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Abstract:- This article focuses on using common and non-professional 3D printing hardware and software to 

create and test PLA polymer and Stainless Steel 316L cylindrical shell constructions. The former is manufactured 

using FDM technology, employing an equilateral grid pattern with 80% infill for solid which closely mimic bone 

and bone interface. CATIA V5 is used to generate parametric and automated 3D model for these constructions. 

Compressive structural strength and stiffness are two important factors in biomedical use. Porosity is consider 

80% while the sample Modelling, Manufacturing and Testing the structure has been carried at lab UTM. The 

intrinsic limits of 3D printing, such as the anisotropic temperament of FDM, in-homogeneities, flaws, along with 

the impact of configurations on local buckling behaviour, are inferred from the experimental data. The 

experimental outcome demonstrates that SS 316L is strongest in compression (2249.42MPa) as compared to Solid 

PLA specimen with 80 infill (29.77MPa). Hollow polymer PLA specimen showed medium compressive strength 

(34.29 MPa experimentally. Static structural FEA simulation results were found to be within 10% range of the 

experimental results, and thus validation was achieved. The experimental tests showed that load carrying 

capacities of SS 316L, solid PLA with 80% infill and hollow PLA are 176580 N, 2066N and 1508N respectively. 

SEM is used to study morphology and possible prediction of failure of sample. It is concluded that hollow PLA 

material is the choice and substitute for bone and bone interface in biomedical applications considering its 

favourable properties determine experimentally in this work. 
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1. Introduction 

Basis of Literature Review 

Various reputed databases of research and review articles such as Springer, Elsevier, MDPI, IEEE, Willey Online, 

etc. are referred to while performing the literature review. Initially we identified around 150 research articles and 

review articles to obtain specific information from the same. Subsequently we filtered these articles according to 

years (2015 to 2021).  

2. Literature Review 

Large surgical bone defects can be caused by various disorders, which include of trauma, malignancy, or infection. 

These abnormalities pose significant obstacles for reconstructive orthopaedic surgery. Currently available 

therapies include ceramic and acrylic bone cements, as well as autologous and allogenic bone grafting (1-2). These 

kinds of therapy have a number of disadvantages. Autografts cause morbidity at the donor site and pose a supply 

issue (3-5). While ceramic cements can aid in bone healing but are not as strong mechanically as acrylic cements, 

they do offer mechanical support without any regenerative qualities (6). Better bone substitutes that have the 

ability to regenerate tissue and offer mechanical support are therefore clinically needed but currently unmet. 
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Research on scaffolds composed of composite materials and polymers has been concentrated in this respect (3, 

7). A developing field of study in bone healing is called tissue engineering (TE), in which scaffolds are coupled 

with cells and biologics to create momentary grafts that encourage tissue ingrowth and bone regeneration (8-13). 

With the long-standing objective of substituting impaired tissues and organs (14), TE seeks to preserve, enhance, 

or restore tissue functionality (2, 10). It is offered as a substitute strategy to get rid of the problems with allogeneic 

and autologous bone grafts (3, 15). Over time, various scaffolds have been developed for use in bone repair (57). 

To accomplish structural biomimicry, scaffolds must be necessarily fabricated as a permutation of materials (16-

17) since bone tissue, which is made of organic components like collagen and the mineral hydroxyapatite, is a 

heterogeneous material (18). It has been demonstrated that improving bioactivity can be achieved by combining 

materials like carbonatite hydroxyapatite (cHA) and polylactic acid (PLA) to produce composite or hybrid 

scaffolds (6, 17, 19-20). Since the chemistry and structure of PLA/HA combine to more closely resemble genuine 

bone tissue than either ceramic or polymer material alone, this combination has drawn the attention of numerous 

researchers (21-24). In large mandibular bone defects, composite scaffolds consisting of PCL (polycaprolactone) 

mixed with a hydrogel infused with bioactive compounds (resveratrol and strontium ranelate) can significantly 

enhance bone regeneration (57). Additionally, there aren't many studies that show the effect assessment of the 

mandibular region; instead, the majority of these findings focus on the maxilla region. However, the mandible 

region is just as significant as the maxilla region as it is impossible to predict the direction of contact when playing 

sports (25-28). 

