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Abstract: In this work, we extend generalized t — 1 —contraction mappings in the setting of partial metric spaces.
These results substantially generalize the results of Baiz et al. [7, 8] and Kumam et al. [5]. We give some consequences
of the established result and provide an example in support of our result. An application of main result to the existence of
solution of system of integral equations is also presented.
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1. Introduction

Fixed point theory is one of the most important topic in the development of nonlinear analysis. The Banach contraction
principle [1] is a well-known and one of the most useful theorems in nonlinear analysis. The Banach contraction principle
has been widely generalized and extended. Samet et al. [4] extended and generalized the Banach contraction principle by
introducing a new class of contractive type mappings known as a — 1 contractive type mappings. Further, Kumam et al.
[5] introduced the notion of weak a — -contractive mappings and established fixed point results for this class of
mappings. On the other hand, Baiz et al. [7, 8] introduced a new generalization of contraction mappings as 7 —
p-contraction and generalized t — y-contraction mappings and established results in rectangular quasi b-metric spaces
and rectangular M-metric spaces. Matthews [2,3] introduced a very interesting generalization of the metric space known
as partial metric space in which the self distance not required to be zero and proved the partial metric version of Banach
fixed point theorem. Many researchers worked on this interesting space. For more, the reader can refer to [6, 9, 14-17]
and the references therein. Very recently, Baiz et al. [7] introduced the concepts of t — iy-contraction mappings as
follows:

Definition 1.1. Let (¢,,d) be a rectangular quasi b-metric space and T : &, —» ®,, be a self mapping. T' is said to be a
generalized t-y-contractive mapping if there exists ¥ € ¥ and 7 > 1 such that ra(l"fp, an) < YCE(Epmp))

For all, whereé,,n, € @,

(&, '&,)8(&p, )
1+ a(S(p'rr/p) + a(np'rfp)

Z(Ep'np) = max a(fp'np)'( )'a(fp'rfp)'a(np'rnp) (2)

And ¥ = {i: R* - R*, ¥ is nondecreasing, continuous Y5, sk (t) < oo, sy(t) <t and ¥ (0) = 0 if and only
if if t=0, where y* isthe k" iterate of ,s > 1}.
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Now, we give some basic properties and results on the concept of partial metric space.

Definition 1.2. [2] Let @, be a non empty set. A function d,,: @, x @, - [0, «) is said to be partial metric on &, if
the following conditions hold:

L & =1y 0p(58p) = 0p (. 11p) = 0,0 11p);

2. 6,,(5,,, EP) = ap(fp'np);

3. 6,,(5,,, ’717) = ap(np' EP);

4. 0(&p1p) < 0p(&p ) + 0p(Gprmp) = 9p(Spr Gp)- Forall &m0, € @y,

The set @, equipped with the metric d,, defined above is called a partial metric space and it is denoted by (®,,d,)
(in short PMS).

Example 1.3. [12] Let &, = {[a,b]:a,b € R,a < b} and define 0y([a, b, [c,d]) = max {b,d} —
min{a, c}. Then (®,,d,) isa partial metric space.

Example 1.4 [12] Let &, = [0, 0) and define ap(fp,np) = max {§,, 7, }. Then (®,,d,) is partial metric space.
Lemma 1.5. [2,5] Let (®,,d,)be a partial metric space.

(@) Asequence {&,.} in (P,,0,) converges to apoint &, € @, if
ap(fp'fp) = }ljg ap(gpi' fp)'
(b) Asequence {&,} in (P,,d,) isa Cauchy sequence if lim d,(&,,¢,,) existsand finite,
i Jjimo i J

(c) (@, 0,) iscomplete if every Cauchy {$,,} in ®p converges to a point &, € @, such that
ap(fp'fp) = jliiinoo ap('fpi'fpj) = }ljg 0y (Spyr$p) = ap(fp'fp)'

