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Abstract: - Land degradation stands as a primary environmental calamity caused by combination of human 

activities and natural factors, affecting the sustainability of soil and ecosystems in arid and semi-arid regions 

globally. This issue underscores the necessity for identifying and planning vulnerability zones of land degradation 

at various scales, ranging from regional to micro levels. In this research work, rainfall, potential evapotranspiration 

(PET), data were extracted from Terra climate, while land surface temperature (LST) were extracted from Landsat 

series using the Climate Engine platform. Additionally, the study incorporated land-use/land-cover (LULC) 

information derived from Sentinel-2A imagery, as well as data on drainage and canal systems, elevation, slope, 

and key soil properties like electrical conductivity (EC) and exchangeable sodium percentage (ESP). Among these 

parameters, EC, ESP, LULC, PET and canal system were determined to be the most significant factors, followed 

by elevation, slope, LST, drainage and precipitation. Geospatial techniques derived products, and the analytical 

hierarchy process (AHP) were employed to model the land degradation vulnerability index (LDVI). The LDVI 

was classified into three classes: highly vulnerable (7.63%), moderately vulnerable (52.12%), and slightly 

vulnerable (40.26%) to viewing the affected fields due to the land degradation factors. The typically western part 

of the main canal of the study area, characterized by low precipitation rates vulnerable to evaporation under high 

temperatures, was identified as highly vulnerable to land degradation (LD), while the eastern part of the study 

area exhibited the opposite trend. The model's applicability was validated using high resolution dataset (Google 

Earth), demonstrating its effectiveness in the study. Furthermore, the validation using the Receiver Operating 

Characteristic (ROC) curve analysis yielded an area under curve (AUC) value of 80.6%, affirming the AHP 

method's accuracy in predicting LD vulnerability fields in the study area. This study significantly contributes to 

understanding the impact of land degradation on sustainable agriculture management and development in the 

Mashi Dam Command Area (MDCA), Rajasthan (India). 

Keywords: Soil Degradation, Vulnerability study, Multi Criteria Decision Analysis, Geo-Informatics, Rajasthan 

(India). 

1. Introduction 

Land and soil play a vital role in regulating biodiversity, providing essential ecosystem services, and contributing 

to global biogeochemical cycles. It is responsible for carbon sequestration, nutrient cycling, water filtration, and 

the provision of habitats for diverse species. Land eco-systems also contribute to the overall stability and resilience 

of the planet's biosphere (Smith, P., et al. 2013). However, the aforementioned pressures, such as soil erosion, 

land degradation, deforestation, habitat loss, soil pollution, and climate change have significant impacts on 

ecosystem functioning. They contribute to the decline of species populations and disrupt the delivery of important 

ecosystem services. Studies conducted by Morgado et al. (2018) and Costantini et al. (2009) provide evidence of 

the detrimental effects of these pressures on ecosystems and their ability to provide vital services to humanity.  

Land degradation is a pressing issue, particularly developing countries as well as arid and semi-arid regions at the 

global level. Land degradation has direct implications for food security, human well-being, and development 

(Gomiero, 2016; Hossain et al., 2020; Crossland et al., 2018; Gichenje et al., 2019). It can be described as a 
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reduction in current and future land quality and productivity due to natural and/or anthropogenic factors (Beinroth 

et al., 1998). India, in particular, is facing a significant land degradation problem, with approximately 36.6% (120 

million ha.) of land affected by degradation (Maji and Lama, 2016). To fulfil the gigantic food demands of its 

expanding population globally, India is anticipated to require around 311 million tons of food grains, 

encompassing cereals and pulses, by 2030 to sustain a population of 1.43 billion. Furthermore, this demand is 

projected to further increase to 350 million tons by 2050, coinciding with an estimated population of 1.8 billion 

in India. In order to guarantee food security for the nation, it is important to give priority to the effective 

management of land degradation within the agricultural sector. The research by Kumar and Sharma (2020) 

underscores the significance of addressing this issue to ensure a sustainable and secure food supply for India. 

To address land degradation, it is essential to consider climate parameters (precipitation, and evapotranspiration), 

soil salinity and sodicity variables (EC, and ESP), terrain (elevation and slope), hydrology (drainage and canal 

system), and bio-physical variables (LST and LULC). Salinity and aridity are globally recognized as significant 

contributors to land degradation and deterioration of soil quality across various regions worldwide. These factors 

pose significant challenges to agricultural productivity, natural ecosystems, and overall land sustainability 

(Pravalie et al., 2021). Their adverse effects on soil health and fertility have been observed in diverse climatic 

zones, ranging from regional to global regions and beyond. Understanding the impacts of salinity and aridity on 

land and soil is significant for implementing effective measures to combat land degradation and promote soil 

sustainable management practices on a global and micro region (Perri et al., 2022; Thiam et al., 2021). 