Composite scaffolds composed of TCL (terephthaloyl chloride) blended with magnesium can also indorse bone 

healing (15, 57).  

Additionally, numerable of studies have established the osteogenic potential of nano-hydroxyapatite in 

combination with composite polymeric scaffolds (29-30). Scaffolds made of metal have also produced excellent 

outcomes. Titanium, as a metallic biomaterial, is beneficial for biomedical applications because of its 

sustainability in additive manufacturing, which reduces material waste and environmental impact (31). Porous 

titanium scaffolds have demonstrated good results in extensive bone defects in multiple clinical studies (9, 32). 

Titanium and its alloys are widely consumed in dental and orthopaedic applications for their outstanding corrosion 

resistance, formability, and fatigue strength, with Plasma Electrolytic Oxidation (PEO) surface modifications 

further enhancing implant-cell connections for optimal long-term clinical performance. (33) Advances in 

biomaterials and 3D printing have enabled the creation of customized bone scaffolds with complex properties and 

shapes, focusing on the design, optimization, and manufacturing processes to improve bone tissue repair. (34) 3D 

printing, a form of additive manufacturing, has gained popularity quickly for uses in bone restoration. Indeed, a 

commercially/clinically available, FDA-approved 3D-printed scaffold for bone regeneration is accessible for 

spinal fusions (35, 57). The ability to customize the scaffold's mechanics, pace of deterioration, and biological 

impact through a vast array of geometries, pore sizes, and materials is one of the core benefits of employing 3D 

printing for scaffolds (36). Studies show understanding material properties is crucial for scaffold design and 

optimization. The choice of using traditional materials (e.g. carbon steel, etc.) or newer materials (e.g. epoxy resin, 

carbon fibre, etc.) should be made after thorough research (37). Research into infill patterns for additive 

manufacturing reveals that triangular patterns generally exhibit lower stress levels compared to rectangular 

patterns, suggesting that optimization of infill can enhance scaffold performance (38). 

Numerous polymeric materials have high rigidities and are bioresorbable, which means that new tissue will 

gradually replace them after implantation and support from bone regeneration (27, 39). For instance, PLA is a 

material that is frequently used to replace bone tissue due to its exceptional biocompatibility and biodegradability 

(1-2, 40-41) as well as its strong mechanical qualities (40-41). Its efficacy in replacing trabecular bone has been 

demonstrated (2, 40). 

It is also a widely accessible and reasonably priced material. We have demonstrated that inexpensive 3D printers 

can produce scaffolds with different pore sizes to regulate stem cell differentiation (1, 36, 42-44, 57). Additionally, 

we have demonstrated that beta-tricalcium phosphate or hydroxyapatite-containing composite scaffolds can also 

initiate stem cell differentiation and encourage bone repair in animal models (45-48, 57). Titanium (Ti) and its 

alloy Ti-6Al-4V are used in 3D printing for orthopaedic implants due to their ability to create complex, patient-
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specific designs with precise mechanical characteristics and porous structures (49). These findings are consistent 

with the findings of other groups. The three most important characteristics for scaffold design are porosity, pore 

size, and pore configuration. Osteogenesis is encouraged by porosity because it enhances surface area and permits 

cell movement (9). Infill density and patterns, such as line and triangle, have shown significant effects on tensile 

and bending strengths, indicating the importance of precise structural design in 3D-printed scaffolds (50). 

For instance, vascularization is encouraged by porosities greater than 50% (51). A trade-off between porosity, 

strength, and osseointegration appears to be necessary, as excessive porosity is unlikely to meet the high 

mechanical strength needed for bone use (9). In fact, scaffold rigidity does indeed decrease linearly with increasing 

scaffold porosity (21). Scaffolds must be constructed to favor the type of cells and tissues they want to replace, as 

previous research has demonstrated that pore size and density affect cellular development and adhesion (17, 52-

53). Keeping in mind that sufficient cell proliferation and osteogenesis are required, we set out to investigate 

different combinations of pore geometry, pore size, and pore arrangement in order to identify the combination 

offering the best mechanical qualities (57). Additionally, we assessed the effects of two printing orientations (fibre 

alignment) on the stiffness of the scaffold. parameter and discovered that the filaments can withstand the 

mechanical load more effectively when they are associated with the direction of the compressive loading than 

when they are perpendicular (54-56, 57). 