Lemma 1.6. [2,3,11] Let 9, be a partial metric on ®,,, then the functions d,, d,, :®, X ®, - R* such that

dpk(fp'np) = 20,,(5,,,?),,) - ap(fpffp) - ap(np'np)
And
dpm(fp' ’711) = max{ap(fp, ’711) —0p (fp' fp)' 6,,(5,,, ’771) = 0p (np'np)}

= 261’ (fp: 7711) — min {ap (fp! fp): ap (np; np)}
Are metric on @,,. Further (®,,d,,) and (®,,d,, ) are metric spaces. Itis clear that d,, and d,,  are equivalent.

Let (®,,0,) be a partial metric space. Then
1. Asequence {§,.} in (P,,d,) isa Cauchy sequence < {&,,} isa Cauchy sequence in (tbp,dpk),
2. (®, 0,) iscomplete & (P,,d,, ) iscomplete. Moreover
}Hg Ay, (§pi §p) = 0 © 0,(§.6p) = }ljg 9 (§ppép) = l._ljiinw 0p (Szm'fpj)
Lemma 1.7. [10] Assume that &, — ¢ as i —> oo in a partial metric (®,,4d,) such that d,(¢,{) = 0. Then
lim 9,,(,,,0,) = 9,(3, ) forevery o, € @,,.

Lemma1.8.[13] Let (®,,3d,) be a partial metric space.

1. If 8,(&,mp) =0 then &, =1,
2. If & #mn, then 9,(&,,m,) > 0.
Definition1.9. [5] Let ¥ be the family of functions : [0, ) — [0, o) such that
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(i) vy isnondecreasing;
(i) () > 0 floreach t > 0;

(iii) lim y"(t) =0 forall t > 0, where ™ isthe n'" iterate of .
n—oo

Lemma 1.10 [5] For every function ¢ € ¥ one has ¥(t) <t forany t > 0.

2. Main Results

Definition 2.1. Let (CDp,ap) be a partial metric space and I': @, - @, be a given self map. We say that T is
generalized T —  —contraction mapping on @, if there exists y € ¥ and t > 1 such that for all §,n, € &, we

have

np),ap(zp'rzp) +26p(np' an)}> 1)

Td, (FEP, an) <y <max {ap (Ep,
Theorem 2.1: Let (cbp,ap) be a complete partial metric space and I': &, —» &, be a given self map. Suppose
that
(i) T isgeneralized T — { —contraction mapping;
(i) There exists &, € @, suchthat §, =T, = ri+tg, forall ie N;
(iif) T is continuous.
Then T has a unique fixed pointin @,
Proof.  From (ii) we have a sequence {§,,} in @, suchthat &,  _I¢, forall i€ N.
If Epi+1=§pi for some i € N, then &, is a fixed point of T' and the existence part of the proof is finished. Suppose that
Epnﬁipi forevery i € N.
Now, from (i) and (ii) we get

ap(zpi ’ Epi+1) = ap(rzpi_l ’ FEpi) < Tap(rzpi_l , Epi)
<y (max {613 (&p_pr &py)> Op (o0 TEpi_,) + 0 (8py. FEpi)})

2

- (max {ap (6 5,), 2lpertn) : 9 (5py z)})
= lp(max {ap (Epi’Ele)’ Op (Epi—vzpi)'}) (2)
Now, if
ap (Epi’zpi+1) > ap (Epi—l’gpi)
Then

6P (Epi' EPi+1) = lIJ( 6? (Epi’ Epi+1)) < ap(EPi’ EPi+1)

Which is a contradiction since 6p(Epi, Epm) > 0 by Lemma 1.8, therefore

ap (Epi’ EPi+1) = LIJ( ap (Epi' Epi—1))

for all i. Continuing this process and using induction, we obtain
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ap (Epi’ EPi+1) = lpl( ap (EPO’ Epl)) (3)
Using definition of § and letting i — oo in (3) we get that
lim aP (Epi' Epi+1) =0

i—>oo

Fix € > 0 andlet i(e) € N such that

0p (Epj. Epm) < e—1(e),

Forall j > i(€). We show that

aP (Epj' Epj+1 ) <€ (4)
Forall i=>j.

