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Abstract: - The study investigates the thermal convection of a Casson nanofluid in a horizontal layer influenced 

by magnetic and helical force parameters. Both linear and weakly non-linear analyses are performed to assess the 

fluid's stability. The critical Rayleigh number is calculated in the linear analysis, while the Nusselt number is 

determined in the weakly non-linear analysis which is used to study heat transfer. A one-term Galerkin approach 

is employed to study the linear theory, while multiple scale analysis is used to investigate the weakly non-linear 

theory. The Hartman number (𝐻𝑎2) exerts a stabilizing effect on the system in both stationary and oscillatory 

convection. Meanwhile, the helical force parameter (𝑆ℎ), the adjusted diffusivity ratio (𝑁𝑎) and the nanoparticle 

Rayleigh number (𝑅𝑛) have a destabilizing effect on the system in both stationary and oscillatory convection. The 

Lewis number (𝐿𝑒) and Prandtl number (𝑃𝑟) exhibit a stabilizing effect on oscillatory convection, but in the case 

of stationary convection, they do not have any impact on the system. The Casson parameter (β) has a destabilizing 

effect in the case of stationary convection, whereas it shows a stabilizing effect on the system in oscillatory 

convection. 
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1. Introduction 

In recent times, there has been a surge in the exploration of nanofluids, a novel blend comprising regular fluids 

and minute suspended nanoparticles. Coined as 'Nanofluid' by Choi [6], these fluids exhibit enhanced heat transfer 

capabilities compared to conventional fluids, rendering them invaluable across a multitude of applications 

spanning various fields. Buongiorno [3] made a noteworthy advancement in nanofluid modeling by highlighting 

the significant influence of both the base fluid velocity and relative velocity on the absolute velocity of 

nanoparticles. This model has been widely adopted by researchers [22], [23], [24], [16], [5], [18] to investigate 

convective heat transfer in nanofluids, and it was subsequently refined by Nield and Kuznetsov [15] to incorporate 

solutal effects on nanofluid layers. The Casson model has demonstrated excellent compatibility with diverse non-

Newtonian fluids [7]. Blair and Spanner [19] observed that the properties of blood closely align with those of a 

Casson fluid in moderate shear rate flows, thus justifying the utilization of the Casson model for blood flow. Scott 

Blair [20] investigated the efficacy of Casson's equation, while Hamid et al.  [11] uncovered dual nature solutions 

for the proposed model, incorporating thermal radiation effects on both steady and unsteady Casson fluid flows. 

Aneja et al.  [2] explored natural instability in a partially heated porous medium using a penalty finite element 

approach for Casson fluid. Recently, researchers have applied the Casson model to various nanofluid flow 

problems to examine the influence of nanoparticles on blood flow. 

In recent years, nanoparticles have emerged as highly versatile tools in the treatment of numerous ailments. Gold 

nanoparticles, in particular, are utilized in cancer therapy due to their larger size and remarkable energy absorption 

capabilities. Moreover, nanoparticles influence the efficiency of heat transfer mechanisms, particularly 

convection, between the heart and the body's surface through the bloodstream. Consequently, the convective 
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instability of blood in the presence of nanoparticles plays a pivotal role in advancing medical practices and 

enhancing healthcare outcomes. Gupta et al. [9] previously explored convection currents within Casson nanofluids 

incorporating internal heating effects. More recently, Gupta et al. [10] conducted an analytical and numerical 

investigation into the binary instability of Casson nanofluids. Phenomena of linear and weakly nonlinear thermal 

convection within Casson nanofluids subjected to helical force and magnetic effects [8], [17]. The structure of the 

paper is outlined as follows: Section 2 elaborates on the governing equations, while Sections 3 and 4 delve into 

the linear and weakly nonlinear theories, respectively. Subsequently, Sections 5 and 6 present the findings of the 

analysis, followed by a conclusion and discussion of the results.  

2. Mathematical formulation:  

The rheological equation of Casson fluid flow [21], [1], [12], [14], [13], [4]  is,  

                                                      𝜏𝑖𝑗 = 𝜇𝐵 + (
𝑃𝑦

√2𝜋
)2𝑒𝑖𝑗 , 𝜋 > 𝜋𝑐 ,                                                                         (1) 

                                                      𝜏𝑖𝑗 = 𝜇𝐵 + (
𝑃𝑦

√2𝜋𝑐
)2𝑒𝑖𝑗 , 𝜋 < 𝜋𝑐 .                                                                        (2) 

where, 

{

𝜇𝐵 =   𝑑𝑦𝑛𝑎𝑚𝑖𝑐  𝑣𝑖𝑠𝑐𝑜𝑠𝑖𝑡𝑦, 𝑒𝑖𝑗 =   𝑑𝑒𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛  𝑟𝑎𝑡𝑒,                                                                                                               

 𝜋𝑐 =   𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙  𝑣𝑎𝑙𝑢𝑒  𝑜𝑓  𝜋 = 𝑒𝑖𝑗𝑒𝑖𝑗   (𝑤ℎ𝑒𝑟𝑒  𝑒𝑖𝑗   𝑖𝑠  𝑡ℎ𝑒  (𝑖, 𝑗)𝑡ℎ  𝑠𝑒𝑔𝑚𝑒𝑛𝑡  𝑜𝑓  𝑑𝑒𝑓𝑜𝑟𝑚𝑖𝑛𝑔  𝑟𝑎𝑡𝑒),                             

𝑃𝑦 =   𝑦𝑖𝑒𝑙𝑑  𝑠𝑡𝑟𝑒𝑠𝑠  𝑏𝑒𝑙𝑜𝑤  𝑤ℎ𝑖𝑐ℎ  𝑡ℎ𝑒𝑟𝑒  𝑖𝑠  𝑛𝑜  𝑓𝑙𝑜𝑤  𝑜𝑐𝑐𝑢𝑟𝑠  𝑎𝑛𝑑  𝜏  𝑖𝑠  𝑡ℎ𝑒  𝑠𝑡𝑟𝑒𝑠𝑠  𝑡𝑒𝑛𝑠𝑜𝑟  𝑓𝑜𝑟  𝐶𝑎𝑠𝑠𝑜𝑛  𝑓𝑙𝑢𝑖𝑑.

 

Now we have to consider a layer of Casson nanofluid confined between the planes 𝑧∗ = 0 and 𝑧∗ = 𝑑 under a 

small temperature gradient (𝑇0
∗ − 𝑇1

∗), 𝑇0
∗ > 𝑇1

∗ and uniform internal heat source 𝑄0. Let us assume a frame in 

which the 𝑧∗-axis is adjusted vertically upward. The asterisk was used to explicit dimensional variables. The 

incompressible governing equations for fluid glide with the idea that agglomeration of debris does no longer occur 

and the suspension remains strong [21], [1] are, 

 

Figure 1: Physical Diagram 

Continuity equation:                     ∇∗ ⋅ 𝑣∗ = 0.                                                                                                      (3) 

 

Momentum equation:   𝜌(
𝜕

𝜕𝑡∗
+ 𝑣∗ ⋅ ∇∗)𝑣∗ = −∇∗𝑝∗ + 𝑑𝑖𝑣𝜏 + [𝜙∗𝜌𝑝 + (1 − 𝜙

∗)(1 − 𝛽(𝑇∗ − 𝑇0
∗))]𝑔 

                                                           +𝜎1(𝑉 × 𝐵0𝑒̂𝑧) × 𝐵0𝑒̂𝑧 + 𝜌0𝑎Ω𝑑𝑓.                                              (4) 
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𝜌𝑓0[
𝜕𝑣∗

𝜕𝑡∗
+ 𝑣∗ ⋅ ∇∗𝑣∗) = −∇∗𝑝∗ + (1 +

1

𝛽
)𝜇∇∗2𝑣∗ + [𝜙∗𝜌𝑝 + (1 − 𝜙

∗)(1 − 𝛽(𝑇∗ − 𝑇0
∗))]𝑔 

                                           +𝜎1(𝑉 × 𝐵0𝑒̂𝑧) × 𝐵0𝑒̂𝑧 + 𝜌0𝑎Ω𝑑𝑓.                                                             (5) 

There is no buoyancy term present in the x and y axes and the Boussinesq approximation was used. The left hand 

side of Eq. (5) indicates the inertial term, the right hand side offers the strain gradient and lastly the viscous time 

period. 

