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Abstract:- A crucial step in the design of every digital integrated circuit is testing. It's critical to identify and 

diagnose the issues with an IC. A test vector is a set of inputs provided to the IC to test it. Generally, programs 

called test vector generation create test data automatically for automated testing circuits. Numerous distinct test 

vectors may result from this. For simpler designs, manual testing can be carried out by forcing values into the 

system and then watching the results. Automation is necessary because testing becomes tiresome as design 

complexity rises. Smaller designs can undergo manual testing, where inputs are provided to the system by forcing 

values and monitoring the results. Automating testing becomes necessary as design complexity rises since it 

becomes tiresome. The Automated Test Pattern Generator (ATPG) is required for VLSI testing to obtain input 

test vectors for the Device Under Test (DUT). In this paper we present a new way to generate ATPG vectors using 

probability weights and find the optimal set of vector for the weights using genetic algorithm (GA) on excess 

three encoder as our DUT. The excess three encoder was simulated for stuck at fault modelling. We find that our 

approach has yielded promising results compared to other ATPG algorithms. 

Keywords: ATPG, Genetic algorithm, combinational, IC testing  

 

1. Introduction 

In the IC design flow, testing of designs plays a vital role in determining whether a chip is market ready and can 

be fabricated in large volumes. The industry's use of hierarchical design techniques and advancements in wafer 

fabrication technologies have reduced the overall costs of developing IC products while enabling high degrees of 

circuit integration. Regrettably, the tendency toward greater integration levels has limited the availability of IP 

blocks for testing. Furthermore, every interface and embedded block in the SoC design needs a particular test 

procedure or time frame. These issues have increased the cost of testing. Test cost per transistor has therefore not 

followed Moore's Law like production cost per transistor has and it is now a challenge to come up with procedures 

and techniques to solve this problem [1]. In testing, the most challenging part is the post-silicon validation. Where 

we have to test each IC for logical verification. Say an IC has N primary inputs (PIs), then we must provide all 

2N inputs and compare the output to a logically correct device. As we see this is an NP-complete problem and is 

difficult to solve. 

A defect is an imperfection in a product that occurs during production. An error model provides a logical 

description of how a defect affects the operation of a system. When a test pattern is applied to a device under test 

(DUT), the logic values observed at the device's principal outputs are called the output of the test pattern. When 

testing a fault free device that operates precisely as intended, the result of a test pattern is referred to as the expected 

output of that test pattern. 

When testing a device with a single fault, a test pattern is considered to have detected a problem if the output of 

the pattern differs from the intended output. The number of modeled faults, or fault models, that are found and 

the number of patterns that are produced are what define ATPG's efficacy. Following production, the patterns are 

used to test semiconductor devices and, in some situations, to assist in identifying the reason behind failure (failure 
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analysis). The type of circuit being tested, the degree of abstraction utilized to represent the circuit being tested, 

the fault model being considered, and the necessary test quality all have an impact. Test vectors can be created to 

identify manufacturing faults by abstracting their behavior using fault models. Pseudo Stuck-at Fault Model 

(IDDQ) is used to model current faults, stuck at fault models for functional defects, and path delay and speed fault 

models for speed defects. The fault model that is most frequently used in the industry is stuck at. One popular 

target model is the single stuck-at-fault model, which generates a set of test patterns to find each trapped fault in 

the circuit. When a circuit's line is set to logic values 0 or 1, it has a single stuck at fault. Often referred to as the 

classical or standard fault model, the single-stuck fault model was the first and most widely studied and used fault 

model.   

There are two phases in the ATPG procedure for a targeted fault: (1) Fault Activation and (2) Fault Propagation. 

The opposite of the value generated by the fault model is the signal value established at the fault model site by 

fault activation. When a path from the fault site to a primary output becomes sensitized, fault propagation advances 

the resulting signal value, also known as the fault effect. It simulates manufacturing flaws that arise from a circuit 

node being persistently shorted to either GND (stuck-at-0 fault) or VDD (stuck-at-1 fault). A gate's input or output 

may be the source of the issue. Therefore, there are six potential stuck-at errors in a basic 2-input AND gate. 

