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Abstract: 

This research paper conducts an extensive analysis of various machine-learning techniques employed in predicting 

the onset of lung cancer. Lung cancer is a leading cause of mortality worldwide, emphasizing the critical need for 

accurate and timely prediction methods. Several machine-learning algorithms, such as SVM, RF, neural networks, 

and ensemble techniques, have been explored in this research. Through a comprehensive review and comparative 

study, this paper evaluates the effectiveness of different machine learning models in predicting lung cancer onset 

based on various input features, such as demographic data and medical history. The effectiveness of these methods 

is assessed using important metrics like accuracy, sensitivity, F1-score, computational efficiency, and the area 

under the receiver operating characteristic curve (AUC-ROC).Continuing technological progress is changing how 

healthcare operates, with the incorporation of machine learning techniques showing great promise in detecting 

issues early and predicting outcomes.  

Furthermore, feature selection methods and data pre-processing techniques are explored to enhance prediction 

accuracy and reduce computational complexity. The results of this study offer important insights into the 

efficiency of machine learning for lung cancer prediction and suggest recommendations for future research. 
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1. Introduction 

Lung cancer is one of the primary causes of cancer-related fatalities worldwide, representing a substantial share 

of cancer deaths. The high mortality rate is largely due to late diagnosis, as the symptoms of lung cancer often do 

not appear until the disease is in its advanced stages. Early detection is critical for improving survival rates, making 

the development of reliable predictive tools an essential goal in cancer research. 

Lung cancer is the most lethal and hazardous form of cancer. Smoking is the basic risk factor for lung cancer [28, 

29, 30, 31, 36], and it accounts for 85 out of 100 people dying every year [31]. Although people who do not smoke 

have a lower risk factor, the smoke of other smokers [30] may still affect them.  Uranium is a metallic chemical 

element, which breaks down, with time, to form radon gas, which spreads in the air and water causing pollution 

and great harm to the lungs [31]. Lung cancer risk degree increases when there are cases of lung cancer in relatives, 

and this may be due to a common environment, genes or both [31]. In addition, the history of chronic pulmonary 

diseases is associated with lung cancer [31,36]. Prognostic models to predict cancer have been developed in many 

cases, including the incorporation of these tools for patient selection and pre-treatment stratification into clinical 

trials [10]; some of these tools predicted lung cancer [4]. 

Lung cancer is among the most commonly diagnosed types of cancer and is the primary cause of cancer-related 

deaths globally. About 2.20 million new patients are diagnosed with lung cancer each year [46], and 75% of them 
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die within five years of diagnosis [42].High intra-tumor heterogeneity (ITH) and complexity of cancer cells giving 

rise to drug resistance make cancer treatment more challenging [17]. Over the past decades, the continuous 

evolution of technologies in cancer research has contributed to many large collaborative cancer projects, which 

have generated numerous clinical, medical imaging, and sequencing databases [7, 11, 12]. These databases 

facilitate researchers in investigating comprehensive patterns of lung cancer from diagnosis, treatment, and 

responses to clinical outcomes [18].  

Recent research in omics analysis, including genomics, transcriptomics, proteomics, and metabolomics, has 

enhanced our research tools and capabilities. Cancer research is transitioning towards incorporating various data 

types and large-scale datasets. However, working with varied and high-dimensional data types for clinical tasks 

demands considerable time and expertise, even when utilizing dimension reduction techniques like matrix and 

tensor factorizations [6, 8, 24, 37,]. Additionally, analyzing the rapidly expanding cancer-related databases 

presents a significant challenge for researchers. As a result, leveraging machine learning (ML) models to 

automatically understand the inherent traits of various data types to aid physicians in their decision-making has 

gained significance. ML is a subgroup of artificial intelligence (AI) that focuses on making predictions by 

identifying patterns in data using mathematical algorithms [47]. It has served as an assisting tool in cancer 

phenotyping and therapy for decades [1,5,41,43], and has been widely implemented in advanced approaches for 

early detection, cancer type classification, signature extraction, tumor microenvironment (TME) deconvolution, 

prognosis prediction, and drug response evaluation [14,38, 44,45, 48, 49,50,53]. 