Land degradation has been extensively studied using various methods, including machine learning models, GIS-

assisted spatial analyses, time-series and trend-based analyses, universal soil loss and risk assessment models, and 

MEDALUS (Moharir et al., 2023; Kundu et al., 2021; Lamat et al., 2021; Basu et al., 2021; Sinshaw et al. 2021; 

Das et al., 2023; Yousefi et al., 2022; Ambarwulan et al., 2021; Sandeep et al., 2021; Abuzaid et al., 2021). Among 

these methods, the integration of multi-criterion decision analysis (MCDA) with geo-spatial integration has 

proven to be a viable approach for assessing and analysis of degraded land. This approach allows for breaking 

down the complex problem into manageable sections, finding individual solutions, and integrating them to obtain 

the final result or solution. The Analytical Hierarchical Process (AHP), initially developed by Saaty (1980) is one 

of the multi-criterion decision analysis methods to solve intricate problems and decision making of land 

degradation vulnerability. AHP is a well-structured and widely accepted, problem solve technique that has been 

employed by many researchers across the globally in conjunction with geospatial techniques for evaluating and 

geo-visualization of land degradation vulnerability. In this context, to show of contribution and network of 

researchers all over the world from 2001 to 2023, we were used web of science database using VOS viewer 

software and which is depicted in Figure 1 and Figure 2 (Xie et al., 2023). 

 

Figure 1 VOS Viewer map of the author’s keywords addressing land degradation issues 
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Figure 2 Map depicting collaborative efforts among countries in addressing land degradation issues 

Extensive research efforts have been dedicated to studying different types of land degradation, including water 

erosion, gully erosion, and wind erosion. However, there has been a notable gap in research when it comes to 

identifying and addressing the specific challenges of salinity and aridity (rainfall and evapotranspiration) 

degradation in arid and semi-arid regions. To better understand and combat land degradation at micro level, there 

is a need for more comprehensive and integrated approaches that utilize geospatial data and advanced modeling 

techniques provided by tools like MCDA in the GIS environment. The utilization of geospatial techniques, 

including remote sensing (RS) datasets and geographical information system (GIS), has become increasingly 

prevalent and valuable in the modeling and evaluation of land degradation process. These advanced technologies 

offer robust capabilities for acquiring, analysing, and visualizing geospatial data, enabling researchers and land 

expert to gain a deeper understanding of the dynamics of land degradation processes. The integration of RS and 

GIS provides a comprehensive and efficient approach for studying the intricate interactions among various factors 

contributing to land degradation. This integration facilitates informed decision-making and the formulation of 

effective land management strategies (Abuzaid et al., 2021).  

In this study, our primary focus was on the assessment of land degradation caused by salinity/sodicity and aridity 

condition, specifically examining its consequences on soil salinity and aridity. The aims of the study were (1) to 

analyse and understand the biophysical, climate, terrain, and soil characteristics of the study area, in order to gain 

a comprehensive understanding of its environmental conditions and (2) to identify the susceptible agriculture 

fields affected by salinity/aridity at the Mashi dam command area, India using combination of AHP and geospatial 

datasets. 

2. Materials and Methods 

2.1. Study Area 

Mashi command area, is the minor irrigation project in Rajasthan, India, spans a geographical area between 

latitude 260 16' N to 260 41' N and longitude 750 65' E to 750 76' E, as depicted in Figure 3. The command area is 

located under the Chambal River Basin in the south, with the majority situated in the Banas River Basin, and 

covers an extensive area of 90.07 km2. A major part of the Mashi dam catchment lies under Jaipur, Ajmer, and 

Tonk district. It has three tributaries: Bandi, Mashi, and Sohadara, all rivers drop down in Banas River Basin. The 
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area is characterized by its semi-arid climate, with limited rainfall and high evapotranspiration rates. The region 

showcases a variety of soil types, including alluvial soils, sandy soils, and clayey soils, each with their specific 

characteristics and suitability for different crops. The soil fertility, moisture retention capacity, and nutrient 

content significantly influence the agricultural practices and cropping patterns in the area. The Mashi Dam 

command area has peneplain topography, with a ground elevation ranging from 160 to 300 meters above mean 

sea level. Hillocks can be found in isolation as well as in continuous chains in the southeast near Galod. Undulated 

topography is found near the left bank of the Mashi River (Ground water Atlas, Tonk District). 

 

Figure 3 Study site map of Mashi Dam Command Area, Rajasthan, India 
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2.2. Data Collection and Processing 

In order to gather the necessary data for this study, we were utilized ten sensitive data layers to identify the 

vulnerable area from land degradation. For this purpose, we were accessed the Copernicus open access hub 

website to download Sentinel 2A MSI image for the time period 2018 and this image was utilized to prepare land 

use/land cover (LULC) map of the study area (https://dataspace.copernicus.eu). Additionally, we obtained 