Note that (4) holds for i = j. Assume (4) holds for some i > j, then
Op (Epi. Sisa ) <0y (Epi. Sy ) +0p (Epm Episz ) — 0 (Epm Soja )
< 0y (55 Eyen ) + 9 (T8, Ty, )
< 0, (55 &0 ) + 79 (T, Ty )

aP (Epj' FEP] ) + ap(EPHL szi+1 )
2

< 9 (B, B0, ) + WCmax £, (8, & )

ap (Epj' EI-"j+1 ) + ap(zpiﬂ' EI-‘>i+2 )
2

< 0p (Epj, Spjat ) + Y(max {0, (Epj. Spist )'

<e—y(e) +v(e) Q)
This implies that (4) holds for i > j and hence we get
Jim 9, (8, 8, ) =0 ©
This implies that {5, } is a Cauchy sequence in the metric space (®p,d,,) and hence in (®,,d,, ) which is complete.

Therefore the sequence {§, } is convergent in the space (d>p, dpk). This implies that there exists &, € &, such that

limd,, (&, &) = 0. Again from Lemma 1.6 and (6), we get

00 (5, 8) = im0, (55, 8) = lim 0 (&,.85,) = 0
As T is continuous, we have

& =limg,, =limTlg =T,

im0 i~
Now, we show that the uniqueness of a fixed point of I'. Assume that ' has two distinct fixed point &, and n; such

that T'g, =&, and I'n, =7, then replacing &, by &, and n, by ny in(1)we get
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9y (& mp) = 0p(T5, ) < T0,(TE;, )

< p(max] 3, (8 ), (5 &) J;@p (- i)

< wmas oy g gy 2 B 8L 12006 )

< (9, (5mp)) < 35 (5mp) )

which is a contradiction. Hence T' has a unique fixed point. This completes the proof.

Now, we state the following fixed point theorem by removing the continuity assumption of T' from Theorem 2.1.
Theorem 2.2. (®,,0d,) be complete partial metric space and I': @, — @, be self map. Suppose that

(i) T isgeneralized t — Y-contraction mapping;

(i) Thereexists §, € @, suchthat §, =T%, = Fi“EpO forall ie N;

(iii) {Epi} is a sequence in @, such that Epi &, as i— oo,

Then T hasaunique fixed pointin @,

Proof. Following the proof of Theorem 2.1 we know that the sequence {Epi} given by Epi = is a Cauchy

Pit1
sequence in the complete partial metric space (cbp, 6p).

Consequently, there exists &, € @, such that
9p(8p.5p) = }ljg 0y (8py &) = j_liifgo 9p (Epi'zpj) =0
Therefore, it is sufficient to show that T' admits a fixed point.
Now, using the triangular inequality and (1) we get
ap (FEP’ Ep) = aP(FEP’ EPi+1) + aP(Ele' EIi’) - ap(zpi+1' EI~‘>i+1)
= ap(FEp’ l-‘Epi) + ap(zpi+1’ Ep)
< 10,(T%p, szi) + ap(zpm' &)

9p (& TEp ) + 0, (55, T,
qu max ap(zp'zpi)' p( ? p) 2 p( ? p) +ap(zpi+1'zp) (8)

Taking i — oo in (8) we get

ap(FEp, Ep) <y 9 (FEZP’ EP) < 0p (sz, Ep)

This is a contradiction, and so we obtain I'g, = &,.