Suppose we have a stuck-at-0, symbolically written as s@0 fault at the output of an AND gate. One crucial point 

to keep in mind is that the circuit has two input ports, meaning we can combine four distinct inputs or patterns: 

00, 01, 10, 11. Only pattern 11 will be able to identify this defect out of the four. In the event of a S@0 fault, the 

expected output will match the actual circuit output, just like in the other patterns. With just one AND gate, this 

circuit is straightforward. Therefore, it was easy to identify the pattern that may identify this defect; nevertheless, 

for intricate designs, we must use ATPG tools. By using sophisticated algorithms, the ATPG tools will attempt to 

produce the patterns needed to test every potential fault location; but, if they are unable to do so for a small number 

of faults, they will mark those faults as untestable. 

In testing, the most challenging part is the post-silicon testing i.e. post-silicon validation. Where we have to test 

each IC for logical verification. Say an IC has N primary inputs(PIs), we can’t provide and test for all 2N inputs. 

The solution to this is to use random vectors, pseudo random vectors or Automated test pattern generator(ATPG). 

Random vectors and pseudo random vectors are inefficient and do not provide a stable fault coverage, so ATPG 

turns out be a better choice. In ATPG we use algorithms to generate test vectors for a model of our target device 

that simulates probable faults that can occur in our device during fabrication, So the flow of ATPG is the following 

Model design, 

Fault modelling, 

Fault simulation, 

Pattern Generation and 

Pattern testing. 

For ATPG generation we will use excess three encoder as our model for testing. We will first model single stuck 

at faults which is standard in the industry and our training model and use the results obtained from the training 

model to multi stuck at faults model of encoder. The training model is used to generate patterns using genetic 

algorithm(GA) frame work. Genetic Algorithm is based on the biological evolution process, it involves creating 

new fitter generations using the old one. This pattern is then tested on randomly generated models of excess three 

encoder that is correct most of the time and sometimes faulty after a fixed interval of time we will stop the run 

and calculate the metrics like fault coverage. 

 

2. Proposed Model 

For testing our algorithm, we will use excess three encoder as our test model. The reason to use excess three is 

that it is a very well-known digital circuit that has been thoroughly studied in academia. Also, an excess three 
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encoder is a simple combinational circuit. In an excess three encoder, as the name suggests, we will add three to 

the given binary coded decimal (BCD) value to generate an excess three code (ETC). We can expand this to larger 

values and define that the excess three code of a value is the value of it when three is added to it. An N-bit excess 

three encoder by the above definition can be synthesized by using an N-bit adder with carry in set to zero and one 

of the operands set to three. Using N full adder in cascade, an N-bit adder is realized. A full adder can be 

implemented and be cascaded with other full adders to get an N-bit adder. A full adder can be implemented using 

the  

𝑠𝑢𝑚 = 𝑎 ⊕ 𝑏 ⊕ 𝑐 and cout=a.b | b.c | c.a 

 where “⊕” represents the XOR logic, “·” represents the AND logic and “|” represents the OR logic. sum 

represents the sum bit, cout represents the carry out bit, a and b are operands bits and cin is the carry in bit. Figure 

1 show the full adder gate level implementation. This full adder has to be cascaded with other full adders to get 

an N-bit adder. For our test design we will consider an 8-bit excess three encoder, so we need an 8-bit adder as 

shown in figure 2. Such an adder system is also  

 

 

Fig. 1. Gate level implementation of full adder 

 

 
Fig. 2. Gate level implementation of full adder 

2.1 Fault Modeling 

Once our proposed system is designed the next stage is to model faults in the design that can give a real world 

fault that can occur during fabrication. The real word faults that occur in ICs are very difficult simulate logically, 

so we abstract the process of system design to give a illusion of a fault in real world case. The abstraction can be 

gate level, transistor level or layout level. There are other sophisticated abstractions for larger designs to save the 

CPUs run time and memory requirement to simulate it. In the next sections we will look at some industry standard 

fault models. 

Fault models: A fault model is a simplified representation of a potential defect or fault that can occur within the 

circuit. It serves as a model for analyzing and testing the behavior and resilience of the circuit in the presence of 

faults. Fault models help identify the types of faults that can occur, study their effects on circuit functionality, and 

develop strategies to detect and mitigate these faults. 
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Here are some commonly used fault models in digital circuits: 

Stuck-At-Fault Model [2]: The most used fault model is the stuck at fault model. Regardless of the circuit's input 

or function, it presumes that a wire or signal inside the circuit is trapped at a specific logic value (0 or 1). 

Transition Fault Model [3]: Transition faults occur when the circuit fails to make a proper transition from one 

logic state to another. These faults can be caused by issues such as delays, glitches, or excessive noise in the 

circuit. 

Bridging Fault Model [4]: Bridging faults occur when two or more wires or nodes in the circuit are unintentionally 

connected, resulting in short circuits. This can lead to incorrect signal propagation and affect circuit operation. 