3. Material and Methods 

3.1. Test Materials: (i) PLA (ii) SS316L 

The study involves analyzing test samples collected of Stainless Steel (316) and PLA material, commonly utilized 

in 3D Printing, to assess their compressive strength. PLA is suitable for artistic models, educational projects, and 

prototyping, it is less suitable for high-impact or high-temperature applications. Due to its excellent surface finish 

and wide range of colour, PLA is the most frequently utilized material in 3D printing. Stainless steel (316L) is 

suitable because of its exceptional strength and resistance to corrosion, stainless steel 316L finds application in 

the food and beverage sector, medical devices, and maritime environments. It is also extensively utilized in 

building, pharmaceuticals, and chemical processing. It is perfect for various industrial and commercial 

applications because of its durability and bio-compatibility. 

3.2.  Software linked with Printer 

The CAD software generates an initial 3D model, which is then saved with STL file extension. Next, the STL file 

is imported into Ultimaker Cura 5.1.1, a program that slices the 3D object horizontally (ref Fig. 1). 

 

Fig. 1: Sliced specimen 

Various printing parameters such as layer height, layer speed, layer thickness, print speed, infill rate, printing 

temperatures, support structure, print orientation, and other factors are configured within the slicing software. To 

achieve higher melting temperatures for the prints, a glass sheet substrate is intentionally utilized, while 

confirming that the platform temperature aligns with the supplier's recommendations. Segments of the G-code file 

are then sent to the FDM machine for printing. The extruder heats the nozzle and built-in platform prior to 

 

Specimen 
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extruding the material. A polymeric filament is squeezed out from the heated nozzle head onto the building 

platform. Fig. 2 illustrates an FDM machine, while Fig. 3 shows that 3D printer. In addition to other requirements, 

the produced parts need to withstand repeated loads and significant temperature changes. However, due to issues 

such as warping and contraction during printing, detachment from the platform, and gas emissions, it may not be 

suitable for many applications. The specimen attributes in Table 1 & 2 are provided by the manufacturer for use 

in this project. 

4. Printing Process and Parameters 

4.1 Printing Process 

The dimension of the solid polymer compression sample is 20 mm lengthwise and of a diameter of 6 mm. For the 

hollow sample, the dimensions are the external diameter as 10 mm, the internal diameter as 6 mm, and the total 

length is 20 mm. Stainless steel sample dimensions are 6 mm diameter and 20 mm length. 

The compression test specimens are produced in an AM facility with 80% infill density using an Ultimaker 2 + 

FDM machine. To produce the compression specimens, grid pattern is used. 

4.2 Material Properties 

Table 1: Properties of PLA Material 

 

 

 

 

 

 

 

 

Table 2: Properties of Stainless steel (316) Material 

Mechanical Properties Values 

Density 1.43 g/cm3 

Young’s Modulus 4.5 GPa 

Melting temp. 150-180℃ 

Biodegradability 
Biodegradable under industrial 

composting condition 

Poisson’s Ratio 0.34 

Mechanical Properties Values 

Fig. 2: Illustrative FDM machine Fig. 3: 3D Printer 
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4.3 Printing process parameters 

Printing process parameters are tabulated in Table 3.  

Table 3: Printing process parameters 

Nozzle diameter  

Layer height 

Layer height 0.4 mm  

0.2 mm  

 First layer height 0.8 mm 

Shells Perimeter shells 0 

 Top solid layers 0 

 Bottom solid layers 0 

Infill Fill density 80% (compression hollow) 

  80%(compression solid) 

                                                    Fill Pattern Grid 

Speed Print speed 45 mm/s 

 Travel speed 120 mm/s 

Temperature Left extruder 230 ℃ 

 Platform 105 ℃ 

Type of printing Fine  

Printing time Sample 23 minutes  

5. Discussions based on Tests Conducted 

5.1 Compression testing  

Specimen Preparation 

The two manufactured specimens of PLA – hollow and 80% infill solid and the Stainless Steel 316L specimen 

are as shown in the Fig. 4, 5 & 6 below. 