Lung cancer is the leading cause of cancer-related deaths, accounting for approximately 1.8 million deaths in 2020 

[54,55]. The cancer survival period is the timeframe from when a person is diagnosed with cancer until their death 

due to the disease [51]. Additionally, survival analysis is beneficial for clinicians, researchers, patients, and 

policymakers. Developing an accurate and robust model is crucial for identifying lung cancer survival rates [56]. 

Various ML algorithms have been developed for clinical applications, including random forests (RFs), ensemble 

algorithms, Naive Bayesian (NB) classifiers, Support vector machines (SVMs), neural networks (NNs), Decision 

Trees (DTs), and a number of proprietary algorithms [52]. Machine learning (ML) techniques can connect 

different clinical characteristics of cancer patients to their survival rates. Moreover, ML helps alleviate the 

workload of healthcare professionals and minimizes the potential for human error. The impressive effectiveness 

of ML has made it an appealing and inspiring resource for those in the healthcare field. These techniques enable 

the creation of predictive models utilizing cancer data to forecast survival outcomes. Despite this, no current 

technique qualifies for application to a specific dataset [57].  

Machine learning (ML) has emerged as a powerful tool in the healthcare domain, offering advanced methods for 

analyzing large and complex datasets. In the context of lung cancer, ML techniques can be employed to identify 

patterns and features that are predictive of the disease's onset, potentially leading to earlier diagnosis and better 

patient outcomes. 

This paper presents an extensive analysis of machine learning techniques applied to the prediction of lung cancer 

onset. We explore a variety of ML approaches, including supervised learning methods such as logistic regression, 

support vector machines, and neural networks; unsupervised methods like clustering and principal component 

analysis; and ensemble methods such as random forests and gradient boosting machines. Our goal is to assess the 

effectiveness of these techniques in predicting lung cancer and to identify the most promising approaches for 

clinical application. 

2. Literature review 

Lung cancer has become a significant focus for researchers in both oncology and the field of AI-driven medical 

assistance. Some studies have designed systems for the detection and diagnosis of lung cancer [21,25], while 

others have focused on early lung cancer diagnosis  [13, 15, 16, 26, 33]. Studies about the diagnosis of lung cancer 

have been based on techniques such as fuzzy logic8 and neural networks [39]. Other studies have used hybrid 

neuro-fuzzy techniques [26,34]. However, these methods cannot effectively create a reliable medical diagnostic 

system as the size of databases continues to grow, rendering them less dependable. There are studies based on 

advanced machine learning concepts, such as decision trees [16,26,34,40], which have demonstrated higher 
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reliability compared to those old systems. Hanai and others introduced prognostic models for Non-Small-Cell 

Lung Cancer (NSCLC) based on neural networks [2]. Kattan and Bach introduced a study on the variations in 

lung cancer risk among smokers based on many factors [3]. Ramachandran and others built an early prevention 

system for lung cancer based on data mining in which they used 11 different factors [15]. They carried out 

experiments with a database of 746 samples, but did not provide any information about the source of this database. 

In 2014, Thangaraju and others also used data mining techniques to predict the risk factor of lung cancer [16]. 

They employed Bayes Trees and Decision Tables for both clustering and classification, conducting experiments 

with 303 samples. Manikandan and others designed a hybrid neuro-fuzzy system for the prediction of lung cancer 

based on 11 symptoms [33]. Arulananth and Bharathi defined the symptoms that can be used for lung cancer 

prediction [35]. They made a distinction between diagnostic factors and the symptoms that signal the presence of 

cancer. The diagnostic symptoms were categorized based on age, sex, family history of cancer, smoking habits, 

radiation exposure, radon exposure, chemical exposure, and air pollution. In contrast, the symptoms indicating 

the presence of cancer included chronic cough, hemoptysis, chest pain, weight loss, fatigue, chronic lung 

inflammation, wheezing, difficulty swallowing, and anorexia. 