Cartosat DEM (2.5 m) from the Bhuvan, NRSC platform to collect information about the elevation and slope of 

the study area (https://bhuvan-app3.nrsc.gov.in). For the time periods from 1988 to 2018, we were acquired bio-

physical variable such as mean annual land surface temperature (LST) as well as climate parameters (mean annual 

precipitation, and mean annual evapotranspiration) using Climate engine platform. The Climate Engine platform 

facilitated the extraction of this data with the help of Google Earth engine 

(https://app.climateengine.org/climateEngine). To assessment of land degradation vulnerability in the study area, 

we analysed the specific data (precipitation, land surface temperature and evapotranspiration) over a 30-year 

period, providing a comprehensive view of long-term trends. To complement our analysis, we conducted 

laboratory experiments to obtain physical and chemical properties of soil from soil samples. These measurements 

played a significant role in understanding the soil characteristics within the study area. To ensure consistency 

across the data layers, we converted all thematic layers to the WGS 1984 datum and utilized the Universal 

Transverse Mercator (UTM) 43N coordinate system as well as for similar pattern of all datasets were convert 30 

m resolution. For a detailed overview of the datasets employed in our study, are provided in Table 1, which 

includes specifications and descriptions of the various datasets used. The comprehensive methodological 

framework and analysis for the entire study are depicted in Figure 4. 

Table 1 Datasets used in the study 

Sl. No. Variables /factors Datasets Sources/methods 

1 Soil EC Soil samples (2018) measurement in laboratory by EC meter 

2 Soil ESP Soil samples (2018) measurement in laboratory by chemical method 

3 Elevation Cartosat-1 DEM (https://bhuvan-app3.nrsc.gov.in) 

4 Slope Cartosat-1 DEM (https://bhuvan-app3.nrsc.gov.in) 

5 Mean annual rainfall Terra climate (1988-2018) (https://app.climateengine.org/climateEngine) 

6 Mean annual PET Terra climate (1988-2018) (https://app.climateengine.org/climateEngine) 

7 Mean annual LST Landsat series (1988-2018) (https://app.climateengine.org/climateEngine) 

8 LULC Sentinel 2A (2018) (https://dataspace.copernicus.eu) 

9 Drainage - Ground water Atlas, Tonk District 

10 Canal system - District irrigation report, Tonk 

EC: Electrical conductivity, ESP: Exchangeable sodium percentage, PET: Potential Evapotranspiration, LST: 

Land surface temperature, LULC: Land-use/land-cover. 

 

https://dataspace.copernicus.eu/
https://dataspace.copernicus.eu/
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Figure 4 Flowchart of the methodology followed in the study 

 

2.3. Analytical hierarchical process (AHP) and weightage assessment  

The Analytical Hierarchical Process (AHP) technique, employed within the framework of multi-criteria decision 

analysis (MCDA), is widely recognized as a prominent method for evaluating land degradation vulnerability 

(Mzuri et al., 2022). AHP is based on a pairwise comparison assessment theory, utilizing Saaty's scale of relative 

importance to compare different parameters (Table 2). By making these comparisons and assigning numerical 

values that signify the importance of one parameter relative to another within a specific criterion, we can 

systematically draw informed conclusions regarding priorities. This enables us to establish a structured approach 

in evaluating land degradation vulnerability and effectively prioritize the factors contributing to it. 

 

Table 2 Saaty’s, 1980 scale (1–9) for pairwise comparison in AHP 

Scale Scale importance 

1 Equal importance 

2 Intermediate between scale 1 and 3 

3 Moderate importance 

4 Intermediate between scale 3 and 5 

  5 Strong importance 

6 Intermediate between scale 5 and 7 

7 Very strong importance 

8 Intermediate between scale 7 and 9 
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9 Extreme importance 

 

The validation of pairwise comparisons for the different thematic layers and their subclasses was conducted using 

the consistency ratio (CR). By employing the CR, we were able to assess the consistency of the pairwise 

comparisons and ensure the reliability of the decision-making process. This validation step helps to enhance the 

accuracy and robustness of the analysis by evaluating the coherence and agreement among the compared 

parameters. The CR was calculated using the following formula (Eq. 1): 

𝐶𝑅 =
CI

RI
       (1) 

Where RI indicates the random consistency index, and Saaty’s (1980) standard is used to calculate its values 

(Table 3); CI stands for the consistency index, which was calculated using the following formula (Eq. 2): 

𝐶𝐼 =
(λmax−n)

(n−1)
       (2) 

Where λmax indicates the principal eigenvalue, and n indicates the total number of input criteria used in the LD 

assessment. 

Table 3 Saaty’s random consistency index 

N 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

RCI 0 0 0.58 0.9 1.12 1.24 1.32 1.41 1.45 1.49 1.51 1.48 1.56 1.57 

N-order of the matrix, RCI-random consistency index. 

ArcGIS utilized Inverse Distance Weighted (IDW) interpolation and Euclidean distance methods to generate 

surface maps of soil EC, ESP, drainage, and canal systems. In the spatial analysis tool of ArcGIS, the key 

determinant factors or themes influencing land degradation underwent reclassification. This involved assigning 

values (ranging from 1 to 9), or criteria, using the scale proposed by Saaty (1980). This process facilitated the 

transformation of original values into weighted values based on their respective degrees of influence on land 

degradation, as outlined in Table 3. 

