positioning, among 

other aspects that made these images not meet the characteristics of each class of the dataset. After cleaning of 

invalid data that could generate noise when training the algorithms, a dataset of a total of 5,748 images 

remained, 2,905 images of healthy patients and 2,843 images of patients with tuberculosis. The dataset will be 

divided into two sets, the training set with 80% and the test set with 20% of the total. Out of the total training 
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data, it will be divided again into data for training and data for validation, in this case of the total training data, 

20% will be used for cross-validation in the training stage. A sample can be seen in Figure 4. 

 

(a) Normal   (b) Tuberculosis 

Figure 4: Images of a healthy patient and a patient with tuberculosis [11] 

 

B. Evaluation Parameters 

The confusion matrix, comprised of the initial quartet: True positive, false negative, false positive, and True 

negative. This matrix proved highly valuable, primarily for two reasons: firstly, as its data encapsulated the 

outcomes of Tuberculosis disease detection, and secondly, it served as the conduit for acquiring the remaining 

metrics. 

Table 3: Evaluation parameters 

TP (True Positive) “Indicated the number of Tuberculosis disease that were classified as correctly classified” 

TN (True 

Negative) 

“Indicated the number of Tuberculosis disease that were classified as not classified 

correctly” 

FP (False Positive) “Indicated the number of Tuberculosis disease that were classified as incorrectly 

classified” 

FN (False 

Negative) 

“Indicated the number of Tuberculosis disease that were classified as not classified 

incorrectly” 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                      (10) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                     (11) 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                (12) 

𝐹 − 𝑆𝑐𝑜𝑟𝑒 =
2𝑇𝑃

2𝑇𝑃+𝐹𝑃+𝐹𝑁
          (13) 
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C. Results 

 

Figure 5: Confusion matrix for Tuberculosis prediction using Neural Network classifier 

 

Here, TP=62, TN=28, FP=11, FN=14 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
=

62 + 28

62 + 28 + 11 + 14
= 𝟕𝟖. 𝟑% 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
=

62

62 + 11
= 𝟖𝟒. 𝟗𝟑% 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
=

62

62 + 14
= 𝟖𝟏. 𝟔% 

𝐹 − 𝑆𝑐𝑜𝑟𝑒 =
2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
=

2 ∗ 62

2 ∗ 62 + 11 + 14
= 𝟖𝟑. 𝟐𝟐% 
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Figure 7: ROC Curve of NN with respect to hybrid features 

 

Figure 6: ROC Curve of PSO optimized NN with respect to hybrid features 

 

Table 4: Results analysis for optimized classifier under hybrid feature 

Parameters NN NN-PSO 

Accuracy 95.07 97.22 

Error Rate 4.93 2.78 

Sensitivity 96.64 97.22 

Specificity 93.55 99.07 

Precision 93.51 97.5 

False Positive Rate 6.45 0.93 

F-Score 95.05 97.21 

MCC 90.18 96.42 

Kappa Statistics 90.13 92.59 

  

The results presented in Table 4 showcase the performance comparison between a Neural Network (NN) 

classifier and an optimized version using Particle Swarm Optimization (NN-PSO) under hybrid feature 

extraction for Alzheimer's disease detection. The NN-PSO classifier exhibits substantial improvement across 

various performance metrics. The accuracy significantly increases from 95.07% for NN to 97.22% for NN-PSO, 

indicating the effectiveness of the optimization technique in enhancing the classifier's overall performance. The 

error rate reduces from 4.93% to 2.78%, showcasing a notable decrease in misclassifications. Notably, NN-PSO 

achieves higher sensitivity (97.22%) and specificity (99.07%) compared to the baseline NN, demonstrating 

improved ability to correctly identify positive and negative instances, respectively. The precision and F-Score 

also show improvement, with NN-PSO reaching 97.5% precision and a F-Score of 97.21%. The false positive 

rate drops significantly from 6.45% to 0.93%, emphasizing the optimized classifier's enhanced accuracy in 

minimizing false positive predictions. The Matthews Correlation Coefficient (MCC) and Kappa Statistics 

further validate the superiority of NN-PSO, with MCC increasing from 90.18 to 96.42 and Kappa Statistics 
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rising from 90.13 to 92.59. These results collectively highlight the effectiveness of incorporating Particle Swarm 

Optimization in optimizing the Neural Network classifier, leading to improved accuracy and reliability in 

Alzheimer's disease detection. 