In 2018, Senthil and Ayshwaya used neural networks and evolutionary algorithms to define the risk degree of 

lung cancer based on risk factors [39]. Recently, in 2018, Markaki and others built a clinical risk prediction model 

for lung cancer based on smoking symptoms [40]. Some other studies used advanced machine learning algorithms, 

such as random trees and random forests, which were very useful for the classification of big databases [27]. On 

the other hand, others have relied on radiotherapy image processing techniques to determine whether lung cancer 

is present or not [22]. Other researches focused on the prediction of the mortality of people with NSCLC in the 

U.S. Military Health System [9]. Cassidy concluded that for building a good lung cancer risk prediction model, it 

was preferable to seek other factors in addition to smoking and age [4]. This study develops a lung cancer 

prediction tool that incorporates various risk factors and their details. It also examines the symptoms and their 

impact on lung cancer. To create a robust international prediction tool, the research takes into account both local 

and global studies and reports. 

3.Machine Learning Models: Several algorithms were utilized in constructing the prediction system, categorized 

as[58,59,60]: 

3.1.Logistic Regression: Logistic regression is a statistical method mainly utilized for binary classification, 

aiming to estimate the likelihood of a binary result (e.g., yes/no, 0/1, true/false). The logistic regression model can 

be mathematically expressed as follows [58, 59, 60]: 

The probability is modeled using the logistic (sigmoid) function. 

Probability of Class 1: 𝑃 (𝑦 =
1

𝑥
= 𝜎(𝑧)) =

1

1+𝑒−𝑧 

Where:  𝜎(𝑧) is the sigmoid function. 

z is the linear combination of input features and model parameters:𝑧 = 𝑤𝑇 + 𝑏. 

𝑤 = [𝑤1, 𝑤2, 𝑤3, … . 𝑤𝑛] are the weights (coefficients) associated with each feature. 

b is the bias (intercept) term. 

𝑥 = [𝑥1, 𝑥2, 𝑥3, … . . 𝑥𝑛] are the input features. 

Probability of Class 0: 𝑃 (𝑦 =
0

𝑥
) = 1 − 𝑃 (𝑦 =

1

𝑥
) = 1 − 𝜎(𝑧) 

Decision Boundary: The model classifies the input x as class 1 if (𝑦 =
1

𝑥
) ≥ 0.5 , and as class 0 otherwise. The 

decision boundary occurs where the probability is exactly 0.5,which corresponds to z=0: 𝑤𝑇 + 𝑏 = 0 

Cost Function: To train the logistic regression model, we minimize a cost function. The log-loss, also known as 

binary cross-entropy loss, is the most frequently utilized cost function in logistic regression:  
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𝐽(𝑤, 𝑏) = −
1

𝑚
∑ [𝑦𝑖𝑙𝑜𝑔 (𝑃(𝑦𝑖 = 1/𝑥𝑖)) + (1 − 𝑦𝑖)𝑙𝑜𝑔 (1 − 𝑃(𝑦𝑖 = 1/𝑥𝑖))]

𝑚

𝑖=1

 

Where m represents the total number of training examples. 𝑦𝑖  denotes the true label for the 𝑖-th example. 

𝑃(𝑦𝑖 = 1/𝑥𝑖) indicates the predicted probability that the  𝑖-th example belongs to class 1. 

Gradient Descent Optimization: The model parameters 𝑤 and 𝑏 are updated iteratively using gradient descent 

to minimize the cost function: 𝑤 ≔ 𝑤 − 𝛼∇𝑤𝐽(𝑤, 𝑏) 

                       𝑏 ≔ 𝑏 − 𝛼∇𝑏𝐽(𝑤, 𝑏) 

Where: α is the learning rate. 

∇𝑤𝐽(𝑤, 𝑏) and ∇𝑏𝐽(𝑤, 𝑏) are the gradients of the cost function with respect to the weights and bias, respectively. 