During the weighted overlay analysis using the analytical hierarchical process (AHP), an acceptable threshold for 

the consistency ratio (CR) is set at ≤0.10. If the CR exceeds this threshold, it indicates an inconsistency in the 

decision-making process. In such cases, it becomes necessary to revisit the decision and identify the source of the 

inconsistency. By addressing and resolving the underlying issues, the goal is to ensure that the CR value falls 

below 0.10. This rigorous approach helps to maintain the integrity and reliability of the weighted overlay analysis, 

ensuring that the final decision reflects a consistent and robust assessment of the data. 

2.4. Land Degradation Vulnerability Index (LDVI) 

To delineate the land degradation vulnerability (LDV) areas at the command area, all thematic layers and their 

sub-categories were assigned weightages based on the Analytical Hierarchical Process (AHP) and, spatial analysis 

tool (ArcGIS software) was used to prepare geo-spatial map of LDV at the study area. The LDV map was 

generated using below equation specified in the study (Eq. 3). 

𝑳𝑫𝑽𝑰 = 𝑬𝑪 ∗ 𝟎. 𝟐𝟐 + 𝑬𝑺𝑷 ∗ 𝟎. 𝟏𝟓 + 𝑳𝑼𝑳𝑪 ∗ 𝟎. 𝟏𝟑 + 𝑺𝒍𝒐𝒑𝒆 ∗ 𝟎. 𝟏𝟐 + 𝑬𝒍𝒆𝒗𝒂𝒕𝒊𝒐𝒏 ∗ 𝟎. 𝟎𝟖 + 𝑬𝑻𝒐 ∗ 𝟎. 𝟎𝟖 +

𝑹𝒂𝒊𝒏𝒇𝒂𝒍𝒍 ∗ 𝟎. 𝟎𝟕 + 𝑳𝑺𝑻 ∗ 𝟎. 𝟎𝟓 + 𝑫𝒓𝒂𝒊𝒏𝒂𝒈𝒆 ∗ 𝟎. 𝟎𝟓 + 𝑪𝒂𝒏𝒂𝒍 ∗ 𝟎. 𝟎𝟑     (3) 

Subsequently, the LDV index was categorized into three classes, namely, slightly vulnerable, moderately 

vulnerable, and highly vulnerable utilizing reclassify tool in ArcGIS. To validate the LDV map, six randomly 

selected sites were examined using high resolution Google Earth imagery. Additionally, a receiver operating 

characteristic (ROC) curve was created based on fifty randomly selected points using Google Earth, allowing the 

estimation of the area under the curve (AUC). AUC values range between 0.5 and 1, where values closer to 1 

indicate excellent model performance, while values closer to 0.5 indicate poor prediction accuracy. Furthermore, 
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field’s shots were used to validate the LDV map generated through the AHP and weightage method, assessing the 

level of agreement between the field observations and the predicted map from the model. Through these validation 

processes, the study aimed to assess the accuracy and reliability of the LDV map, ensuring its effectiveness in 

representing the actual land degradation vulnerability within the study area. 

3. Results and Discussions 

In this analysis, we incorporated ten variables inclusive of electrical conductivity (EC), exchangeable sodium 

percentage (ESP), Elevation, Slope, Drainage, Canal system, Rainfall, Potential Evapotranspiration (PET), LULC, 

and land surface temperature (LST). The study was focused on the minor irrigation project of Mashi dam 

command area, Rajasthan, India. 

In this analysis, we incorporated ten variables inclusive of electrical conductivity (EC), exchangeable sodium 

percentage (ESP), Elevation, Slope, Drainage, Canal system, Rainfall, Potential Evapotranspiration (PET), LULC, 

and land surface temperature (LST). The study was focused on the minor irrigation project of Mashi dam 

command area, Rajasthan, India. 

3.1. Soil characteristics (EC and ESP) 

Electrical conductivity and the exchangeable sodium percentage (ESP) plays a significant role in the land 

degradation process as it serves as an indicator of soil salinity and sodicity. High EC and ESP often indicates an 

elevated concentration of dissolved salts, and the proportion of sodium ions on the exchange sites of soil particles, 

which can adversely impact particularly in relation to soil structure, fertility and overall health (Pessoa et al., 

2022). In this research work, Electrical Conductivity (EC) and Exchangeable Sodium Percentage (ESP) 

concentrations were obtained by measuring soil samples in the environmental laboratory. Subsequently, EC and 

ESP sub-categories were generated based on the obtained data using the natural break method and reclassify tool 

in ArcGIS. The observed EC ranged from 7.99 to 15.46 dS/m, while ESP ranged from 9.80% to 11.43%. Both 

variables were classified into five classes: Very low (7.99–9.81 dS/m), low (9.81–11.04 dS/m), moderate (11.04–

12.24 dS/m), high (12.24–13.62 dS/m), and very high (13.62–15.46 dS/m). Similarly, ESP was categorized into 

five classes: Very low (9.80–10.38%), low (10.38–10.62%), moderate (10.62–10.82%), high (10.82–11.06%), 

and very high (11.06–11.43%). The corresponding maps for EC and ESP are presented in Figure 5 (A and B). The 

AHP method was employed to calculate the weightage and consistency ratio for main criteria and sub-criteria of 

EC and ESP layers. In this study, sub-criteria characterized by low Electrical Conductivity (EC) and Exchangeable 

Sodium Percentage (ESP) values were assigned lower weights, while conversely, subcategories exhibiting high 

EC and ESP values were assigned high weights (Table 4). 