Delay Fault Model [5]: Delay faults arise due to variations in signal propagation delays within the circuit. These 

faults can occur due to manufacturing defects, process variations, or temperature effects. Delay faults can cause 

timing violations and affect the correct operation of the circuit. 

Single Stuck-Open and Single Stuck-Short Fault Models 

[6]: These fault models consider specific types of stuck-at faults. A single stuck-open fault assumes that a 

connection or switch within the circuit is permanently open, while a single stuck-short fault assumes that a 

connection or switch is permanently shorted. 

Fault models are essential for identifying, analyzing, and addressing potential faults in digital circuits. They 

provide a structured framework for fault detection, diagnosis, and testing, to ensure circuit reliability, improve 

design quality, and enhance system-level performance. By using fault models, engineers can effectively analyze 

the impact of faults, develop robust testing strategies, and implement fault-tolerant design techniques. 

Stuck at fault modelling: The stuck-at fault model is a gate level abstraction for a logical circuit that assumes, a 

particular signal or wire within the circuit can be stuck at a specific logic value, either stuck at 0 or stuck at 1, 

regardless of the inputs or circuit operations. It is one of the most widely used fault models in digital circuit testing 

and industry standards. The stuck-at fault model helps in identifying and detecting permanent defects that can 

occur in a digital circuit. There are two essential requirements for a stuck-at- fault model, one is fault activation 

and the other is fault propagation. here on a line/ wire that is stuck-at a particular logic level will be represented 

as S@0 or S@1 for stuck- at logic level 0 fault or stuck-at logic level 1 fault respectively. 

There are two types of stuck-at-fault models (1) Single stuck-at-fault model and (2) multiple stuck-at-fault model. 

In single stuck-at-fault model we assume that only a single line/ wire in the circuit is stuck at a particular logic 

level. A simple two input logic gate can have 6 different possible single stuck- at-faults. Let us now consider an 

example for single stuck at faults shown in figure 3, where we assume that the output of the first xor gate has a 

stuck-at-fault. Notice that the two conditions are satisfied here. 

Fault activation, where the output of the first xor gate is faulty irrespective of the inputs given and the fault is 

propagated to the Sum bit of the full adder. The Sum bit will produce the input logic at Cin line and complementary 

of the logic at Cin line for the S@0 and S@1 faults respectively, irrespective of the inputs A and B. Also note that 

no other lines, expect the path of the fault line, has got faults. In other words, their operation is normal.  

In multiple stuck-at-faults more than one lines/ wires are stuck at a particular logic. We can also say that a multiple 

stuck-at-fault is two or more single stuck-at-faults occurring together. Figure 4 shows a full adder that has multiple 

stuck- at-faults. 

There are certain distinctions in multiple stuck-at-faults that we need to keep in mind before we jump into the 

design of the fault model. The nuance is that the fan-outs of a fault is not a single stuck-at-fault if the fault 

propagates through more than one fan-out. Consider an example where that carry in bit, Cin, is S@0. Shown in 

Figure 5 is an example of a multiple stuck-at-fault not a single stuck-at-fault. The reason being our definition for 

single stuck-at-fault doesn’t hold true for this case. Because only a single line has to have a fault. To model single 

stuck-at-fault in circuits that have fan-outs, we will assume that the origin of the error is at the fan-out point and 
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there is no such single stuck-at-fault model where the Cin bit is stuck-at some logic. Also, here we have considered 

an error in a primary input, if an gate output has fan-outs a similar procedure has to be followed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Example for single stuck-at-fault in a full adder 

Fig. 4. Example of multiple stuck-at-faults 

 

In this work, we will use the single stuck-at-fault models of the 8-bit ETC as our training model and multiple 

stuck- at- faults models of the 8-bit ETC as our testing model. The implementation is done using Verilog HDL. 

We will first design an error free full adder module named full_adder and a full adder module named 

incorr_full_adder that has a single stuck-at-fault model of the full adder. We will have 28 faulty full adder models. 

Then in the test bench we will instantiate one of the 8 full adder as incorr_full_adder and the rest as full_adder. 

At the end we will have 8 ×28 = 224 single stuck-at-fault models of ETC and one correct model of ETC. 