Prediction: Finally, once the model is trained, predictions are made by computing the probability P(y=1∣x) for a 

new input 𝑥 and assigning the class label based on the decision boundary: 

𝑦̌ = {
1 𝑖𝑓 𝜎(𝑧) ≥ 0.5

0 𝑖𝑓 𝜎(𝑧) < 0.5
 

This is the basic mathematical framework behind logistic regression. 

3.2.Gaussian Naive Bayes (GNB): Gaussian Naive Bayes assumes that the features follow a Gaussian (normal) 

distribution. 

Model Assumption: Features are conditionally independent given the class label. 

Probability Model: 

𝑃(𝐶|𝑋1, 𝑋2, 𝑋3 … … … 𝑋𝑛) =
𝑃(𝐶) ∏ 𝑃(𝑋𝑖|𝐶)𝑛

𝑖=1

𝑃(𝑋1, 𝑋2, 𝑋3 … … … 𝑋𝑛)
 

Where C is the class, X1,X2,…,Xn are the feature values. 

Gaussian Assumption: The conditional probability for feature Xi given class C is modeled as: 𝑃(𝑋𝑖|𝐶) =

1

√2𝜋𝜎𝐶
2

𝑒
(−

(𝑋𝑖−𝜇𝐶)
2

2 𝜎𝐶
2 )

 

Where 𝜇𝐶 and 𝜎𝐶are the mean and standard deviation of the feature for class C 

3.3. Bernoulli Naive Bayes (BNB): Bernoulli Naive Bayes is used for binary/Boolean features (0/1 values). 

Model Assumption: Like GNB, Bernoulli Naive Bayes assumes conditional independence between features. 

Probability Model: 𝑃(𝐶|𝑋1, 𝑋2, 𝑋3 … … … 𝑋𝑛) =
𝑃(𝐶) ∏ 𝑃(𝑋𝑖|𝐶)𝑛

𝑖=1

𝑃(𝑋1,𝑋2,𝑋3………𝑋𝑛)
 

𝑃(𝑋1|𝐶) = 𝑃𝐶
𝑋𝑖(1 − 𝑝𝑐)(1−𝑋𝑖) 

where   𝑝𝑐 is the probability that feature 𝑋𝑖 =1 in class C. 

3.4.Support Vector Machine (SVM): SVM is a type of supervised learning model that aims to identify the 

optimal hyperplane to divide data into distinct classes effectively. 
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Objective: Identify a hyperplane that maximizes the separation margin between two classes. Model: The decision 

boundary is defined by: 𝑤𝑇𝑥 + 𝑏 = 0 

where 𝑤 represents the weight vector, 𝑥 stands for the input vector, and 𝑏 denotes the bias term. 

Optimization: The objective is to increase the separation between the two classes, subject to the constraint that all 

points are classified correctly: min
𝑤,𝑏

1

2
‖𝑤‖2. Subject to 𝑦𝑖(𝑤𝑇𝑥 + 𝑏) ≥ 1 for all i , where 𝑦𝑖{−1,1}is the class label. 

3.5. Decision Trees: A decision tree is a highly effective tool in supervised learning, used for both classification 

and regression tasks. It is organized like a tree diagram, where each internal node corresponds to a test on a feature, 

each branch represents a possible result of that test, and each leaf node signifies a class label. The tree is 

constructed by repeatedly dividing the training data into smaller subsets based on attribute values, halting when 

certain conditions are met, such as reaching a maximum tree depth or a minimum number of samples needed to 

split a node. Mathematically, it's structured as: 

Entropy (used in classification trees): Entropy measures the impurity in a split. For a node with binary 

classification (0 or 1), entropy 𝐸 is defined as:  

𝐸(𝑆) = −𝑝1𝑙𝑜𝑔2(𝑝1) − 𝑝0𝑙𝑜𝑔2(𝑝0) 

Where 𝑝1the proportion of is class 1 in set S and  𝑝0 is the proportion of class 0. 