 

 
Figure 5 Land degradation criteria for Mashi CMD Area (A. EC, B. ESP) 
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3.2. Terrain characteristics (Elevation and slope) 

 Elevation and slope are topographical factors that significantly influence the land degradation process. Their roles 

are interconnected and can impact various aspects of soil and landscape dynamics. Elevation and slope gradient 

influence the speed of water runoff during precipitation events. High slopes can lead to rapid runoff, increasing 

the risk of flooding, which may result in soil erosion, sedimentation, and the degradation of downstream areas. 

The removal of natural vegetation, through factors like sand mining, deforestation or improper land use, on high 

slopes can increase the risk of soil erosion and land degradation (Jaafari et al., 2022). In this work, the Cartosat-1 

DEM data (10 m) was utilized to generate elevation and slope thematic map. The elevation range in the study area 

spanned from 263.39 to 284.53 m, categorized into five classes: very low (263.39-270.44 m), low (270.44-272.76 

m), moderate (272.76-275.33 m), high (275.33-278.32 m), and very high (278.32-284.53 m). For slope layer 

construction, the Cartosat-1 DEM data was employed to generate slope percentages, which were subsequently 

categorized into five classes: very low (0–0.14%), low (014–0.28%), moderate (0.28–0.45%), high (0.45–0.70%), 

and very high (0.70–1.40%). The corresponding elevation and slope maps are depicted in Figure 6 (C and D). The 

AHP method was employed to calculate the weightage and consistency ratio for main criteria and sub-criteria of 

elevation and slope layers. In this study, sub-criteria characterized by low elevation and slope were assigned low 

weights, while conversely, subcategories exhibiting high elevation and slope values were assigned higher weights 

(Table 4). 

 

Figure 6 Land degradation criteria for Mashi CMD Area (C. Elevation, D. Slope) 

3.3. Hydrology characteristics (Drainage and Canal systems) 

The role of drainage and canal systems in the land degradation process is complex and depends on factors such 

as design, maintenance, and regional characteristics. While properly designed and managed drainage and canal 

systems can contribute to sustainable land use, improper planning and management of canal system can result in 

waterlogging, especially in poorly drained soils. Waterlogged conditions contribute to soil compaction, reduced 
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aeration, and decreased soil fertility, leading to land degradation (Mohamed et al., 2019). For this analysis, we 

were prepared drainage and canal network from the secondary datasets (ground water atlas and District irrigation 

report, Tonk). After that for surface generation, we were used Euclidean distance tool in ArcGIS. The study area 

drainage and canal system were classified into five sub-classes: Very Poor, Poor, Moderate, High, and Excessive. 

The corresponding drainage and canal maps are depicted in Figure 7 (E and F). The AHP method was employed 

to calculate the weightage and consistency ratio for main criteria and sub-criteria of drainage and canal layers. In 

this study, sub-criteria characterized by Very Poor drainage and canals values were assigned lower weights, while 

conversely, subcategories exhibiting Excessive drainage and canals values were assigned higher weights (Table 

4). 

 

Figure 7 Land degradation criteria for Mashi CMD Area (E. Drainage, F. Canal systems) 

3.4. Climate characteristics (Rainfall and Evapotranspiration) 

Rainfall plays an important role in the land degradation process, influencing soil erosion, vegetation health, and 

overall ecosystem stability. In arid and semi-arid regions, insufficient rainfall contributes to drought, soil dryness, 

reduced vegetation cover, and increased vulnerability to wind and water erosion. Due to drought conditions 

resulting to reduced plant growth, while high rainfall may cause flooding and negatively impact vegetation and 

soil health (Shao et al., 2024). The average annual rainfall was classified into five subclasses: very low (200–250 

mm), low (250–300 mm), moderate (300–350 mm), high (350–600 mm), and very high (600–900 mm), covering 

approximately 3%, 5%, 20%, 42%, and 30% of the total geographical area, respectively. The eastern lower 

command area of the study area receives very high precipitation, while the western main canal part experiences 

very low rainfall. Potential evapotranspiration (PET) is an important factor of the water cycle that includes both 

evaporation from the soil surface and transpiration from plant surfaces. While PET itself does not directly cause 

land degradation, it plays a significant role in influencing soil moisture dynamics, vegetation health, and overall 

ecosystem resilience (Goroshi et al., 2017). The average annual PET was classified into five subclasses: very low 

(50–100 mm), low (100–200 mm), moderate (200–300 mm), high (300–400 mm), and very high (400–600 mm), 
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covering approximately 3%, 5%, 30%, 20%, and 42% of the total geographical area, respectively. Aridity, high 

EC, and ESP collectively contribute to stress on vegetation and soil properties. Water scarcity, salinity, and 

sodicity conditions can lead to reduced plant growth, increased vulnerability to pests and diseases, and diminished 

vegetation cover, further contributing to land degradation. The corresponding rainfall and evapotranspiration maps 

are depicted in Figure 8 (G and H). The AHP method was employed to calculate the weightage and consistency 

ratio for main criteria and sub-criteria of rainfall and evapotranspiration layers. In this study, sub-criteria 

characterized by low rainfall and evapotranspiration values were assigned higher weights, while conversely, 

subcategories exhibiting high rainfall and evapotranspiration values were assigned lower weights (Table 4). 