The equation of nanoparticles changes when there is no chemical reaction, 

                                                      
𝜕𝜙∗

𝜕𝑡∗
+ 𝑣∗ ⋅ ∇𝜙∗ = −

1

𝜌𝑝
∇ ⋅ 𝑗𝑝. (6) 

Here diffusion mass flux of nanoparticles 𝑗𝑝 is the sum of two diffusion terms given as, 

                         𝑗𝑝 = 𝑗𝑝,𝑏 + 𝑗𝑝,𝑡 = −𝜌𝑝𝐷𝑏∇𝜙
∗ − 𝜌𝑝𝐷𝑡

∇𝑇∗

𝑇0
∗ . (7) 

Combining Eqs. (5) and (6), we get, 

                       
𝜕𝜙∗

𝜕𝑡∗
+ 𝑣∗ ⋅ ∇𝜙∗ = 𝐷𝑏∇

∗2𝜙∗ + (
𝐷𝑡

𝑇0
∗)∇

∗2𝑇∗. (8) 

Equation of energy,  

(𝜌𝑐)𝑓[
𝜕𝑇∗

𝜕𝑡∗
+ 𝑣∗ ⋅ ∇𝑇∗] = 𝑘∇∗2𝑇∗ + (𝜌𝑐)𝑝[𝐷𝑏∇

∗𝜙∗ ⋅ ∇∗𝑇∗ +
𝐷𝑡

𝑇0
∗ ∇

∗𝑇∗ ⋅ ∇∗𝑇∗]. (9) 

By using nano-outcomes (Brownian diffusion and thermophoresis), equation (8) balances the terms for convection 

and conduction in the presence of nanoparticles and an internal heat source. 

{
 
 
 
 

 
 
 
 
𝑣∗ = (𝑢∗, 𝑣∗, 𝑤∗) = 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦, 𝑡∗ = 𝑇𝑖𝑚𝑒, 𝑝∗ = 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒,

𝛽 = 𝜇𝐵
√2𝜋

𝑃𝑦
=   𝑇ℎ𝑒  𝐶𝑎𝑠𝑠𝑜𝑛  𝑓𝑙𝑢𝑖𝑑  𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟,

𝜙∗ = 𝑇ℎ𝑒  𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒  𝑣𝑜𝑙𝑢𝑚𝑒  𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛, 𝑇∗ = 𝑇ℎ𝑒 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒,
𝜇 = 𝑇ℎ𝑒  𝑓𝑙𝑢𝑖𝑑  𝑣𝑖𝑠𝑐𝑜𝑠𝑖𝑡𝑦,
𝑔 =   𝑇ℎ𝑒  𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛  𝑑𝑢𝑒  𝑡𝑜  𝑔𝑟𝑎𝑣𝑖𝑡𝑦,
𝑘 = 𝑇ℎ𝑒  𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒  𝑡ℎ𝑒𝑟𝑚𝑎𝑙  𝑐𝑜𝑛𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦  𝑜𝑓  𝑡ℎ𝑒  𝑛𝑎𝑛𝑜𝑓𝑙𝑢𝑖𝑑, 𝜌 =   𝑇ℎ𝑒  𝑑𝑒𝑛𝑠𝑖𝑡𝑦,
𝜌𝑐 =   𝑇ℎ𝑒  ℎ𝑒𝑎𝑡  𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦, 𝑄0 =   𝑉𝑜𝑙𝑢𝑚𝑒𝑡𝑟𝑖𝑐ℎ𝑒𝑎𝑡  𝑠𝑜𝑢𝑟𝑐𝑒.
𝐷𝑏 = 𝐷𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑜𝑓  𝐵𝑟𝑜𝑤𝑛𝑖𝑎𝑛, 𝐷𝑡 =   𝑡ℎ𝑒𝑟𝑚𝑜𝑝ℎ𝑜𝑟𝑒𝑠𝑖𝑠  𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛  𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡

 

 

Assuming that the nanoparticles’ volumetric fraction and temperature are constant at the initial stage,  

                   𝑇∗ = 𝑇0
∗, 𝜙∗ = 𝜙0

∗  𝑎𝑡  𝑍∗ = 0, (10) 

                   𝑇∗ = 𝑇1
∗, 𝜙∗ = 𝜙1

∗  𝑎𝑡  𝑍∗ = 𝑑. (11) 

At the basic state, we anticipate that the fluid layer is relaxed and the fraction of nanoparticles is constant, while 

the other variables primarily fluctuate along the horizontal axis. 

The basic state of the Casson nano fluid is described by, 

       𝑣𝑏 = 0,  𝜙𝑏 = 0, 𝑇𝑏 = 𝑇0 − (
Δ𝑇

𝑑
) 𝑧.                                                                                               (12) 

The non-dimensional parameters are,  
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{
 
 
 
 

 
 
 
 (𝑥, 𝑦, 𝑧) = (

𝑥∗

𝑑
,
𝑦∗

𝑑
,
𝑧∗

𝑑
);         𝑡 =

𝑇∗𝛼𝑓

𝑑2
;

(𝑢, 𝑦, 𝑧) = (
𝑢∗𝑑

𝛼𝑓
,
𝑣∗

𝛼𝑓
,
𝑣∗

𝛼𝑓
);      𝛼𝑓 =

𝑘

(𝜌𝑐𝑝)𝑓
.