Full adder codes: 

input a,b,cin; output sum,cout; assign sum = aˆbˆcin; 

assign cout = a&b|cin&(a|b); 

// initial begin 
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// $display("The correct adder"); 

input a,b,cin; output sum,cout; assign sum = aˆbˆcin; 

assign cout = 1’b1&b|cin&(a|b); 

// initial begin 

// $display("The incorrect adder with and0 having in1/1"); 

 

 

Fig. 5. An interesting case of stuck-at-faults 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. The fault in Figure 5 is split into two single stuck-at-faults 

2.2 Genetic Algorithm 

Genetic Algorithm(GA) is one of the evolution algorithms and take inspiration from nature and evolution of 

species [7]. In context of ATPG, GA in generally used to find the test cases that can produce a high fault coverage 

of the fault model [5], [8]– [10]. Here we would like to define certain terms in the context of GA and ATPG. 

Genetic Algorithm as three mains parts to it, (1) Population generation/selection and crossover, (2) calculate the 

fitness for the population and (3) add mutation to the population. In this project we would make a distinction 

between population generation and selection as they have different meanings. In the next section we will discuss 

each part of the algorithm. 

A. Population generation 
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Most algorithms of population generation means to generate the first generation of members, so, only once a 

population is generated. The generation of the initial population can be random [8]– [10] or can be based on the 

given model of choice [5], where we calculate the certain parameters and then generate our initial population. In 

this project we would like to present a method to generate population by assigning weights to bits of the 8-bit 

binary value member. The weights represent the probability of the occurrence of binary 1 in a particular bit. For 

a 8-bit number let the weights be W0, W1, ..., W7. The value of each weight is between 0 to 255, i.e. 0 ≤ 𝑤𝑛 ≤

255.  

For all 0 ≤ n ≤ 7 when 0 represents the LSB and 7 represents the MSB. There is no need to choose a particular 

limit for the weights. The logic still holds for other values, but we chose these as they represent the lowest and 

highest positive values of a 8-bit number. This is easy to implement in verilog, which we need to for testing our 

model, than other values. The weight represents the probability of the occurrence of binary 1 for that bit. For 

example, W0 represents the probability of occurrence of binary 1 and 255 − W0 represents. The probability of 

occurrence of binary 0 in bit 0 or LSB. Using these weights, we can generate a population of a particular size. For 

the initial population we will choose the weights at random and later we determine the weights of each bit 

calculating their probabilities after the members for the next generation are determined. 

The drawback of this method is, Let’s say that we need to generate a population of size 10 where each member is 

unique using the weights W1 ≠ 0 and Wn = 0 for n = 1 is impossible as there are only 2 possibilities. In GA not 

all members have to be unique but in the context of ATPG the uniqueness of members is important. To avoid this, 

we may consider the previous generation and perform the calculations again till we generate the new population. 

If it is the first generation then we must generate a different set of weights. 

B. Population selection 

In a genetic algorithm, population selection refers to the process of selecting individuals from a population to 

undergo genetic operations such as crossover and mutation. The goal of population selection is to choose 

individuals that have higher fitness values or better solutions to the problem in hand, in order to guide the evolution 

of the population towards improved solutions over time. there are varies methods that are used in GA which enable 

us to select the best set of members that have to be crossed over. 

Selection can be made in many ways. We may select the top best or most fit individual members of the population 

for crossover. This is called Elitism. This is the simplest form of selection and works most of the time. In the 

Binary tournament selection we select two individuals, at random or it can be a weighted selection, and a better 

individual is selected of the two. The better individual can be better in terms of their fitness or some other metric. 

This is like a tournament between two individuals, and we keep performing these tournaments till we meet the 

required population. 

Another technique is called "roulette wheel selection," which is a proportionate selection technique where a 

person's fitness determines the size of the slots on a roulette wheel (Figure 7). A ball is rolled over the wheel and 

the individual on which the ball lands is selected. To put it differently we are talking about a biased/ unfair roulette 

wheel, where everyone has the probability of being selected for next generation crossover equal to its respective 

fitness value. Higher the fitness value, the higher the chances of selection. This brings in diversity in the population 

unlike in Elitism and over generations we see a much better population. As the low fit individuals may be the 

solutions to a few cases that can’t be detected by high fit individuals. In this project we use the Roulette wheel 

selection method. 

The Stochastic universal selection method is like a Roulette wheel selection and will happen in a single turn of 

the wheel all required individuals are selected. We use markers (Figure 8), equal to size of the population, that are 

equally spaced around the roulette wheel. We turn the wheel and where the marker points to that individual is 

selected. If two makers point to the same individual, then that many copies of that individual is taken. This can’t 



Tuijin Jishu/Journal of Propulsion Technology 

ISSN: 1001-4055 

Vol. 45 No. 4 (2024) 

__________________________________________________________________________________ 

1800 

be used for this reason of copies of same individual are being selected. Our individuals in the population must be 

unique. 