Corollary 2.3. (®,,d,) be complete partial metric space and T': &, — &, be self map satisfying the condition

0p(Igp, My) < (ap(zp'np)) €)]

Forall §,n, € ®,, ¢ € Y. Then T has a unique fixe pointin @,

Corollary 2.4. (®,,d,) be complete partial metric space and I': @, — &, be self map satisfying the condition
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0p(TEp, Tnp) < (M(Ep'np)) (10)

Forall §,n, € &, ¢ € ¥. Where

M(Epinp) = max ap(Ep 'T]p), 6p (Ep' FEp) -;Bp (Up, In, )

Then T' has a unique fixed pointin @,

Example 2.2. Let &, =[0,1] and 9,(&,,n,) = max{g,,n,}. Then (®,,d,) is a complete partial metric space.

Consider the mapping I': @, — @, defined by I'(§,) =%’° for all &, and y: [0, ) — [0,0) be such that Y (t) = -

1+t
and T = ; without loss of generality we assume that §, = n,.

Now,

3
10,(Tg,,y) = 7% (%%) = %" (11)

On the other side

% (Ep' % ) +0p (np’ Iy ) Op <Ep’ %) +0p (T]p' n?p)

Y(max{d,(&,,np), = max{ 9,8, Mp),

2 2
g
=U(%) = 7% (12)
Therefore
d , T +0 , T
10,(T%,,Tp) < W | max<{a,(&,,np), 2 (Ep Ep) d (np np) (13)

2

It is clear that it satisfies all the conditions of Theorem 2.1. Hence T' has a fixed point, which in this case is 0.

3. Application
This section is influenced by the findings discussed in paper [6] and the aim is to provide an application of Theorem 2.1

as a study of the existence of a unique solution of the following integral equations:

£, () = f(t) + A f G(t, s)F, (s, £(s)) ds (14)

Mp(0) = £(X) + A f G(t,s)G, (s,np(s)) ds (15)

Forall t € [0,1] and A is areal number.
Let @, = C([0,1], R) be a set of all real valued continuous function on [0,1]. Let @, be endowed with partial metric

0p: @, X @, - [0,0) defined by

0p(8p p) = d(&p.mp) +cn = tgﬁﬁlkp(t) - Tlp(t)| +c,
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For all &, n, € ®, and {c,} is a sequence of positive real numbers such that lim c, = 0. Now we prove the
n—oo

following Theorem to ensure the existence of solution of system of integral equations.
Theorem 3.1. Assume the following conditions are satisfied:

() F,G,:[01]xR-R, G:[0,1] X [0,1] = R* and f:[0,1] - R are continuous.
(if) Define

I, (1) = f(0) + A f G(t, s)F, (s, zp(s)) ds (16)
0

M, (0 = (1) + A f, G(t,5)G, (s,np(s)) ds 17)

And when n - o

Fa (65®) = G (61,0)] < (& ® —n,©))
Forall te [0,1] and Yy € ¥,
(iii)
1

sup J |G(t,s)|ds <R < +o0

te[o,1] Jo
(iv) AR < 1.
Then the system of integral equations given in (14) and (15) has a solution.

Proof. Following the assumptions of Theorem 3.1, we have
0p(T,, Tp) < d(T'%,, ) + ¢y

= Sup |FEp(t) - an(t)| +cp
te[0,1]

= sup [ 126691 (55) - Galsnp@)]lds + <,
0

tefo,1

Letting n — oo we get
2u(1% Tny) < i sup [ (150 — 1, OIGC 5)1ds
< @G ng)) sup [} 16C)lds
< AIRY(d(Epp))
< (d(Epmyp)) < (2,55 mp))

Thus

0p(T'E, . Tnp) < W(0p(TE,, Tp)) < W max{ap(ip Mp), 2

Op (Ep' ey ) +0p (np' 'y ) }

Hence

Op (Ep' gy ) +0p (np’ My )
2

T(ap(FEp,an)) < ¥ max ap(zp'np)'
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Clearly, all the conditions of Theorem 2.1 are satisfied and so I' has a unique fixed point. Thus the system of integral

equations (14) and (15) has a unique solution.
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