𝜙 =
(𝜙∗ − 𝜙0

∗)

(𝜙1
∗ − 𝜙0

∗)
;                           𝑇 =

(𝑇∗ − 𝑇1
∗)

𝑇0
∗ − 𝑇1

∗)
;

𝑝 =
𝑝∗𝐾2

𝜇𝛼𝑓
;

 

So far, it has been assumed that the spatial variations of k and 𝜇 are negligible. Indices "p", "f" and "0" seek advice 

from particles, fluids or reference variables. Then the Eqs. (3),(5),(8) and (9) Reduce, 

                                ∇ ⋅ 𝑣 = 0,                                                                                                                              (13) 

1

𝑃𝑟
(
𝜕𝑣

𝜕𝑡
+ 𝑣 ⋅ ∇𝑣) = −∇𝑝 + (1 +

1

𝛽
)∇2𝑣 − 𝑅𝑚𝑒𝑧 + 𝑅𝑎𝑇𝑒𝑧 − 𝑅𝑛𝜙𝑒𝑧 + 𝑆ℎ  𝑓 + 𝐻𝑎

2[(𝑉′ × 𝑒̂𝑧) × 𝑒̂𝑧]  (14)  

                     
𝜕𝑇

𝜕𝑡
+ 𝑣 ⋅ ∇𝑇 = 𝑤 + ∇2𝑇 +

𝑁𝑏

𝐿𝑒
∇𝜙. ∇𝑇 +

𝑁𝑎𝑁𝑏

𝐿𝑒
∇𝑇 ⋅ ∇𝑇, (15) 

      
𝜕𝜙

𝜕𝑡
+ 𝑣 ⋅ ∇𝜙 =

1

𝐿𝑒
∇2𝜙 +

𝑁𝑎

𝐿𝑒
∇2𝑇. (16) 

The boundary conditions in Eqs. (10) and (11) in the form of non-dimensional terms, 

                           𝑤 = 0, 𝐷2𝑤 = 0, 𝜙 = 0, 𝑇 = 0  𝑎𝑡  𝑍 = 0,                                              (17) 

                           𝑤 = 0,   𝐷2𝑤 = 0, 𝜙 = 0, 𝑇 = 0  𝑎𝑡  𝑍 = 1. (18) 

{
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 𝑅𝑎 = 𝜌𝑓0𝑔𝐾

3𝛽1
(𝑇0

∗ − 𝑇1
∗)

𝜇𝛼𝑓
(   𝑅𝑎𝑦𝑙𝑒𝑖𝑔ℎ  𝑛𝑢𝑚𝑏𝑒𝑟   ); 𝐿𝑒 =

𝛼𝑓

𝐷𝑏
(   𝐿𝑒𝑤𝑖𝑠  𝑛𝑢𝑚𝑏𝑒𝑟   );

𝑃𝑟 =
𝜇

𝜌𝛼𝑓
(   𝑃𝑟𝑎𝑛𝑑𝑡𝑙  𝑛𝑢𝑚𝑏𝑒𝑟   ), 𝐻𝑎 = 𝐵0𝐿√

𝜎1
𝜇
(   𝐻𝑎𝑟𝑡𝑚𝑎𝑛𝑛  𝑛𝑢𝑚𝑏𝑒𝑟   ).

𝑁𝑏 = (𝜌𝑐)𝑝
(𝜙0

∗ − 𝜙1
∗)

𝜌𝑐
(   𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒  𝑑𝑒𝑛𝑠𝑖𝑡𝑦  𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡   ),

𝑁𝑎 =
𝐷𝑡
𝐷𝑏

(𝑇0
∗ − 𝑇1

∗)

𝑇1(𝜙1
∗ − 𝜙0

∗)
(   𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑  𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑣𝑖𝑡𝑦  𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛  (𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑  𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑣𝑖𝑡𝑦  𝑟𝑎𝑡𝑖𝑜)   ),

𝑅𝑚 = (
𝜌𝑝𝜙0

∗ + 𝜌𝑓0(1 − 𝜙0
∗)

𝜇𝛼𝑓
)𝑔𝐾3(   𝑇ℎ𝑒𝑟𝑚𝑎𝑙  𝑅𝑎𝑦𝑙𝑒𝑖𝑔ℎ  𝑛𝑢𝑚𝑏𝑒𝑟   ),

𝑅𝑛 =
(𝜌𝑝 − 𝜌𝑓0)(𝜙1

∗ − 𝜙0
∗)

𝜇𝛼𝑓
𝑔𝐾3(   𝑁𝑎𝑛𝑜𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒  𝑅𝑎𝑦𝑙𝑒𝑖𝑔ℎ  𝑛𝑢𝑚𝑏𝑒𝑟   ),

𝑆ℎ =
𝑎Ω𝑑2

𝜈
 (𝐻𝑒𝑙𝑖𝑐𝑎𝑙  𝑓𝑜𝑟𝑐𝑒  𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟) .

 

To explore linear theory, consider the linear part of eqs. (13)-(16),  

1

𝑝𝑟

𝜕𝑣

𝜕𝑡
= −∇𝑝 + (1 +

1

𝛽
)∇2𝑣 − 𝑅𝑚𝑒𝑧 + 𝑅𝑎𝑇𝑒𝑧 − 𝑅𝑛𝜙𝑒𝑧 + 𝐻𝑎

2[(𝑉′ × 𝑒̂𝑧) × 𝑒̂𝑧] + 𝑆ℎ 𝑓, (19) 

𝜕𝑇

𝜕𝑡
= 𝑤 + ∇2𝑇, (20) 

𝜕𝜙

𝜕𝑡
=

1

𝐿𝑒
∇2𝜙 +

𝑁𝑎

𝐿𝑒
∇2𝑇, (21) 

𝑤 = 0, 𝐷2𝑤 = 0, 𝜙 = 0, 𝑇 = 0  𝑎𝑡  𝑍 = 0, 

                           𝑤 = 0, 𝐷2𝑤 = 0, 𝜙 = 0, 𝑇 = 0  𝑎𝑡  𝑍 = 1. (22) 
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By Taking the third components of curl of Eq.(19) and curl of curl of Eq. (19), we obtain,  

(
1

𝑃𝑟

𝜕

𝜕𝑡
− (1 +

1

𝛽
)∇2 +𝐻𝑎2)𝑤𝑧 − 𝑆ℎ

𝜕2𝑤

𝜕𝑧2
= 0, (23) 

(
1

𝑃𝑟

𝜕

𝜕𝑡
− (1 +

1

𝛽
)∇2 +𝐻𝑎2

𝜕2

𝜕𝑧2
)∇2𝑤 + (𝑅𝑛𝜙 − 𝑅𝑎𝑇)∇ℎ

2 − 𝑆ℎ (∇ℎ
2𝑤𝑧 −

𝜕2𝑤𝑧

𝜕𝑧2
) = 0 (24) 

where 𝜔𝑧 = (∇ × 𝑉) ⋅ 𝑒̂𝑧, ∇ℎ
2=

𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
, and ∇2=

𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
+

𝜕2

𝜕𝑧2
.  

Now Eqs. (23), (24), (20) and (21) becomes, 

                                                  𝐴1𝑤𝑧 − 𝑆ℎ
𝜕2𝑤

𝜕𝑧2
= 0,                                                                                           (25) 

                                   𝐴2𝑤 − 𝑆ℎ (∇ℎ
2𝑤𝑧 −

𝜕2𝑤𝑧

𝜕𝑧2
) + (𝑅𝑛𝜙 − 𝑅𝑎𝑇)∇ℎ

2= 0, (26) 

                                   𝐴3𝑇 − 𝑤 = 0, (27) 

                                                 𝐴4𝜙 =
𝑁𝑎

𝐿𝑒
∇2𝑇.                                                                                                    (28) 

Where,  

{
 
 
 
 

 
 
 
 𝐴1 = (

1

𝑃𝑟

𝜕

𝜕𝑡
− (1 +

1

𝛽
)∇2 + 𝐻𝑎2) ,

𝐴2 = (
1

𝑃𝑟

𝜕

𝜕𝑡
∇2 − (1 +

1

𝛽
)∇4 + 𝐻𝑎2

𝜕2

𝜕𝑧2
)

𝐴3 =
𝜕

𝜕𝑡
− ∇2,

𝐴4 =
𝜕

𝜕𝑡
−
1

𝐿𝑒
∇2.