 

 

 

 

 

 

 

 

 

 

Density 8 g/cm3 

Young’s Modulus 193 GPa 

Melting temp. 1375-1400 ℃ 

Biodegradability 
Biodegradable under industrial 

composting condition 

Poisson’s Ratio 0.3 

Fig. 4: PLA specimen 

(Hollow) Fig. 5: PLA specimen (80% 

(Solid) Fig. 6: SS 316L specimen 
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5.2 Test Protocols 

These specimens are tested on Universal Testing Machine for determining their compressive strength. Fig.7, 

shows that Schematic diagram of compression testing setup. 

The following procedure is followed: 

 

During the compression test, the material was measured while being compressed heavily. This test was carried 

out to determine the 3D-printed samples' compression strength. Compression strength is measured using the FSA 

M100 UTM tester, as illustrated in Fig.7, 8, 9. 

The test was conducted at MIT World Peace University, Pune using a 10-kN weight cell moving at a constant 

speed of 1 mm per minute. After inserting the samples through the handles of the UTM, the force was 

progressively increased until the samples failed. The material's compression strength is determined using the 

resulting buckle. Fig.10, 11 shows the samples after compression test. 

5.3 Test Outcome and Result 

 

 

 

 

 

 

Fig. 7: Schematic Diagram of Compression Testing 

Specimen Compression 

base plate 

Fig. 8: Compression Testing of 

Polymer 

Fig. 9: Compression Testing of 

Steel 
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For solid PLA sample with 80% infill the Compressive strength was 29.770 N/mm2, and the test sample were 

subjected to axial load of 2066 N during the test.  

For hollow PLA sample compressive strength was 34.189 N/mm2, and test sample were subjected to axial load 

of 1508 N during test. 

For Solid stainless steel 316L sample compressive strength was 229 N/mm2, and test sample were subjected to 

axial load of 176580 N during test. 

The ultimate compressive strength (σc) and maximum strain (εt) were estimated using equations 1 σc = F/A. 

5.4 Analysis of Morphology of the tested samples 

SEM was used to examine the rupture that happened. All 

specimens were coated in platinum using Auto Fine Coater prior to the test, and to make sure the platinum had 

reached all intended surfaces. They were placed in the sputter coater for sixty seconds. The scanning was 

performed at MIT World Peace University, which was done using the TESCAN Scanning electron microscope 

(SEM) (refer Fig.12). The device employed a concentrated electron beam to scan a surface in order to produce a 

picture. Together, the samples and the electrons in the beam produced signals that allowed further analysis of the 

morphology for every percentage of PLA polymer. For the purpose of examining and testing the samples, three 

different magnifications were used: compression test 100 μm, 200 μm and 500 μm. Samples were placed on the 

specimen support and concentrated on the broken edge in order to discover voids, Cracks and porosity (refer 

Fig.12 (a), (b), (c) & (d)). 

Fig. 10: Compressed Polymer Specimen Fig. 11: Compressed Steel Specimen 
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Fig.12 (a) Mag 100× | 500 μm Fig.12 (b)  Mag 153× | 200 μm 

Fig.12 (c) Mag 500× | 100 μm Fig.12 (d)  Mag 104× | 500 μm 

Fig. 12: SEM Setup 
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5.5 Analytical calculations 

 

 

PLA & Steel (Solid Case 1 & 3) PLA (hollow Case 2) 

 

Where, 

 L = Length of Specimen, 

D = Diameter of specimen, 

Di = Inner Diameter of specimen, 

Do = Outer diameter of specimen, 

F = Force, 

A = Area of specimen 

(A) For PLA 80% Infill Solid Specimen,  

As = 
𝜋

4
 × D2 = 78.5 mm2, Failure Load = 2066 N and compression strength = 29.770 N/mm2 

σ = 
𝐹

𝐴
  

σ1 = 
𝐹1

𝐴
 = 13.15 MPa  ;…..   for 50% load 

  σ2 = 
𝐹2

𝐴
 = 21.05 MPa  ; ….. for 80% load 

 σ3 = 
𝐹3

𝐴
 = 26.318 MPa……..failure load 
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(B) For PLA Hollow Specimen,  

As = 
𝜋

4
 × (D0

2 – D1
2) = 50.26 mm2, Failure Load = 1508 N and compression strength = 34.180 MPa 