Gini Index (another impurity measure): 𝐺𝑖𝑛𝑖(𝑆) = 1 − 𝑝1
2 − 𝑝0

2 

Recursive Splitting: The tree recursively splits data at each node by selecting a feature and threshold that 

minimizes impurity (e.g., entropy or Gini) at the child nodes. 

Cost Function: For a regression tree, the cost function to minimize is usually the mean squared error (MSE): 

𝑀𝑆𝐸 =
1

𝑛
∑ (𝑦𝑖 − 𝑦̂1)2𝑛

𝑖=1  ,where  𝑦𝑖  is the true label, and 𝑦̂1 is the predicted label for i-th the sample. 

3.6.Random Forest: Random Forest, a widely-used ensemble learning method involving decision trees, creates 

a 'forest' of multiple trees. These trees are usually trained with the 'bagging' technique, which merges multiple 

models to improve the overall result. Random Forest boosts the performance of Decision Trees by reducing 

variance, achieved by growing more trees and introducing more randomness into the model. Rather than always 

choosing the most significant feature for splitting nodes, it selects the best feature from a random subset of 

features, leading to a more robust model. 

Random Forest Regression is a machine learning ensemble method capable of managing both regression and 

classification tasks by utilizing multiple decision trees and applying Bootstrap and Aggregation, commonly known 

as bagging. Rather than relying on a single decision tree, this approach combines the outputs of several trees to 

produce the final result. In Random Forest, numerous decision trees act as the core learning models. 

3.7.Gradient Boosting: 

Gradient Boosting is an iterative process where weak learners (usually decision trees) are added sequentially to 

minimize a loss function. Its mathematics is based on functional gradient descent. 

Loss Function: Let 𝐿(𝑦, 𝑦̂)be the loss function to be minimized (e.g., log loss for classification, MSE for 

regression). The goal is to find a function F(x) such that the predictions F(x) minimize this loss: 𝐹(𝑥) =

𝑎𝑟𝑔 min
𝐹(𝑥)

∑ 𝐿(𝑦𝑖 , 𝐹(𝑥𝑖))𝑛
𝑖=1  

Additive Model: Gradient Boosting builds an additive model: 𝐹𝑚(𝑥) = 𝐹𝑚−1(𝑥) + 𝛼. ℎ𝑚(𝑥) 

where 𝐹𝑚−1(𝑥) is the prediction from the previous iteration, ℎ𝑚(𝑥) is the new decision tree (or weak learner), and 

𝛼 is the learning rate. 



Tuijin Jishu/Journal of Propulsion Technology 

ISSN: 1001-4055 

Vol. 45 No. 4 (2024) 

__________________________________________________________________________________ 

1424 

Gradient Descent: The new model ℎ𝑚(𝑥) is trained to match the negative gradient of the loss function relative to 

the current predictions: ℎ𝑚(𝑥) = 𝑎𝑟𝑔 min
𝐹(𝑥)

∑ [−
𝜕𝐿(𝑦𝑖,𝐹𝑚−1(𝑥))

𝜕𝐹𝑚−1(𝑥)
− ℎ(𝑥𝑖)]

2
𝑛
𝑖=1  

Final Prediction: After 𝑀 iterations, the final prediction is: 𝑦̂ = 𝐹𝑚(𝑥) = ∑ 𝛼ℎ𝑚(𝑥)𝑀
𝑚=1 . 

3.8.K-Nearest Neighbours (KNN): KNN is an instance-based learning algorithm that is non-parametric and can 

be applied to both classification and regression tasks. 

To predict the class or value of a new data point, KNN measures the distance between the new point and all points 

in the training dataset. 

The Euclidean Distance is the most frequently used distance metric:  

𝑑(𝑥, 𝑦) = √∑(𝑥𝑖 − 𝑦𝑖)2

𝑛

𝑖=1

 

where 𝑥 and 𝑦 are two points in an n-dimensional space.  