 

Let us replace  𝑤 = sin𝜋𝑧𝑒𝑖(𝑙𝑥+𝑚𝑦)+𝜎𝑡, where 𝜎 = 𝑖𝑤 in (25)-(28) then we have obtained,  

                                                   𝑅𝑎 =
𝑋1+𝑋2𝜔

2+𝑋3𝜔
4+𝑋4𝜔

6+𝑖(𝑋4𝜔+𝑋5𝜔
3+𝑋7𝜔

5)

𝑋8+𝑋9𝜔
2+𝑋10𝜔

4 . (29) 

Where, 

𝑋1 = 𝑃𝑟
4𝛽𝛿4(𝐻𝑎2𝛽 + (1 + 𝛽)𝛿2)((𝐻𝑎2𝛽 + (1 + 𝛽)𝛿2)(−𝑁𝑎𝑞2𝑅𝑛𝛽 + 𝐻𝑎2𝛽𝛿2𝜋2 + (1 + 𝛽)𝛿6) + (−𝜋2

+ 𝑞2)𝛽2𝛿2𝑆ℎ
2)𝜋2, 

𝑋2 = 𝑃𝑟2𝛽𝛿2(𝐻𝑎6𝐿𝑒2𝜋2𝑃𝑟2𝛽3 − 𝑁𝑎𝑞2𝑅𝑛𝛽3𝛿2 + (1 + 𝛽)(𝐿𝑒2𝑃𝑟2(1 + 𝛽)2 − 𝛽(𝑃𝑟 + (−1 + 𝑃𝑟)𝛽))𝛿8

+ 𝐻𝑎4𝑃𝑟𝛽2𝛿2(−𝛽𝛿2 + 𝐿𝑒2𝑃𝑟(1 + 𝛽)(2𝜋2 + 𝛿2)) + 𝐻𝑎2𝛽𝛿4(𝐿𝑒2𝑃𝑟2(1 + 𝛽)2(𝜋2 + 2𝛿2)

+ 𝛽(𝜋2𝛽 − 2𝑃𝑟(1 + 𝛽)𝛿2)) − 𝜋2𝑃𝑟(𝜋 − 𝑞)(𝜋 + 𝑞)𝛽2(𝐻𝑎2𝐿𝑒2𝑃𝑟𝛽 + (𝛽 + 𝐿𝑒2𝑃𝑟(1

+ 𝛽))𝛿2)𝑆ℎ
2), 

𝑋3 = −𝑃𝑟𝛽2(𝐻𝑎2𝐿𝑒2𝑃𝑟(−𝜋2 + 𝐻𝑎2𝑝𝑟)𝛽2𝛿2 + 2𝐻𝑎2𝐿𝑒2𝑃𝑟2𝛽(1 + 𝛽)𝛿4 + (𝛽2 + 𝐿𝑒2𝑃𝑟(1 + 𝛽)(𝑃𝑟 + (−1

+ 𝑃𝑟)𝛽))𝛿6 + 𝐿𝑒2𝜋2𝑃𝑟2(𝜋 − 𝑞)(𝜋 + 𝑞)𝛽2𝑆ℎ
2), 

𝑋4 = −𝐿𝑒2𝑃𝑟𝛽4𝛿2,  

𝑋5 = 𝑃𝑟3𝛽𝛿2((𝐻𝑎2𝛽 + (1 + 𝛽)𝛿2)2(𝐿𝑒𝑁𝑎𝑃𝑟𝑞2𝑅𝑛𝛽 + 𝐻𝑎2𝜋2𝑃𝑟𝛽𝛿2 + (𝑃𝑟 + 𝛽 + 𝑃𝑟𝛽)𝛿6) − 𝜋2(𝜋 − 𝑞)(𝜋

+ 𝑞)𝛽2𝛿2(𝐻𝑎2𝑃𝑟𝛽 + (𝑃𝑟 + (−1 + 𝑃𝑟)𝛽)𝛿2)𝑆ℎ
2), 

𝑋6 = 𝑃𝑟𝛽(𝐻𝑎6𝐿𝑒2𝜋2𝑃𝑟3𝛽3 + 𝐿𝑒𝑁𝑎𝑃𝑟𝑞2𝑅𝑛𝛽3𝛿2 + (𝑃𝑟 + 𝛽 + 𝑃𝑟𝛽)(𝛽2 + 𝐿𝑒2𝑃𝑟2(1 + 𝛽)2)𝛿8

+ 𝐻𝑎4𝐿𝑒2𝑃𝑟2𝛽2𝛿2(2𝜋2𝑃𝑟(1 + 𝛽) + (𝑃𝑟 + 𝛽 + 𝑃𝑟𝛽)𝛿2) + 𝐻𝑎2𝑃𝑟𝛿4(𝜋2𝛽3 + 𝐿𝑒2𝑃𝑟𝛽(1

+ 𝛽)(𝜋2𝑃𝑟(1 + 𝛽) + 2(𝑃𝑟 + 𝛽 + 𝑃𝑟𝛽)𝛿2)) − 𝐿𝑒2𝜋2𝑃𝑟2(𝜋 − 𝑞)(𝜋 + 𝑞)𝛽2(𝐻𝑎2𝑝𝑟𝛽 + (𝑃𝑟

+ (−1 + 𝑃𝑟)𝛽)𝛿2)𝑆ℎ
2), 
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 𝑋7 = 𝐿𝑒2𝑃𝑟𝛽3(𝐻𝑎2𝜋2𝑃𝑟𝛽 + (𝑃𝑟 + 𝛽 + 𝑃𝑟𝛽)𝛿4), 

𝑋8 = 𝑃𝑟4𝑞2𝛽2𝛿4(𝐻𝑎2𝛽 + (1 + 𝛽)𝛿2)2,  

𝑋9 = 𝑃𝑟
2𝑞2𝛽2(𝐻𝑎4𝐿𝑒2𝑃𝑟2𝛽2 + 2𝐻𝑎2𝐿𝑒2𝑃𝑟2𝛽(1 + 𝛽)𝛿2 + (𝛽2 + 𝐿𝑒2𝑃𝑟2(1 + 𝛽)2)𝛿4),  

𝑋10 = 𝐿𝑒2𝑃𝑟2𝑞2𝛽4.                                                                                                                                             (30) 

3. Stationary Convection 

First, we consider stationary instability, i.e., 𝜔 = 0 is real. The stationary Rayleigh number 𝑅𝑎𝑠𝑐 can be written 

as,  

 𝑅𝑎𝑠𝑐 = −𝑁𝑎𝑅𝑛 +
𝐻𝑎2𝜋2𝛿2

𝑞2
+

(1+
1

𝛽
)𝛿6

𝑞2
+

𝜋2(−𝜋2+𝑞2)𝛿2𝑆ℎ
2

𝑞2(𝐻𝑎2+(1+
1

𝛽
𝛿2))

. (31) 

 

                                          

                                                                                    𝑞 

Figure 2: Neutral stability curves for 𝑅𝑎𝑠𝑐 with different values of 𝑆ℎ for fixed values of 𝐿𝑒 = 5, 𝑃𝑟 = 5, 𝐻𝑎2 =

0.2,  𝑁𝑎 = 1, 𝛽 = 2 and 𝑆ℎ = 0.1. 