σ = 
𝐹

𝐴
  

σ1 = 
𝐹1

𝐴
 = 15 MPa  ; …..   for 50% load 

 σ2 = 
𝐹2

𝐴
 = 24 MPa  ; ….. for 80% load 

 σ3 = 
𝐹3

𝐴
 = 30 MPa……..failure load 

 

(c) For Solid Steel Specimen,  

As = 
𝜋

4
 × D2 = 78.5 mm2, Failure Load = 176580 N and compression strength = 2248.567N/mm2 

σ = 
𝐹

𝐴
  

σ1 = 
𝐹1

𝐴
 = 1124.283 MPa  ; …..   for 50% load 

  σ2 = 
𝐹2

𝐴
 = 1798.853 MPa  ; ….. for 80% load 

  σ3 = 
𝐹3

𝐴
 = 2248.567 MPa……..failure load 

The analytical results are mentioned in Table 4 and plotted as shown in Fig. 13 (a), (b), & (c). 

Table 4: Results of Analytical Calculations 

 

 

 

Parameters Load 

Solid 

Cylindrical 

Specimen 

Load 

Hollow 

Cylindrical 

Specimen 

Load Solid Steel 

50% of 

failure load 
Stress 1 1033 13.15 754 15 88290 1124.71 

80% of 

failure load 
Stress 2 1652.8 21.05 1206.4 24 141264 1799.54 

100% of 

failure load 
Stress 3 2066 26. 318 1508 30 176580 2249.42 

        

 
CS Area 

(mm2) 
 29.77  34.18   
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Failure 

load 
 2066  1508   

 Elongation  3.66  3.94   

 Area  78.5  50.26   

 LENGTH  20  20   
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5.6 Calculations- Simulation 

With simulations, following are the values of Von-Mises stress for materials considered:  

Solid PLA- 28.124 MPa; Stainless Steel- 2252.789 MPa; Hollow PLA- 33.139 MPa 

For Solid PLA= ∆S = 1 – (
𝜎𝑚− 𝜎𝑠

𝜎𝑚
) 

= 1 – (
2252.789−28.124

2252.789
) 

= 1 – 0.98751 

= 0.01249 

∴ 𝞼s = ∆S . 𝞼m 

= 0.01249 𝞼m 

 

For Hollow PLA ∆H = 1 – (
𝜎𝑚− 𝜎𝐻

𝜎𝑚
) 

= 1 – (
2252.789−33.139

2252.789
) 

= 1 – 0.98528 

= 0.01472 

∴ 𝞼H = ∆H . 𝞼m 

= 0.01472 𝞼m

Calculations- Experimental

For Solid PLA ∆S = 1 – (
𝜎2− 𝜎1

𝜎1
) 

= 1 – (
𝜎𝑚− 𝜎𝑠

𝜎𝑚
) 

= 1 – (
2248−26

2248
) 

= 0.01157 

∴ 𝞼s = ∆S . 𝞼m 

= 0.01157 𝞼m 

Where, 

𝞼m is maximum stress induced in SS316L 

𝞼s is maximum stress in 80% infill PLA 

For Hollow PLA ∆H = 1 – (
𝜎𝑚− 𝜎𝑠

𝜎𝑚
) 

= 1 – (
2248−30

2248
) 

= 0.01335 

∴ 𝞼H = ∆S . 𝞼m 

 = 0.01335 𝞼m 

Where, 

𝞼m is maximum stress induced in SS316L 

𝞼H is maximum stress in hollow PLA

Fig. 13 (a), (b), (c): Graphs for PLA & Steel (Solid Case 1 & 3) 

(c) 
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5.7 FE Simulation 
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5.8 Hollow PLA Cylinder  

Figure 14 (a) explains the process of the simulation for a hollow PLA cylinder using Ansys Workbench. A 3D 

model was created in Catia V5, as shown in Fig. 14 (b). For material properties, PLA Polymer material was used 

(density = 1430 kg/m3, Young’s modulus = 4.5 GPa, and Poisson’s ratio = 0.34). In FE discretization, meshing 

was performed, resulting in 6426 nodes and 1160 elements. All nodes on the bottom face were constrained for 

displacement, and a load of 1508 N was applied on the top face. A static analysis was conducted under maximum 

load conditions, yielding an equivalent stress of 33.139 MPa and a total deformation of 0.144 mm.  