Table 4 Scaling of criteria based on AHP pairwise comparison 

Main 

Criteria 
EC ESP LULC Slope Elevation PET Rainfall LST Drainage Canal 

EC 1 3 2 3 3 3 3 5 2 5 

ESP 0.33 1 3 2 2 3 2 3 2 3 

LULC 0.50 0.33 1 2 3 3 3 2 2 3 

Slope 0.33 0.50 0.50 1 3 3 2 3 2 3 

Elevation 0.33 0.50 0.33 0.33 1 2 3 2 2 2 

PET 0.33 0.33 0.33 0.33 0.50 1 3 3 2 2 

Rainfall 0.33 0.50 0.33 0.50 0.33 0.33 1 2 3 3 

LST 0.20 0.33 0.50 0.33 0.50 0.33 0.50 1 2 3 

Drainage 0.50 0.50 0.50 0.50 0.50 0.50 0.33 0.50 1 2 

Canal 0.20 0.33 0.33 0.33 0.50 0.50 0.33 0.33 0.50 1 

Sum 4.07 7.33 8.83 10.33 14.33 16.67 18.17 21.83 18.50 27.00 

 

 

Figure 8 Land degradation criteria for Mashi CMD Area (G. Rainfall, H. Evapotranspiration) 
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3.5. Bio-physical characteristics (LULC and LST) 

Land-use and land-cover (LULC) dynamics are predominantly accelerated by anthropogenic and human activities, 

resulting in various changes that impact land and the ecosystem. Several research scholars have emphasized the 

significance of LULC in assessing the land degradation process (Ahmad and Pandey, 2018; Mashame and 

Akinyemi, 2016). The predominant cause of land degradation in irrigated areas is attributed to excessive irrigation 

practices and waterlogging. As per the change analysis of LULC from 1988 to 2018, mostly irrigated lands are 

changing to barren land due to the human induced practices (over-irrigation) in irrigated lands. This ongoing 

process is contributing to alterations in soil quality and fertility. In this work, LULC has been classified into six 

distinct classes: barren land, built-up land, crop land, sandy area, scrub land, and water bodies. Crop land follows 

with 72.29 sq. km. (80.26%), sandy areas with 1.79 sq. km. (1.99%), scrub lands with 2.33 sq. km. (2.58%), barren 

land areas with 8.26 sq. km. (9.17%), settlement areas with 4.83 sq. km. (5.37%), and water bodies comprising 

0.56 sq. km. (0.62%) across the study region. 

Significance and understanding the role of land surface temperature in land degradation process is essential for 

developing planning to diminish its impact. Monitoring temperature patterns, especially in conjunction with other 

environmental variables, (LULC, PET, EC and ESP) can provide valuable info into the dynamics of land 

degradation and sustainable land management practices (Roy et al., 2023). For this analysis, we were extracted 

annual averaged LST data from 1988 to 2018 using climate engine web-portal. The study area land surface 

temperature was categorized into five sub-classes: 30–35, 35–37, 37–38, 38–39, and 39–42°C. The first and 

second subclass (from 30–35 °C to 35–37 °C), representing lower temperatures, covers mainly in the eastern 

lower part of the CMD area. The third subclass (37–38°C) is predominantly distributed in the northern and eastern 

parts of the CMD area. Approximately 75% of the CMD area is covered by the fourth and fifth subclasses of land 

surface temperature (38–39, 39–42 °C), predominantly situated in the western and central regions of the study 

area. The AHP method was employed to calculate the weightage and consistency ratio for main criteria and sub-

criteria of LULC and LST layers. In this analysis, sub-criteria characterized by low LST values were assigned low 

weights, while conversely, subcategories exhibiting high LST values were assigned higher weights. The 

corresponding LULC and LST maps are depicted in Figure 9 (I and J). 

 

Figure 9 Land degradation criteria for Mashi CMD Area (I. LULC, J. LST) 
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3.6. Analytical Hierarchy Process (AHP) Analysis 

Table 5 and 6 shows the pair-wise comparison matrix for the ten determinant factors (main criteria) influencing 

land degradation vulnerability in CMD area. Among the factors considered for land degradation, EC and ESP has 

much larger eigen weight (0.22, and 0.15) than other eight criteria. The absolute weights of other factors like 

LULC, slope, elevation, and PET are about 0.13, 0.12, 0.08 and 0.08, respectively. On the contrary, the rainfall 

(0.07), LST (0.05), drainage (0.05) and canal system (0.03) had very low weights. The Consistency ratio (CR) 

value in this study was found to be 0.08, which is less than 0.10, thus results confirmed the weights attributed 

were suitable and reliable (Table 7). 