 

Fig. 7. A biased roulette wheel for Roulette wheel selection 

 

 

 

Fig. 8. Roulette wheel with pointers for Stochastic universal selection 

C. Crossover 

Crossover is inspired by crossing over of chromosomes in the process of cell division called Meiosis, that occurs 

in organisms to produce gametes. This crossover is what brings about variations in the offsprings. In GA we need 

to perform crossover between the two selected individuals. In a One- or two-point crossover we select one or two 

positions in the individual binary code and flip the bits from that position onwards. Let’s say we have a binary 

code of length L. We need to perform a one-point crossover to that code, say at position m for  1 ≤m≤ L. We keep 

the code of the two respective individuals same till the position m and fill all the bits from position m+1 to L. 
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In uniform crossover each position of the code has the same probability of being flipped. Typically, the probability 

is 50%. So, there is a 50% chance that a bit in a position may be flipped. Don’t confuse this with mutation, where 

a bit is replaced with its complement there, here we just interchange the bits between two individuals. In this 

project we won’t go for the crossover function of the GA. The reason is that the generation of individuals in our 

case is very different. If we perform crossover, it makes no difference in the probability of occurrence of 1s and 

0s. So, the determined weights are still the same before and after crossover is done. So, we might as well not 

perform this step. 

D. Fitness function 

In a genetic algorithm, a fitness function is a function that gives each member of a population a fitness value. It 

quantifies how well an individual solution performs or fits the problem being solved. The fitness value is typically 

a numerical representation of the quality or suitability of the individual. A fitness function is the most important 

function in GA. It determines the run-time, memory usage and other performances metrics to a large extent. We 

will have a discussion on the varies methods used to evaluate the fitness of a population. 

In [5] the goal is to detect delay faults. Two vectors are required to evaluate the fitness of a vector-pair, so a pair 

of individuals is considered of fitness from the population. The first vector is evaluated and stored in the Global 

Record Table (GRT) and then the second vector is applied, and the slow-to-rise and slow-to-fall faults conditions 

are evaluated by comparing the transitions of the signal to the previous vector. The vectors are also detecting the 

stuck- at-faults so if a pair has the same fitness, they are also subject to the number of stuck-at-faults they detect. 

In [8], the fitness function is evaluated in 4 phases. In phase 1 we generate a test vector and see whether it sets all 

the flip-flops. If it does, we move to phase 2 else we generate a new test vector. In phase 2, the number of faults 

detected is calculated for everyone. To differentiate vectors that have the same fitness, in addition to number of 

faults detected the number of faults that propagates to flip-flops are also calculated. If the vectors detect no 

additional faults, phase 3 is initialized. In phase 3, the noncontributing vectors are calculated. The fitness of vectors 

will be higher if they activate more faults and spread more fault effects. If we don’t detect any additional faults 

we will check if the faults coverage is to a satisfying level, we end the program. 

In [9], the fitness is calculated by evaluating two factors, ’Fault- excitability’ and ’Fault-drivability’. Fault-

excitability for a vector refers to the likelihood of setting the logic value on the chosen target fault point opposite 

to the faulty value. From the fault point, the fault-drivability is the fitness for propagating the fault values D and 

D to any primary output. The use of real-value simulation is also unique. This simulation allows us to evaluate 

the logical circuit in terms of the probability of their respective gates. 

In [10], to evaluate the fitness of an individual a linear combination with three components is used. The first 

component evaluates the ability of an individual to excite necessary value on victim line. The second component 

evaluates an individual ability to propagate the crosstalk fault to the primary output. The third component 

evaluates the individual’s ability to consider the effect of aggressor lines effect. We take a weighted linear 

combination of the three components of the fitness function to evaluate the fitness. In this project we will use a 

simple fitness function that evaluates the total fault coverage of the population in the single-stuck-at-fault model. 