Prediction: For classification, the algorithm finds the k-nearest neighbours to the new data point and assigns the 

class based on a majority vote of the neighbours’ labels. 

For regression, it predicts the value by taking the mean (or weighted average) of the nearest neighbours’ values. 

3.9.Extreme Gradient Boosting (XGBoost): XGBoost is a gradient boosted decision tree framework optimized 

for efficiency and speed. It employs a collection of decision trees, with each new tree aiming to rectify the mistakes 

made by the previous ones by placing greater emphasis on samples that were misclassified. 

Gradient Descent: XGBoost minimizes the loss function by gradient descent. For a loss function 𝐿(𝑦, 𝑦̂), where  

𝑦 is the true label and 𝑦̂ is the prediction, the next tree tries to minimize: 𝐿 = ∑ 𝐿𝑜𝑠𝑠(𝑛
𝑖=1  𝑦, 𝑦̂) + ∑ Ω(𝑓𝑘)𝐾

𝑘=1  

where: 

Ω(𝑓𝑘) is a regularization term to prevent overfitting. 

𝑓𝑘  is a weak learner, typically a decision tree. 

The loss function is often chosen as logistic loss for classification and mean squared error for regression. 

Regularization: To avoid overfitting, XGBoost uses both L1 (Lasso) and L2 (Ridge) regularization: Ω(𝑓) = Υ𝑇 +
1

2
𝜆 ∑ 𝜔𝑗

2𝑇
𝑗=1  

where T represents the number of leaves,  𝜔𝑗 denotes the weight of leaf j and Υ  𝜆 are the regularization parameters. 

3.10.Extra Tree Classifier (ETC): Extra Trees, also known as Extremely Randomized Trees, is an ensemble 

learning method akin to Random Forest, but it introduces greater randomness during the construction of the trees. 

Randomized Tree Splits: In the process of building the decision tree, Extra Trees randomly chooses a subset of 

features and thresholds for splitting rather than looking for the optimal split at each node. This randomness reduces 

the correlation between trees and can lead to better generalization. 

Prediction: For classification, the final prediction is made by aggregating the votes from all trees (majority 

voting).For regression; the prediction is the average of the predictions from all trees. 

Ensemble Model:  𝑦̂ =
1

𝑇
∑ ℎ𝑡(𝑥)𝑇

𝑡=1  ,  

where T stands for the number of trees, and ℎ𝑡(𝑥) is the prediction from the t-th tree for input x.  
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3.11.AdaBoost (Adaptive Boosting): AdaBoost is an ensemble technique that merges several weak classifiers to 

form a robust classifier. Weak classifiers are typically decision trees that consist of only a single split, also known 

as decision stumps. AdaBoost works by assigning more weight to misclassified instances at each iteration, so 

subsequent classifiers focus more on difficult cases. 

Objective: Minimize the classification error by combining weak learners. 

Steps: 

1. Initialize weights 𝑤𝑖 =
1

𝑁
, where N is the number of samples. 

2. For each classifier t: 

Train a weak learner ℎ𝑡(𝑥) with the weighted dataset. 

Compute error 𝜀𝑡 =
∑ 𝜔𝑖  𝐼(𝑦𝑖≠ℎ𝑡(𝑥𝑖))

∑ 𝜔𝑖
 where I(⋅) is the indicator function. Compute classifier weight 𝛼𝑡 =

1

2
ln (

1−𝜀𝑡

𝜀𝑡
). 

Update weights for misclassified points: 𝑤𝑖 ← 𝑤𝑖 . 𝑒𝛼𝑡𝐼(𝑦𝑖≠ℎ𝑡(𝑥𝑖)) , and normalize the weights. 

Final classifier is a weighted vote of weak learners: 𝐻(𝑥) = 𝑠𝑖𝑔𝑛(∑ 𝛼𝑡ℎ𝑡(𝑥)𝑡 ) 

3.12. CatBoost (Categorical Boosting): CatBoost is a gradient boosting algorithm developed to handle 

categorical features natively. It is based on boosting decision trees and is highly efficient in dealing with high-

cardinality categorical data. CatBoost reduces prediction shifts and applies an ordered boosting strategy. 