4. Oscillatory Convection  

We considered the real and imaginary components of 𝑅𝑎, requiring the imaginary part of 𝑅𝑎 to vanish. This 

condition allows us to solve for 𝜔2. By substituting 𝜔2 back into the real part of 𝑅𝑎, we derive the thermal 

Rayleigh number for oscillatory convection, denoted as 𝑅𝑎𝑜𝑐 . 

                            𝑅𝑎𝑜𝑐 =
𝑋1+𝑋2𝜔

2+𝑋3𝜔
4+𝑋4𝜔

6

𝑋8+𝑋9𝜔
2+𝑋10𝜔

4 . (32) 

Where ,                                𝜔2 =
−𝑋6±√(𝑋6

2−4𝑋7𝑋5)

2𝑋7
. 

From this, we obtain two roots. If one root is positive and the other is negative, we select the positive root. If both 

roots are positive, we choose the smaller of the two. 

                                                                            𝑞 

2.1 2.15 2.2 2.25 2.3 2.35 2.4 

1014 

1015 

1016 

1017 

1018 

1019 
Sh=0.1,0.2,0.3,0.4,0.5 



Tuijin Jishu/Journal of Propulsion Technology 

ISSN: 1001-4055 

Vol. 45 No. 4 (2024) 

__________________________________________________________________________________ 

1774 

Figure 3:Neutral stability curves for 𝑹𝒂𝒔𝒄 with different values of 𝑹𝒏 for fixed values of 𝑳𝒆 = 𝟓, 𝑷𝒓 = 𝟓,   

𝑵𝒂 = 𝟐, 𝜷 = 𝟐, 𝑯𝒂𝟐 = 𝟏 and 𝑺𝒉 = 𝟎. 𝟐. 

                                           

                                                                                       𝑞 

Figure 4:Neutral stability curves for 𝑹𝒂𝒔𝒄 with different values of 𝑵𝒂 for fixed values of 𝑳𝒆 = 𝟓, 𝑷𝒓 = 𝟓, 

𝑯𝒂𝟐 = 𝟐,𝜷 = 𝟐, 𝑹𝒏 = 𝟎. 𝟓 and 𝑺𝒉 = 𝟎. 𝟓 

                                                                               𝑞                                                  
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Figure 5:Neutral stability curves for 𝑹𝒂𝒔𝒄 with different values of 𝑯𝒂 for fixed values of 𝑳𝒆 = 𝟓, 𝑷𝒓 = 𝟓,   

𝑵𝒂 = 𝟏,𝑹𝒏 = 𝟎. 𝟏 ,𝜷 = 𝟐 and 𝑺𝒉 = 𝟎. 𝟏. 

                                     

𝑞 

Figure 6:Neutral stability curves for 𝑹𝒂𝒔𝒄 with different values of 𝜷 for fixed values of 𝑳𝒆 = 𝟓, 𝑹𝒏 = 𝟎. 𝟓,    

𝑷𝒓 = 𝟓, 𝑵𝒂 = 𝟏,, 𝑯𝒂𝟐 = 𝟐, and 𝑺𝒉 = 𝟎. 𝟓. 

                                                                     𝑞 

Figure 7:Neutral stability curves for 𝑅𝑎𝑜𝑐  with different values of 𝑠ℎ for fixed values of 𝑅𝑛 = 0.1, 𝑃𝑟 = 10, 

𝑁𝑎 = 1,𝛽 = 5, 𝐿𝑒 = 5and 𝐻𝑎2 = 1. 

                                    

                                                                         𝑞 
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Figure 8:Neutral stability curves for 𝑹𝒂𝒐𝒄 with different values of 𝑯𝒂𝟐 for fixed values of 𝑹𝒏 = 𝟎. 𝟏, 

𝑷𝒓 = 𝟏𝟎, 𝑵𝒂 = 𝟏, 𝜷 = 𝟓, 𝑳𝒆 = 𝟓and 𝑺𝒉 = 𝟎. 𝟐. 

                                  

                                                                                    𝑞 

Figure 9:Neutral stability curves for 𝑅𝑎𝑜𝑐  with different values of 𝑁𝑎 for fixed values of 𝑅𝑛 = 1, 𝑃𝑟 = 2,         

𝑆ℎ = 2, 𝛽 = 5, 𝐿𝑒 = 5 and 𝐻𝑎2 = 1. 

 

                                                                                        𝑞 

Figure 10:Neutral stability curves for 𝑹𝒂𝒐𝒄 with different values of 𝑹𝒏 for fixed values of 𝑹𝒏 = 𝟎. 𝟏, 𝑷𝒓 =

𝟓, 𝑵𝒂 = 𝟏 , 𝜷 = 𝟐, 𝑺𝒉 = 𝟎. 𝟐 𝑳𝒆 = 𝟓 and 𝑯𝒂𝟐 = 𝟏. 

 

 

Figure 11:Neutral stability curves for 𝑹𝒂𝒐𝒄 with different values of 𝜷 for fixed values of 𝑹𝒏 = 𝟎. 𝟏, 𝑷𝒓 =

𝟐, 𝑵𝒂 = 𝟏, 𝜷 = 𝟐, 𝑺𝒉 = 𝟐 𝑳𝒆 = 𝟐 and 𝑯𝒂𝟐 = 𝟎. 𝟐. 
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                                                                                                                   𝑞 

                                                      

                                                                             𝑞 

Figure 12:Neutral stability curves for 𝑹𝒂𝒐𝒄 with different values of 𝑷𝒓 for fixed values of 𝑹𝒏 = 𝟎. 𝟏, 𝑷𝒓 =

𝟐, 𝑵𝒂 = 𝟏, 𝜷 = 𝟏𝟎, 𝑺𝒉 = 𝟎. 𝟐 𝑳𝒆 = 𝟓 and 𝑯𝒂𝟐 = 𝟏. 

                                               

                         

                                                                            𝑞 

Figure 13:Neutral stability curves for 𝑹𝒂𝒐𝒄 with different values of 𝑳𝒆 for fixed values of 𝑹𝒏 = 𝟎. 𝟏, 𝑷𝒓 =

𝟏𝟎, 𝑵𝒂 = 𝟏, 𝜷 = 𝟓, 𝑺𝒉 = 𝟎. 𝟐 𝑳𝒆 = 𝟐 and 𝑯𝒂𝟐 = 𝟏. 
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                                                                       𝑞 

Figure 14:The change of 𝑵𝒖 vs 𝑹𝒔𝒄,with different values of 𝜷 for fixed vales of 𝑳𝒆 = 𝟎. 𝟓, 𝑷𝒓 = 𝟎. 𝟏, 

𝑹𝒏 = 𝟎. 𝟐, 𝑺𝒉 = 𝟓, 𝑯𝒂𝟐 = 𝟎. 𝟏 and 𝑵𝒂 = 𝟎. 𝟐. 