Table 5 Normalized pairwise Matrix and criteria weight estimation 

Main 

Criteria 
EC 

ES

P 

LUL

C 

Slop

e 

Elevatio

n 

PE

T 

Rainfal

l 

LS

T 

Drainag

e 

Cana

l 

Criteri

a 

Weight 

EC 0.2

5 

0.4

1 

0.23 0.29 0.21 0.18 0.17 0.23 0.11 0.19 0.22 

ESP 0.0

8 

0.1

4 

0.34 0.19 0.14 0.18 0.11 0.14 0.11 0.11 0.15 

LULC 0.1

2 

0.0

5 

0.11 0.19 0.21 0.18 0.17 0.09 0.11 0.11 0.13 

Slope 0.0

8 

0.0

7 

0.06 0.10 0.21 0.18 0.11 0.14 0.11 0.11 0.12 

Elevatio

n 

0.0

8 

0.0

7 

0.04 0.03 0.07 0.12 0.17 0.09 0.11 0.07 0.08 

PET 0.0

8 

0.0

5 

0.04 0.03 0.03 0.06 0.17 0.14 0.11 0.07 0.08 

Rainfall 0.0

8 

0.0

7 

0.04 0.05 0.02 0.02 0.06 0.09 0.16 0.11 0.07 

LST 0.0

5 

0.0

5 

0.06 0.03 0.03 0.02 0.03 0.05 0.11 0.11 0.05 

Drainag

e 

0.1

2 

0.0

7 

0.06 0.05 0.03 0.03 0.02 0.02 0.05 0.07 0.05 

Canal 0.0

5 

0.0

5 

0.04 0.03 0.03 0.03 0.02 0.02 0.03 0.04 0.03 

Total 1 1 1 1 1 1 1 1 1 1 1 

 

Table 6 Calculating and check Consistency ratio of parameters 

Main 

Crite

ria 

E

C 

E

S

P 

LU

LC 

Slo

pe 

Eleva

tion 

P

E

T 

Rain

fall 

L

S

T 

Drai

nage 

Ca

nal 

λm

ax 

Consis

tency 

Index 

Ran

dom 

Inde

x 

Consis

tency 

Ratio 

EC 

0.

22 

0.

46 

0.2

7 

0.3

5 0.25 

0.

23 0.21 

0.

27 0.11 

0.1

6 
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ESP 
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0.1

0 

Slope 

0.

07 

0.

08 

0.0

7 

0.1

2 0.25 

0.

23 0.14 

0.

16 0.11 

0.1

0 

Eleva
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0.

07 

0.

08 

0.0

4 

0.0

4 0.08 

0.

16 0.21 

0.

11 0.11 

0.0

7 

PET 

0.

07 

0.

05 

0.0

4 

0.0

4 0.04 

0.

08 0.21 

0.

16 0.11 

0.0

7 

Rainf
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0.

07 

0.

08 

0.0

4 

0.0

6 0.03 

0.

03 0.07 

0.

11 0.16 

0.1

0 

LST 

0.

04 

0.

05 

0.0

7 

0.0

4 0.04 

0.

03 0.03 

0.

05 0.11 

0.1

0 
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0.

11 

0.

08 

0.0

7 

0.0

6 0.04 

0.

04 0.02 

0.

03 0.05 

0.0

7 
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0.

04 

0.

05 

0.0

4 

0.0

4 0.04 

0.

04 0.02 
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Table 7 Land degradation vulnerability classes and area 

Sl. No. LDVI Classes Area (in km2) Area (in %) 

1 Slightly vulnerable 36.26 40.26 

2 Moderately vulnerable 46.94 52.12 

3 Highly vulnerable 6.87 7.63 

 

3.7. Land degradation vulnerability index (LDVI) 

The Land Degradation Vulnerability Index (LDVI) for the Mashi Dam Command (CMD) area was established 

by integrating geo-spatial layers of soil sample derived electrical conductivity (EC) and exchangeable sodium 

percentage (ESP), Terra climate derived precipitation and evapotranspiration data, elevation and slope derived 

from Cartosat-1 DEM, and Land Use/Land Cover (LULC) information obtained from Sentinel 2A image, along 

with secondary datasets like drainage and canal systems. Geospatial techniques, specifically applying the analytic 

hierarchy process (AHP), were employed in the development of LDVI. According to the analytic hierarchy 

process (AHP), the predominant factors influencing land degradation vulnerability (LDV) in the investigated area 

were the chemical and physical properties of the soil (EC and ESP), collectively accounting for 0.37 of the total 

weights. The Land Degradation Vulnerability Index (LDVI) was classified into three classes: highly vulnerable, 

moderately vulnerable, and slightly vulnerability areas. The AHP and GIS-based results (Table 8) indicated that 