Objective: Minimize a loss function (usually log-loss for classification or RMSE for regression) by iteratively 

building an ensemble of trees. During each iteration, train a decision tree to estimate the gradient of the loss 

function concerning the predictions from the existing ensemble of trees. 

Update the model by adding the newly fitted tree to the ensemble: 

 𝐹𝑚(𝑥) = 𝐹𝑚−1(𝑥) + 𝜂. ℎ𝑚(𝑥) 

where 𝐹𝑚(𝑥) is the model after m-th iteration,  ℎ𝑚(𝑥) is the decision tree at iteration , and η is the learning rate. 

CatBoost applies a permutation-driven strategy to avoid overfitting on categorical data by reducing the effect of 

target leakage. The ordered boosting formula can be written as: 

𝐹𝑚(𝑥) = 𝐹𝑚−1(𝑥) − 𝜂.
𝜕𝐿

𝜕𝐹𝑚−1(𝑥)
 

where 𝐿 is the loss function and η is the learning rate. 

3.13.Multi-layer Perceptron (MLP): MLP is a type of feedforward artificial neural network (ANN). It is made 

up of several layers of nodes, which include an input layer, hidden layers, and an output layer. Each node (or 

neuron) in one layer is linked to the neurons in the subsequent layer via weights. 

Objective: Learn a mapping from input x to output y by minimizing a loss function (such as mean squared error 

or cross-entropy loss). 

Mathematical formulation: 

Forward pass: For each layer 𝑙, the output is: 𝑧(𝑙) = 𝑾(𝑙)𝒂(𝑙−1) + 𝒃(𝑙) 



Tuijin Jishu/Journal of Propulsion Technology 

ISSN: 1001-4055 

Vol. 45 No. 4 (2024) 

__________________________________________________________________________________ 

1426 

where 𝑾(𝑙) are the weights of layer l, 𝒃(𝑙) are the biases, and 𝒂(𝑙−1) is the activation of the previous layer. 

Apply an activation function (⋅) (e.g., ReLU, Sigmoid) to get the output: 𝒂(𝑙) = 𝑔(𝑧(𝑙)) 

Backpropagation: 

Compute the error at the output layer and propagate it backward to update the weights using gradient descent. 

For each layer 𝑙, update the weights and biases: 𝑾(𝑙) ← 𝑾(𝑙) − 𝜂.
𝜕𝐿

𝜕𝑾(𝑙) 

where 𝜂 is the learning rate and 𝐿 is the loss function. 

Output: The output layer performs a linear combination of the activations of the previous layer, often applying a 

softmax function for classification tasks: 𝑦̂𝑖 =
𝑒𝑧𝑖

∑ 𝑒
𝑧𝑗

𝑗
 

where  𝑧𝑖 are the raw outputs of the final layer. 

4. Confusion Matrix in Machine Learning: A confusion matrix summarizes a machine learning model's 

performance on a test dataset, visually displaying both accurate and inaccurate predictions. It is commonly used 

to evaluate classification models, which assign categorical labels to input data.  

This matrix is crucial for evaluating the performance of a classification model, as it offers detailed counts of true 

positives, true negatives, false positives, and false negatives. It allows for a more comprehensive analysis of the 

model's recall, accuracy, precision, and its overall capability to differentiate between classes by displaying the 

frequency of predicted outcomes in the test dataset[58,59,60]. 

4.1 Accuracy: Accuracy measures a model's effectiveness by calculating the ratio of correctly classified instances 

to the total number of instances. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 ,  

where TP= True positives, TN= True negatives, FP= False positives and FN= False negatives. 

4.2 Precision: Precision refers to the accuracy of a model's positive predictions. It is measured by the ratio of true 

positive predictions to the total number of positive predictions made by the model.  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

4.3 Recall: Recall measures how well a classification model can identify all the relevant instances within a dataset. 

It is calculated by dividing the number of true positive (TP) cases by the total number of true positives and false 

negatives (FN).  