5.9 Solid PLA Cylinder  

In the simulation (ref Fig 14 (c)), for material properties, PLA Polymer material was used (density = 1430 kg/m3, 

Young’s modulus = 4.5 GPa, and Poisson’s ratio = 0.34). In FE discretization, meshing was performed, resulting 

in 19958 nodes and 4620 elements. All nodes on the bottom face were constrained for displacement, and a load 

of 2066 N was applied on the top face. A static analysis was conducted under maximum load conditions, yielding 

an equivalent stress of 28.124 MPa and a total deformation of 0.122 mm.  

5.10 Solid SS316L (Stainless Steel) 

In the simulation (ref Fig 14 (d)), for material properties, Solid SS316L (Stainless Steel) material was used (density 

= 8000 kg/m3, Young’s modulus = 193 GPa, and Poisson’s ratio = 0.3). In FE discretization, meshing was 

performed, resulting in 20988 nodes and 4824 elements. All nodes on the bottom face were constrained for 

displacement, and a load of 176580 N was applied on the top face. A static analysis was conducted under 

maximum load conditions, yielding an equivalent stress of 2252.789 MPa and a total deformation of 0.222 mm.  

6. Conclusions 

With reference to the results and discussions, the following conclusions are drawn:  

1) Three types of sample were tested in UTM solid SS316L, solid infill 80% PLA and hollow PLA 

considering possibility of introducing these as implantable material as substitute to bone. 

2) Has be observed for the highest compressive strength (2248.567 N/mm2), followed by hollow polymer 

PLA specimen (34.29 N/mm2). Solid PLA specimen with 80% infill was found to be the weakest in 

compression (29.77 N/mm2)  

(d) 

Fig. 14 (a) FEA Flowchart for Hollow PLA , (b) FEA Results of Von-Mises stress for Hollow PLA (c) 

FEA Results of Von-mises stress for PLA (d) FEA Results of Von-mises stress for SS316L 
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3) Stainless Steel specimen SS316L exhibited the highest load carrying capacity till failure (1,76,580 N), 

followed by solid polymer PLA specimen with 80% infill (2066 N). The hollow PLA specimen could 

carry the lowest load (1508 N)  

4) A static structural FEA simulation was performed. Solid PLA, Hollow PLA and Solid SS316L specimen 

showed von-Mises stresses of 28.124 N/mm2, 33.139 N/mm2 and 2252.789 N/mm2 respectively. These 

FEA results were found to be within 10% range of the experimental ones, thus achieving validation.   

5) The strength-to-weight ratio of stainless steel specimen seen to be highest (120.372), followed by hollow 

PLA specimen (32.657). The Solid PLA specimen with 80% infill showed the lowest strength-to-weight 

ratio (22.725)  

6) The cost incurred for 3D printing PLA materials is considerably less than that for Stainless Steel SS316L. 

7) In all, considering the high compressive strength, medium strength-to-weight ratio, reasonable load 

carrying capacity, biocompatibility, high accuracy and comparatively low cost of manufacturing using 

3D printing, hollow PLA material is the choice seen as a substitute for bone and bone interface in 

biomedical applications. 

List of Abbreviations 

FDM- Fused Deposition Modelling 

SLA- Stereolithography  

SLS- Selective Laser Sintering  

FFF- Fused Filament Fabrication 

AM- Additive Manufacturing 

3D- Three Dimensional 

ABS- Acrylonitrile Butadiene Styrene 

SEM- Scanning Electron Microscopy 

CAD- Computer-aided Design 

STL- Stereolithography 

PLA- Polylactic Acid 

mm- millimetre 

°C- degree Celsius 

hr- hour 

min- minutes 

UTM- Universal Testing Machine 

kN- kilo Newton 

N/mm2- Newton per square meter 

N- Newton 

Vs- Versus 

mm2- square millimetre 
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MIT WPU- MIT World Peace University 

mm/min- millimetre per minute 

nm- Newton-meter 

μm- micrometre 

MPa- Mega Pascal 

𝞼m is maximum stress induced in SS316L 

𝞼s is maximum stress in 80% infill PLA 
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