5. Weakly nonlinear analysis 

To investigate the type of convective motion, weakly nonlinear theory is needed. We consider the non-

dimensional equations with non linear terms, which are,  

1

𝑃𝑟
(
𝜕𝑣

𝜕𝑡
+ (𝑣. ∇)𝑣) = −∇𝑝 + (1 +

1

𝛽
)∇2𝑣 − 𝑅𝑚𝑒𝑧 + 𝑅𝑎𝑇𝑒𝑧 − 𝑅𝑛𝜙𝑒𝑧 − 𝑆ℎ  𝑓 + 𝐻𝑎

2[(𝑉′ × 𝑒̂𝑧) × 𝑒̂𝑧],             (33) 

𝜕𝑇

𝜕𝑡
+ (𝑣. ∇)𝑇 = 𝑤 + ∇2𝑇 +

𝑁𝑎𝑁𝑏

𝐿𝑒
∇𝑇. ∇𝑇 +

𝑁𝑏

𝐿𝑒
∇𝑇. ∇𝜙, (34) 

𝜕𝜙

𝜕𝑡
+ (𝑣. ∇)𝜙 =

1

𝐿𝑒
∇2𝜙 +

𝑁𝑎

𝐿𝑒
∇2𝑇. (35) 

To study the weakly nonlinear theory, we follow the multiple scale analysis. We write the governing equations as 

follows(after eliminating 𝑇 and 𝜙),  

                                                           𝐿𝑤 = 𝑁.                                                                                     (36) 

Where,  

{
 
 

 
 𝐿 = 𝐴1𝐴2𝐴3𝐴4 − 𝑆ℎ

2
𝜕2

𝜕𝑧2
(∇ℎ

2 −
𝜕2

𝜕𝑧2
)𝐴3𝐴4 − 𝐴1𝐴4∇ℎ

2𝑅𝑎 +
𝑁𝑎

𝐿𝑒
∇ℎ
2∇2𝑅𝑛𝐴1,

𝑁 = 𝐴3𝐴4𝑁1𝑆ℎ
2 (∇ℎ

2 −
𝜕2

𝜕𝑧2
) − (𝐴1∇ℎ

2𝑅𝑛
𝑁𝑎

𝐿𝑒
∇2) (𝑁3 +𝑁4 + 𝑁5) − 𝑁6𝐴1𝐴3∇ℎ

2𝑅𝑛 + +

+𝐴1𝐴3𝐴4𝑁2 + 𝐴1𝐴4∇ℎ
2𝑅𝑎(𝑁3 + 𝑁4 + 𝑁5).

 

Where,                

{
 
 
 
 

 
 
 
 𝑁1 = −

1

𝑃𝑟
∇ × (𝑣 ⋅ ∇)𝑣,

𝑁2 = −
1

𝑃𝑟
∇ × (∇ × (𝑣 ⋅ ∇)𝑣),

𝑁3 =
𝑁𝑏

𝐿𝑒
∇𝜙 ⋅ ∇𝑇,

𝑁4 =
𝑁𝑎𝑁𝑏

𝐿𝑒
∇𝑇 ⋅ ∇𝑇,

𝑁5 = −𝑣 ⋅ ∇𝑇,
𝑁6 = −𝑣 ⋅ ∇𝜙.

 

680 690 630 640 650 660 670 
3.7 

3.75 

3.8 

3.85 

3.9 

3.95 

10 5 

8 =2 ,4,6, 
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We write 𝑢, 𝑣, 𝑤, 𝑇 and 𝜙 in the series expansion interms of 𝜖, 

                                                                  𝑢 = 𝜖𝑢0 + 𝜖
2𝑢1 + 𝜖

3𝑢2 +⋯,   

𝑣 = 𝜖𝑣0 + 𝜖
2𝑣1 + 𝜖

3𝑣2 +⋯, 

                                                                  𝑤 = 𝜖𝑤0 + 𝜖
2𝑤1 + 𝜖

3𝑤2 +⋯, 

                                     𝑇 = 𝜖𝑇0 + 𝜖
2𝑇1 + 𝜖

3𝑇2 +⋯, 

                                    𝜙 = 𝜖𝜙0 + 𝜖
2𝜙1 + 𝜖

3𝜙2 +⋯. (37) 

Where,        𝜖2 =
𝑅𝑎−𝑅𝑎𝑠𝑐

𝑅𝑎𝑠𝑐
<< 1. 

The first approximations are,  

                                                                                                                       (38) 

Where,  

{
𝐴 = 𝐴(𝑋, 𝑌, 𝑍, 𝑇) −  𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 ,
 𝑐. 𝑐. − 𝑐𝑜𝑚𝑝𝑙𝑒𝑥  𝑐𝑜𝑛𝑗𝑢𝑔𝑎𝑡𝑒 .

 

We now scale the slow variables (𝑋, 𝑌, 𝑍, & 𝑇) are as follows, 

𝑋 = 𝜖𝑥,    𝑌 = 𝜖
1
2𝑦,    𝑍 = 𝑧,    𝑇 = 𝜖2𝑡, 

Using the these scaling, the differential operators may written in the following form, 

 
𝜕

𝜕𝑥
→

𝜕

𝜕𝑥
+ 𝜖

𝜕

𝜕𝑋
    ,          

𝜕

𝜕𝑦
→

𝜕

𝜕𝑦
+ 𝜖

1

2
𝜕

𝜕𝑌
, 

                
𝜕

𝜕𝑧
→

𝜕

𝜕𝑍
                  ,         

𝜕

𝜕𝑡
→ 𝜖2

𝜕

𝜕𝑇
.                                   (39) 

By using Eq. (39), the operators 𝐿 and 𝑁 of Eq. (36) can be written as, 

 𝐿 = 𝐿0 + 𝜖𝐿1 + 𝜖
2𝐿2⋯, 

 𝑁 = 𝑁0 + 𝜖𝑁1 + 𝜖
2𝑁2⋯. (40) 

On substituting Eq. (40) into Eq. (36), and comparing the coefficients of 𝜖, 𝜖2 and 𝜖3, one obtains,  

                𝐿0𝑤0 = 0, (41) 

 𝐿0𝑤1 + 𝐿1𝑤0 = 𝑁0, (42) 

               𝐿0𝑤2 + 𝐿1𝑤1 + 𝐿2𝑤0 = 𝑁1. (43) 

 

where ,  

𝐿0 =
1

𝐿𝑒
∇ℎ
2∇2(𝑅𝑎 + 𝑁𝑎𝑅𝑛)(𝐻𝑎2 + ∇2(1 +

1

𝛽
)) +

1

𝐿𝑒
𝐻𝑎2∇4𝐷2 (𝐻𝑎2 − ∇2(1 +

1

𝛽
))  

 −
1

𝐿𝑒
𝐻𝑎2∇8(1 +

1

𝛽
) +

1

𝐿𝑒
∇10 (1 +

1

𝛽2
+

2

𝛽
) −

1

𝐿𝑒
∇4𝑆ℎ

2𝐷2(∇ℎ
2 − 𝐷2), (44) 
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𝐿1 = [(
1

𝐿𝑒
𝐻𝑎2(𝑅𝑎 + 𝑁𝑎𝑅𝑛))(∇ℎ

2 + ∇2) − (
1

𝐿𝑒
𝐻𝑎2(1 +

1

𝛽
)(𝑅𝑛𝑁𝑎 + 𝑅𝑎)(∇2 − 2∇ℎ

2))   

 −
1

𝐿𝑒
𝐻𝑎2∇4(1 +

1

𝛽
)(4∇2 + 3𝐷2) +

5

𝐿𝑒
∇8 (1 +

1

𝛽2
+

1

𝛽
) 