52.12% (46.94 km2) of the study area is moderately vulnerable to land degradation, primarily in the western, and 

upper part of the CMD area. About 7.63% (6.87 km2) of the area is highly vulnerable, particularly in the western 

and central part of the main canal, while 40.26% (36.26 km2) is classified as very slightly vulnerable, mainly in 

the northern and western southern parts of the study area. LDVI classified area statistics is also shown in Figure 

10. These findings provide valuable information for local decision makers to targeted soil conservation and 

management at the large and micro scale land hazard concerns in future planning initiatives. 
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Table 8 Weights and consistency ration of the sub-criteria for assessment of land degradation vulnerability index 

Main 

Criteria 
Weight 

Consistency 

Ratio 

Sub-

Criteria 

Sub-criteria 

Rank 
Weight 

Consistency 

Ratio 

EC (dS/m) 0.22 0.08 Very low 1 0.06 0.07 

   
low 2 0.12 

 

   
Moderate 3 0.20 

 

   
High 4 0.26 

 

   
Very high 5 0.35 

 
ESP (%) 0.15 

 
Very low 1 0.06 0.09 

   
low 2 0.12 

 

   
Moderate 3 0.18 

 

   
High 4 0.28 

 

   
Very high 5 0.37 

 
Elevation (m) 0.08 

 
Very low 1 0.06 0.09 

   
low 2 0.10 

 

   
Moderate 3 0.21 

 

   
High 4 0.27 

 

   
Very high 5 0.36 

 
Slope 0.12 

 
Very low 1 0.06 0.08 

   
low 2 0.12 

 

   
Moderate 3 0.22 

 

   
High 4 0.26 

 

   
Very high 5 0.35 

 
Drainage 0.05 

 
Very Poor 1 0.07 0.07 

   
Poor 2 0.12 

 

   
Moderate 3 0.20 

 
   High 4 0.26  

   Excessive 5 0.35  

Canal 0.03 
 

Very Poor 1 0.07 0.07 

   
Poor 2 0.12 

 

   
Moderate 3 0.20 

 

   
High 4 0.26 

 
   Excessive 5 0.35  
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Rainfall 0.07 
 

Very low 5 0.45 0.09 

   
low 4 0.27 

 

   
Moderate 3 0.12 

 

   
High 2 0.09 

 

   
Very high 1 0.07 

 
Evapotranspiration 0.08 

 
Very low 1 0.06 0.07 

   
low 2 0.12 

 

   
Moderate 3 0.20 

 

   
High 4 0.26 

 

   
Very high 5 0.35 

 
LULC 0.13 

 
Crop land 6 0.31 0.08 

   
Water body 5 0.24 

 

   
Barren land 4 0.19 

 

   
Scrub land 3 0.13 

 
   Sandy area 2 0.09  

   Built-up land 1 0.05  

LST 0.05 
 

Very low 1 0.06 0.07 

   
low 2 0.10 

 

   
Moderate 3 0.16 

 

   
High 4 0.28 

 

   
Very high 5 0.39 

 
 

 

Figure 10 The area covered under different LDV classes 
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3.8. Validation of the results 

For visual validation, LDVI classes in the study area were cross-referenced using high-resolution Google Earth 

as illustrated in Figure 11. The visual validation process involved assessing the LDVI classes: Highly vulnerable 

(Site 1), highly vulnerable (Site 2), Moderate vulnerable (Site 3), Moderate vulnerable (Site 4), Low vulnerable 

(Site 5), and Low vulnerable (Site 6), utilizing high-resolution image captured during the study time of the year 

2018. The results of this validation clearly demonstrate a strong agreement between the observed land degradation 

characteristics in the Google Earth images of the selected areas and the output derived from the AHP- and GIS-

based modeling conducted in the study. 

 

Figure 11 Validation of LDVI map from Google Earth image 

Furthermore, the accuracy of the AHP models was assessed using the Receiver Operating Characteristic (ROC) 

curve and curve is depicted in Figure 12. The ROC curve, a common tool for accuracy assessment, plotted the 

true positive rate against the false positive rate. Site selection from Google Earth images helped test the 

performance of the AHP model in the study area. The ROC curve for the LD fields attained using the AHP method 

showed an Area under the Curve (AUC) value of 80.6%, with a standard error of 0.03 at a 5% significance level. 

This suggests that the AHP model produces reasonable and reliable results in predicting land degradation 

vulnerability fields in the study area. 
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Figure 12 ROC curve of the LDV index attained using the AHP method 

4. Conclusions 

Land degradation, resulting from both human and anthropogenic activities, poses a significant challenge globally. 

This study investigates the use of geospatial technologies and the Analytic Hierarchy Process (AHP) to assess 

land degradation in the Mashi dam command area in India. Ten parameters, including electrical conductivity (EC), 

exchangeable sodium percentage (ESP), elevation, slope, drainage, canal system, rainfall, evapotranspiration, land 

use/land cover (LULC), and land surface temperature, were employed to evaluate land degradation. Moreover, 

the methodology applied in this study holds broader applicability and can be extended to arid and semi-arid 

regions, as well as other parts of India facing significant land degradation challenges. The insights gained from 

this research contribute to the understanding and potential mitigation of land degradation issues in various 

geographic contexts. 
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