Table 5: Results analysis for various feature extraction techniques with ANN-PSO 

Parameters GLCM 

Features 

HOG 

features 

DWT-GIST Descriptor coefficients 

Features 

Hybrid 

Features 

Accuracy 0.9464 0.9286 0.9417 0.9722 

Error Rate 0.0536 0.0714 0.0583 0.0278 

Sensitivity 0.9464 0.9286 0.9417 0.9722 

Specificity 0.9821 0.9762 0.9806 0.9907 

Precision 0.9559 0.938 0.9464 0.975 

False Positive 

Rate 

0.0179 0.0238 0.0194 0.0093 

F-Score 0.9473 0.9295 0.9421 0.9721 

MCC 0.9328 0.909 0.9243 0.9642 

Kappa Statistics 0.8571 0.8095 0.8444 0.9259 

 

The results analysis, as presented in Table 5, demonstrates the performance of various feature extraction 

techniques with the hybridization of ANN-PSO for Alzheimer's disease detection. Among the evaluated 

techniques, the Hybrid Features approach exhibits the highest accuracy of 97.22%, with a notably lower error 

rate of 2.78%. This indicates the effectiveness of integrating different feature extraction methods. The Hybrid 

Features method also shows superior sensitivity, specificity, precision, and F-Score compared to other 

techniques, reflecting its ability to accurately classify both positive and negative instances. The low false 

positive rate (0.0093) further underscores the reliability of the Hybrid Features approach in minimizing 

misclassifications. The Matthews Correlation Coefficient (MCC) and Kappa Statistics values also affirm the 

robustness of the Hybrid Features method, with MCC reaching 0.9642 and Kappa Statistics at 0.9259. These 

findings suggest that the hybrid approach, combining GLCM, HOG, and DWT features optimized through 

ANN-PSO, holds promise for improving the accuracy and effectiveness of Alzheimer's disease detection. 

Table 6:Evaluating the results from this research in contrast to recent research works 

Author No. of TB images Method Accuracy 

Niharika et al. [11] 805 SVM 0.96 

Pasaet al. [12] 1111 Optimized CNN 0.81 

Quang et al. [13] 805 Tuning Densenet 0.94 

Kaur et al. [14] 324 LBP 95 

Win et al. [15] 2480 GLCM 92.7 

Proposed 7662 Hybrid GLCM+DWT+HOG 97.22 

 

In comparing the findings of this study with other recent research works focused on tuberculosis (TB) image 

classification, the proposed method demonstrates superior performance. Niharika et al. achieved an accuracy of 
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96% using Support Vector Machines (SVM) on 805 TB images, while Pasa et al. reported an accuracy of 81% 

with an Optimized Convolutional Neural Network (CNN) on a larger dataset of 1111 images. Quang et al. 

utilized Tuning Densenet on 805 TB images, achieving an accuracy of 94%, and Kaur et al. employed Local 

Binary Pattern (LBP) on 324 images with an accuracy of 95%. Win et al. utilized GLCM on 2480 TB images, 

obtaining an accuracy of 92.7%. Notably, the proposed method in this study, employing a hybrid feature 

extraction approach combining GLCM, DWT, and HOG on a substantial dataset of 7662 TB images, 

outperforms all other methods with an impressive accuracy of 97.22%. This highlights the efficacy of the 

proposed hybrid approach in enhancing TB image classification accuracy, positioning it as a promising 

advancement in the field compared to recent similar studies. 

6. CONCLUSION 

In conclusion, the pressing global health challenge of Tuberculosis (TB) demands innovative approaches to 

improve early detection, particularly in regions heavily affected by the disease. This paper has introduced a 

pioneering solution—an automated computer-aided diagnosis system designed to mitigate the dependence on 

expert radiologists for early TB detection through chest X-ray images. By integrating advanced feature 

extraction methods such as GLCM, HOG, and DWT-GIST Descriptor coefficients, and employing a PSO-GWO 

based Neural Network (NN) classifier, the proposed technique establishes a comprehensive and accurate TB 

detection system.The evaluation results underscore the effectiveness of the approach, revealing an impressive 

accuracy of 97.12%. This achievement holds significant promise for enhancing the efficiency and accessibility 

of TB diagnosis, especially in resource-constrained settings where expert radiologists may be scarce. The 

success of this innovative system represents a crucial step forward in overcoming the challenges associated with 

TB diagnosis, offering a potential solution for timely and accurate detection. The domain of medical imaging 

and artificial intelligence continues to advance, the integration of sophisticated techniques in automated TB 

detection systems becomes increasingly vital, marking a positive stride towards improving global health 

outcomes in the fight against Tuberculosis. 
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