 +
2

𝐿𝑒
∇ℎ
2𝑆ℎ

2∇2 (𝐷2∇ℎ
2 −

∇2

2
− 1)]((2

𝜕2

𝜕𝑥𝜕𝑋
)2), 

𝐿2 = [
1

𝐿𝑒
𝐻𝑎4𝐷 +

1

𝐿𝑒
(𝑅𝑎 + 𝑁𝑎𝑅𝑛) (𝐻𝑎4𝐷 − (1 +

1

𝛽
)(∇ℎ

2 − 2∇2)) −
1

𝐿𝑒
𝐻𝑎2(1 +

1

𝛽
)∇2(∇2 + 3𝐷) −

1

𝐿𝑒
𝑆ℎ
2𝐷2((∇ℎ

2 − 𝐷2) − 2∇2)]((2
𝜕2

𝜕𝑥𝜕𝑋
)2) + [−∇ℎ

2𝐻𝑎2𝑅𝑎 − 𝐻𝑎4𝐷∇2(1 +
1

𝐿𝑒
) + ∇ℎ

2𝑅𝑎∇2(1 +
1

𝐿𝑒𝑃𝑟
+

1

𝛽
) +

∇ℎ
2∇2 (

𝑁𝑎𝑅𝑛

𝐿𝑒𝑃𝑟
+

𝑅𝑎

𝛽
) + 𝐻𝑎2∇4 (1 +

1

𝐿𝑒
(1 +

1

𝑃𝑟
) +

1

𝛽
(1 +

1

𝐿𝑒
)) (𝐷2 + ∇2) − ∇8 (1 +

1

𝐿𝑒
(1 +

2

𝑃𝑟
) +

1

𝛽2
(1 +

1

𝐿𝑒
) +

2

𝛽
+

2

𝐿𝑒𝛽
(1 +

1

𝑃𝑟
)) + 𝑆ℎ

2𝐷2(∇ℎ
2 − 𝐷2 + (1 +

1

𝐿𝑒
)∇2)](

𝜕

𝜕𝑇
) + [

1

𝐿𝑒
𝐻𝑎2(𝑅𝑎 + 𝑁𝑎𝑅𝑛)(∇ℎ

2 + ∇2) −
2

𝐿𝑒
∇2∇ℎ

2 ((1 +

1

𝛽
)(𝑅𝑎 + 𝑁𝑎𝑅𝑛)) +

2

𝐿𝑒
𝐻𝑎4𝐷∇2 −

1

𝐿𝑒
∇4(1 +

1

𝛽
) (3𝐻𝑎2

𝜕

𝜕𝑧
+ 𝑅𝑎 + 𝑁𝑎𝑅𝑛) −

4

𝐿𝑒
𝐻𝑎2∇6(1 +

1

𝛽
) +

5

𝐿𝑒
∇8 (1 +

1

𝛽2
+

2

𝛽
) −

1

𝐿𝑒
𝑆ℎ
2𝐷2∇2(2∇ℎ

2 − 2𝐷2 + 1)](
𝜕2

𝜕𝑋2
). (45) 

Let us substitute the solution 𝑤0  into  𝐿0𝑤0 = 0 and one obtains,  

𝑅𝑎𝑠𝑐 = −𝑁𝑎𝑅𝑛 +
𝐻𝑎2𝜋2𝛿2

𝑞2
+

(1+
1

𝛽
)𝛿6

𝑞2
+

𝜋2(−𝜋2+𝑞2)𝛿2𝑆ℎ
2

𝑞2(𝐻𝑎2+(1+
1

𝛽
)𝛿2)

. (46) 

On substituting (38) in      𝐿0𝑤1 + 𝐿1𝑤0 = 𝑁0, we get   𝑁0 = 0   and   𝐿1𝑤0 = 0 . The equation reduces to,  

     𝑤1 = 0, (47)   

     𝑢1 = 0, (48)  

                   𝑇1 =
−1

2𝜋𝛿2
|𝐴|2𝑠𝑖𝑛2𝜋𝑧, (49) 

   𝜙1 =
𝑁𝑎𝐿𝑒

2𝜋𝛿2
(
1

𝐿𝑒
+ 1)|𝐴|2𝑠𝑖𝑛2𝜋𝑧. (50) 

On substituting these solutions in Eq. (43) , we obtain the Newell-Whitehead equation in the form of, 

                           𝜆0
𝜕𝐴

𝜕𝑇
− 𝜆1 (

𝜕

𝜕𝑋
−

𝑖

2𝑞

𝜕2

𝜕𝑌2
)
2

𝐴 − 𝜆2𝐴 + 𝜆3|𝐴|
2𝐴 = 0 (51) 

Where,  

𝜆0 = 𝑞2𝐻𝑎2𝑅𝑎 − (1 +
1

𝐿𝑒
)𝐻𝑎4𝜋2𝛿2 + (1 +

1

𝐿𝑒𝑃𝑟
(1 + 𝑁𝑎𝑅𝑛) +

1

𝛽
) 𝑅𝑎𝑞2𝛿2  

−𝐻𝑎2𝛿4 (1 +
1

𝐿𝑒𝑃𝑟
+
1

𝛽
+
1

𝐿𝑒
+

1

𝐿𝑒𝛽
) (𝜋2 + 𝛿2) − (1 +

1

𝐿𝑒
)𝑆ℎ

2𝜋2𝛿2(𝑞2 − 𝜋2) 

−(1 +
1

𝐿𝑒
(1 +

2

𝑃𝑟
) +

1

𝛽2
(1 +

1

𝐿𝑒
) +

2

𝛽
+

2

𝐿𝑒𝛽
(1 +

1

𝑃𝑟
)) 𝛿8, 

𝜆1 = (
𝐻𝑎2

𝐿𝑒
+

𝑞2

𝐿𝑒
(1 +

1

𝛽
) +

2

𝐿𝑒
𝛿2(1 +

1

𝛽
)) (𝑅𝑎 + 𝑁𝑎𝑅𝑛) −

𝐻𝑎2𝜋2

𝐿𝑒
(𝐻𝑎2 + 3𝛿2(1 +

1

𝛽
))  

 −
6𝐻𝑎2𝛿4

𝐿𝑒
(1 +

1

𝛽
) −

10

𝐿𝑒
𝛿6 (1 +

2

𝛽
+

1

𝛽2
) +

𝑆ℎ
2𝜋2

𝐿𝑒
(𝜋2 − 𝑞2 − 2𝛿2𝐿𝑒), 

𝜆2 = 𝑅𝑎𝑞2𝛿2 (𝐻𝑎2 +
1

𝐿𝑒
(1 +

1

𝛽
)𝛿2),  

              𝜆3 = 𝑞2 ((1 +
1

𝛽
)𝛿2 +𝐻𝑎2) (

𝑅𝑎

2𝐿𝑒
+

𝑁𝑎𝑅𝑛

2𝐿𝑒
+ 𝜋𝑁𝑎𝐿𝑒𝑅𝑛(1 +

1

𝐿𝑒
)).  

Considering only the 𝑥-dependence terms in Eq. (51),   one obtains, 
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𝑑2𝐴

𝑑𝑋2
+

𝜆2

𝜆1
(1 −

𝜆3

𝜆1
|𝐴|2) 𝐴 = 0, (52) 

                                ∴ 𝐴(𝑋) = 𝐴0𝑡𝑎𝑛ℎ (
𝑋

∧0
). (53) 

Where,             

{
 

 𝐴0 = (
𝜆2

𝜆3
)

1

2
,

∧0= (
2𝜆1

𝜆2
)

1

2
.