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

4.4 Specificity: Specificity, an essential metric for evaluating classification models, particularly in binary cases, 

measures how accurately a model identifies negative instances, also known as the True Negative Rate. 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑃 + 𝐹𝑃
 

5. Data Cleaning and Feature Engineering: To assess lung cancer, we gathered data from 

(https://www.kaggle.com/datasets/akashnath29/lung-cancer-dataset?select=dataset.csv), which includes 15 

clinical features, and used these to build predictive models for lung cancer detection. Table 1 indicates that the 

data contains no missing values. 
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In the histogram, we are illustrating the number of lung cancer cases associated with the clinical features: 

 

The heatmap has been used to identify the relationships between all clinical features: 
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6. Prediction of Lung Cancer: We examined the effectiveness of thirteen machine-learning algorithms. 

Afterwards, we evaluated how well these thirteen machine-learning models could serve as clinical decision 

support systems in forecasting lung cancer. 

6.1. Examine the performance of Machine Learning models: 

Partition the dataset into training, validation, and test sets to assess the model's performance. Standardize the data 

to ensure consistency, which is crucial for many machine learning algorithms. During model development, we 

randomly chose clinical features from 80% of the patients for training. A 3-fold internal cross-validation was then 

performed to evaluate the model’s predictive ability using this training data. Additionally, we tested the model's 

predictive accuracy on an independent sample for external validation, as shown in Table 2. 

 

6.2. Rank of Models for prediction Lung Cancer: Thirteen machine learning models were evaluated based on 

their predictive performance, and the most rank one was selected. Among these, the Extreme Gradient Boosting 

model rank is the best. The rankings of all the models are listed below: 

 

6.3. Choosing Final Model for Lung Cancer Prediction: 

The Extreme Gradient Boosting model proved to be the best for predicting lung cancer. It achieved an accuracy 

of 98.38%, a precision of 98.38%, and an F1 score of 99.17%. The accuracy, precision, recall, and F1 scores for 

all models are presented in Table 3: 
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Additionally, we visualized the data using graphs to gain a clearer understanding of the models' performance: 

 

 

The prediction models for lung cancer can leverage Extreme Gradient Boosting algorithms. This approach brings 

new insights into the design of learning algorithms. Even with the use of multiple base classifiers, the Extreme 

Gradient Boosting model rarely overfits and efficiently reduces the exponential loss function by building a 

stepwise additive model. 

7. Result: In this research, we assessed 13 machine learning algorithms utilizing 15 easily accessible clinical 

features derived from electronic medical records. By comparing the predictive performance of individual clinical 

features against machine learning algorithms that employed combinations of these features, we found that the 

Extreme Gradient Boosting model significantly outperformed the others. This research aimed to evaluate multiple 

models based on different algorithms for predicting lung cancer. We found that the Extreme Gradient Boosting 

model achieved an impressive accuracy of 98.38%, a precision of 98.38%, and an F1 score of 99.17% in 

forecasting the onset of lung cancer. 
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The Extreme Gradient Boosting model (98.38% accuracy, ROC–AUC score of 95.0%) stand out as the leading 

models, outperforming the others.  

I believe this study is the first to combine traditional laboratory indicators with easily accessible clinical data from 

electronic medical records within an Extreme Gradient Boosting model to predict lung cancer. 

8. Conclusion: 

This paper presents an in-depth assessment of 13 machine learning methods for forecasting lung cancer onset. 

The Extreme Gradient Boosting model demonstrates the highest accuracy and reliability in its predictions. 

Nevertheless, issues like model interpretability and data imbalance must be resolved to enable the use of these 

models in clinical settings. Future studies should prioritize creating more interpretable models and refining 

approaches to manage imbalanced datasets. In the end, leveraging machine learning for lung cancer prediction 

has considerable potential to boost early detection and enhance patient outcomes. 
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