E. Mutation 

Mutation occurs in organisms is a very common thing. A mutation in genetic makeup could be harmful if that 

could lead to cause of some disease in the organism. But over generations mutations that a useful remain in the 

population and increase the fitness of a population through generations. Mutation is a random change in the DNA 

sequence of an organism. Mutation is a genetic operator in a genetic algorithm that introduces random changes to 

the individuals within a population. It helps introduce new genetic material into the population and promotes 

exploration of the search space. A harmful change reduces the fitness of a well-fit individual. To avoid this the 

probability of mutation is kept low. If it is too low the necessary variation in the population is not seen. 
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In this project we will use double mutation causing probability [9]. In this scheme we have two probabilities, 

probability Pa, that is the probability of occurrence of mutation in an individual of a population, and probability 

Pb, that is the probability of occurrence of mutation in that individual. To put it differently, probability Pa is used 

to see whether an individual in a population should undergo mutation and probability Pb is used to see whether a 

bit in that individual must be inverted. 

F. GA Implementation 

The flow for the GA implementation is shown in Figure 9. The results are noted, and the progress of the GA is 

also noted and is discussed in section VI of this report. 

 

Fig. 9. Flow of proposed genetic algorithm implementation 
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3. ATPG Testing 

 

Fig. 10. Proposed ATPG based on GA 

For testing our ATPG vectors we will induce faults to ETC using the following approach. Each of the eight full 

adders will have a 50% chance of being faulty and 50% chance of being fault-free. This allows us to test both 

faults free and faulty at the same time in a more realistic sense. Figure 10 shows the flow that is used for testing 

the ATPG. We initialize our variable for number of models that we need to test, number of faults models detected 

and those that had escaped. We then generate a model for ETC which may be fault free or faulty. If the faulty 

model is generated and is already tested, we will generate a new model. If the model is not already tested, we will 

increment models variable. We will initialize a variable K to keep track of the number of vectors generated. Now 

we generate vector using the weights for our GA implementation. We will generate only unique vectors per model 

and test. If the vector doesn’t detect a fault then increment K and then we check if the number of vector generated 

is greater than the population size as we used in GA implementation. If its greater then we increment the fault 

escaped variable as the fault has escaped. If the vector detects the fault then increment the fault detected variable. 

If the models to test have reached the required limit we end the simulation. We calculate the metrics like Fault 

coverage Fc given by 

 

𝐹𝐶 =
Faults detected

Total faulty models generated
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4. RESULTS 

In this section we will discuss the results obtained from both the GA implementation and testing. For first we go 

for the GA implementation. The size of the population is set to 15. The mutation rate and the individual selection 

rate is set at 5%. The fitness limit that we are setting to 98%. The generation limit is set at 1000 generations. The 

results obtained and metric of simulations are mentioned in Table I. 

TABLE I: Results obtained for GA implementation 

Time of 

execution 

471.99 ms 

fitness achieved 100% 

generation 148 

 

Table II show the percent mean and standard deviation of the fitness which is the fault coverage of the 

implementation over a sample space of 148 generations. For the ATPG testing we get a very promising result that 

the average fault coverage is about 97%. Table III show the mean and standard deviation for ATPG testing. The 

progression of the genetic algorithm is shown in Figure 11. As we can see from Figure 11 that there are cases 

where the population gave fault coverage that is greater than 95%. There were about 32 such instances. For testing 

our model, we plot the fault coverage obtained for the number of test faults the test model has detected. This can 

be done by taking the fault coverage for the testing scenarios as in Figure 12. 

TABLE II: Mean and standard deviation for the GA progress 

Metric Mean Standard 

Deviation 

Fitness 85.1174 9.0180 

 

TABLE III: Mean and standard deviation for the ATPG testing 

Metric Mean Standard 

Deviation 

Fault 

coverage 

97.6726 0.4024 

Fault escape 2.3274 0.4024 

 

TABLE IV: Mean and SD for each bit which have 95% or more fault coverage in GA implementation 

Bit index Mean Standard 

Deviation 

7 255 0 

6 158.50 52.0782 

5 141.38 59.9606 

4 141.24 57.0104 

3 181.59 52.6827 
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2 178.15 49.2551 

1 85.56 64.3490 

0 150.82 54.1935 

 

 

Fig. 11. Example for single stuck-at-fault in a full adder using GA 

 

Fig. 12. The Fault coverage versus the number of test models used for testing 

 

5. Conclusion 

The Genetic proves to be an effective method to find test patterns for the testing of any combinational system. 

Our proposed fault modeling process is optimal to serve our purpose. The GA implementation was mostly manual 

in the sense that the selection of population size and mutation rates were chosen by intuition. We have achieved 

an execution time of 471.99 ms with 100% over 148 generations. The project has obtained a promising average 

fault coverage of 97% with a standard deviation of 0.4024 which is a substantial improvement in the field of 

ATPG testing. 
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