 

6. Heat transport by convection 

From Eq. (53), we get the maximum of steady amplitude (|𝐴𝑚𝑎𝑥|) as,  

                                                    |𝐴𝑚𝑎𝑥| = (
𝜖2𝜆2

𝜆3
)
1

2                                                                                               (54) 

We define Nusselt number in terms of amplitude 𝐴 as, 

                                                          𝑁𝑢 = 1 +
𝜖2

𝛿𝑆𝑐
2 |𝐴𝑚𝑎𝑥|

2,                                                                                          (55) 

From Eq. (55) , we obtain convection for 𝑅 > 𝑅𝑇𝑆𝑐 and conduction for 𝑅 ≤ 𝑅𝑇𝑆𝑐. From Eq. (51), is valid for 𝜆3 >

0 which is possible when 𝑅 > 𝑅𝑇𝑆𝑐,   this we get, 

1) convection for 𝑁𝑢 > 1, 

2) convection for 𝑁𝑢 ≥ 1(see in Fig.14). 

7. Results and Discussions 

This section presents a discussion of the results 

Figure 2  illustrates the effect of the helical force parameter (𝑆ℎ) on stationary convection, with other parameters 

( 𝑅𝑛, 𝑁𝑎 ,𝛽 , 𝐻𝑎2 ) held constant. The graph demonstrates that an increase in 𝑆ℎ results in a decrease in the critical 

𝑅𝑎𝑠𝑐, indicating that 𝑆ℎ exerts a destabilizing influence on the flow. 

Figure 3 illustrates the impact on the critical Rayleigh number for various values of the nanoparticle Rayleigh 

number ( 𝑅𝑛 ). The graph shows that as 𝑅𝑛 increases, the critical 𝑅𝑎𝑠𝑐 , decreases, indicating that 𝑅𝑛 has a 

destabilizing effect on the flow. 

Figure 4 presents the neutral stability curves for the exchange of stabilities in the parametric plane (𝑞,𝑅𝑎𝑠𝑐) for 

various values of the adjusted diffusivity proportion ( 𝑁𝑎), with fixed values of the nanoparticle Rayleigh number 

(𝑅𝑛), Hartman number (𝐻𝑎2), ,Casson parameter(𝛽) , helical force parameter (𝑆ℎ) . The figure shows that as 𝑁𝑎 

increases, the neutral stability curves shift downward monotonically, clearly indicating increased instability in the 

system. In other words, an increasing 𝑁𝑎 value has a destabilizing effect. 

Figure 5 demonstrates how the stationary critical Rayleigh number of neutral curves are affected by the Hartman 

number (𝐻𝑎2). With other fixed numbers, the stationary critical Rayleigh number increases.This shows that as 

𝐻𝑎2 rises, the neutral stability curves shift monotonically increases, clearly indicating increased stability in the 

system. In other words, an increasing 𝐻𝑎2 value has a stabilizing effect. 

The impact of the Casson fluid parameter (𝛽) on stationary instability is observed in figure 6.where increase in 𝛽 

leads to decrese in the critical 𝑅𝑎𝑠𝑐 .This establishes that when 𝛽 grows, the temperature differential increases, 

resulting in a destabilizing effect of 𝛽. As a result, the system becomes less stable. 

Figure 7 refers to the exchange of stabilities and displays neutral curves in the plane (𝑞, 𝑅𝑎𝑜𝑐) for different values 

of 𝑆ℎ. From this figure, one can observe that the neutral stability curves move downward monotonically as 𝑆ℎ 

increases, i.e., an increase in the 𝑆ℎ causes a destabilization in the system. 
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Figure 8 depicts the neutral curves for different values of 𝐻𝑎2 at the onset of oscillatory convection, and it is 

found that the neutral curves move upward with an increase in the value of𝐻𝑎2, thus 𝐻𝑎2 stabilizes the oscillatory 

convection. 

Figure 9 illustrates the impact of the adjusted diffusivity ratio (𝑁𝑎) on the oscillatory critical Rayleigh number, 

an increase in 𝑁𝑎 leads to a decrease in the oscillatory critical Rayleigh number. This implies that as 𝑁𝑎 rises, 

which amplifies 𝑁𝑎’s destabilizing effect. As a result, the system’s stability decreases. 

Figure 10 depicts the effect of nanoparticle Rayleigh number (𝑅𝑛) on the oscillatory instability, where it is 

observed that an increase in 𝑅𝑛 leads to a decrease in the critical 𝑅𝑎𝑜𝑐.This behavior can be explained by the fact 

that an increase in 𝑅𝑛 leads to a decrease in the fluid flow, which enhances the instability. 

Figure 11 shows that the effect of the Casson fluid parameter (𝛽) on the oscillatory critical Rayleigh number . An 

increase in 𝛽 leads to a increase in the oscillatory critical Rayleigh number. This indicates that as 𝛽 increases, 

which enhancing 𝛽’s stabilizing effect. Consequently, the system becomes more stable. 

Figure 12 illustrates the influence of the Prandtl number (𝑃𝑟) on the oscillatory critical Rayleigh number in the 

context of steady-state instability. From figure one can understand that an increase in 𝑃𝑟 leads to a rise in the 

oscillatory critical Rayleigh number. This suggests that as 𝑃𝑟 increases, thereby enhancing the stabilizing effect 

of 𝑃𝑟. As a result, the system becomes more stable. 

Figure 13 presents the neutral curves for the exchange of stabilities in the parametric plane (𝑞,𝑅𝑎𝑜𝑐) for various 

values of the Lewis number (𝐿𝑒), with fixed values of the nanoparticle Rayleigh number (𝑅𝑛), Hartman number 

(𝐻𝑎2), Casson parameter(𝛽), adjusted diffusivity ratio (𝑁𝑎) ,helical force parameter (𝑆ℎ) and the Prandtl number 

(𝑃𝑟) . The figure shows that as 𝐿𝑒 increases, the neutral stability curves shift upward monotonically, clearly 

indicating increased stability in the system. In other words, an increasing 𝐿𝑒 value has a stabilizing effect. 

8. Conclusions 

The paper investigates the thermal convection of a Casson fluid in a horizontal layer influenced by magnetic and 

helical force parameters. Both linear and weakly non-linear analyses are performed to assess the fluid’s stability. 

The critical Rayleigh number is calculated in the linear analysis, while the Nusselt number is determined in the 

weakly non-linear analysis.A one-term Galerkin approach is employed to study the linear theory, while multiple 

scale analysis is used to investigate the weakly non-linear theory. 

    • The Hartman number (𝐻𝑎) exerts a stabilizing effect on the system in both stationary and oscillatory 

convection.  

    • Meanwhile, the helical force parameter(𝑆ℎ),the adjusted diffusivity ratio (𝑁𝑎), and the nanoparticle Rayleigh 

number (𝑅𝑛) have a destabilizing effect on the system in both stationary and oscillatory convection.  

    • The Lewis number (𝐿𝑒) and Prandtl number(𝑃𝑟) exhibit a stabilizing effect on oscillatory convection, but in 

the case of stationary convection, they do not have any impact on the system.  

    • The Casson parameter (𝛽) has a destabilizing effect in the case of stationary convection, whereas it shows a 

stabilizing effect on the system in oscillatory convection.  
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