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Abstract: - Recent years have shown us how fascinating the univalent function is; many new publications have 

been written in this field. Currently, operators of normalized analytic functions, differential and integral operators 

are highly sought after. Numerous researchers have examined and debated a great deal of material for the 

operators. This work introduces a new subclass 𝑃𝑄𝑞,𝛿,𝜇
𝑛,𝑟 (𝜃) of the function class for univalent functions defined 

by the Raducanu-Orhan differential operator connected with Pascal distribution series. Our goal in this work is to 

further our understanding and make inferences regarding the functions that are a part of these new subclass. 

Furthermore, the convexity of the subclass, growth and distortion, radius of starlike, extreme points, and integral 

means of inequalities are obtained. All this research was performed inside an open unit disc. 

Keywords: Analytic function, univalent functions, differential operator, subordination, coefficient inequality, 

starlike and convexity. 

 

1. Introduction 

Consider that the class 𝐴 of univalent functions has the following form: 

𝑓(𝜉) = 𝜉 + ∑ 𝑎𝜐𝜉𝜐 ,   𝜉 ∈ 𝑈: = {𝜉 ∈ 𝐶: |𝜉 < 1|}.

∞

𝜐=2

                        (1) 

Which is analytic in the unit disk 𝑈, and 

𝑔(𝜉) = 𝜉 + ∑ 𝑎𝜐𝜉𝜐, 𝜉 ∈ 𝑈.                                                              (2)

∞

𝜐=2

 

Then the convolution of (1) and (2) is represented by  

(𝑓 ∗ 𝑔)(𝜉) = 𝜉 + ∑ 𝑎𝜐𝑏𝜐𝜉𝜐, 𝜉 ∈ 𝑈.                                                (3)

∞

𝜐=2
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The Schwarz function in 𝑈, 𝑤(𝜉) exists if and only if 𝑓(𝜉) and 𝑔(𝜉) are analytical. It is our claim that 𝑓(𝜉) is 

subordinate to 𝑔(𝜉); that is, 𝑓(𝜉)  ≺  𝑔(𝜉). In this case, 𝑤(0)  =  0 and |𝑤|  <  1 such that 𝑓(𝜉)  =  𝑔(𝑤(𝜉)).  

As proven, 𝑓(𝜉)  ≺  𝑔(𝜉) and 𝑓(𝑈)  ⊂  𝑔(𝑈) implied by 𝑓(0)  =  𝑔(0).  

 

Ma and Minda [14] used the idea of subordination to create various subclasses of radii of convexity and 

starlikeness. To achieve this goal, a univalent function 𝜙(𝜉) is taken into 𝐴 consideration. This function is 

analytic and defined on 𝑈 with a positive real portion, such that 𝜙′(0)  >  0 and 𝜙(0)  =  1.  

Let 𝑓(𝜉) ∈  𝐴, then 𝑓(𝜉) is convex in 𝑈, if 𝑅𝑒 (1 + (
𝜉𝑓′′(𝜉)

𝑓′(𝜉)
)) > 0, ξ ∈  𝑈.  

Let 𝑓(𝜉) ∈  𝐴, then 𝑓(𝜉) is starlike in 𝑈, if 𝑅𝑒 ((
𝜉𝑓′(𝜉)

𝑓(𝜉)
)) > 0, ξ ∈  𝑈. 

Starlike and convex mapping are closely related in the definition that follow.  

 

For 𝑓(𝜉) ∈ 𝐴, Raducanu-Orhan [4] introduced the differential operator 

𝑄𝛿,𝜇
𝑛 𝑓(𝜉) = 𝜉 + ∑[1 + (𝜐 − 1)(𝛿 − 𝜇 + 𝜐𝛿𝜇)]𝑛𝑎𝜐𝜉𝜐 , 𝜉 ∈ 𝑈,

∞

𝜐=2

                                 (4) 

where 𝑛 ∈  𝑁0 =  𝑁 ∪ 0, 𝑁 = {1,2, . . . , }, µ, 𝛿 ≥  0, 𝜉 ∈  𝑈.  

 

Remark: 𝑄𝛿,0
𝑛 = 𝐷𝛿

𝑛 yields the Al-Oboudi differential operator [5] and  𝑄1,0
𝑛 = 𝐷𝑛  provide the Salagean 

differential operator [7].  

 

Recent studies have focused on a subclass of univalent functions associated with distribution series. These include 

the Borel, Pascal, Binomial, Poisson, Mittag-Lefer-type, geometric, exponential, and generalized distributions as 

well as a generalized discrete probability distribution. In recent years, various subclass of univalent functions 

related to Pascal distribution series have been studied by the following authors, B.A. Frasin et al. [2], S. Porwal 

[9], Anitha Lakshminarayanan et al. [1], G. Murugusundramoorthy [6], R. M. El-Ashwah, W. Y. Kota [10], T. 

Bulboaca and G. Murugusundaramoorthy [13], and B.A. Frasin et al. [3]. By examining the subclasses, researchers 

hope to gain a deeper understanding of the structure and behaviour of analytic functions, hence advancing their 

knowledge of complex analysis and its applications, which provides an extensive investigation of this area of 

study.  

2. The Subclass 𝑻𝑸𝒒,𝜹,𝝁
𝒏,𝒓 (𝜽)  

The probabilities (1 − 𝑞)𝑟,  𝑞2𝑟(𝑟 + 1)(1 − 𝑞)𝑟 2!,   𝑞𝑟(1 − 𝑞)𝑟 1! ,  𝑞3𝑟(𝑟 + 1)(𝑟 + 2)(1 − 𝑞)𝑟 3! , . .. 

correspond to a variable 𝑥 with values of 0, 1, 2, and 3, respectively, where 𝑞, and 𝑟 are called the parameters, 

and thus  

𝑃(𝑋 = 𝑥) = (
𝑥 + 𝑟 − 1

𝑟 − 1 
)  𝑞𝑥(1 − 𝑞)𝑟 , 𝑥 ∈  {0, 1, 2, 3, . . . }.                                   (5) 

 

According to S. M. El-Deep et al. [12], the power series of equation (6) is examined, with its coefficients 

representing probabilities of the Pascal distribution, that is 

𝑃𝑞
𝑟(𝜉) = 𝜉 + ∑ (

𝜐 + 𝑟 − 2
𝑟 − 1 

)

∞

𝜐=2

  𝑞𝜐−1(1 − 𝑞)𝑟𝜉𝜐, 𝜉 ∈ 𝑈, 𝑟 ≥ 1, 0 ≤ 𝑞 ≤ 1.   (6) 

 

Further let  

𝑇 ∶=  {𝑓(𝜉) ∈  𝐴; 𝑓(𝜉) = 𝜉 − ∑ 𝑎𝜐𝜉𝜐

∞

𝜐=2

} 

be the subclass of 𝐴 introduced by Silverman [11] in 1975, and the linear operator  

𝐷𝑞
𝑟: 𝐴 → 𝐴 is defined by  
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𝐷𝑞
𝑟(𝑓(𝜉)) = 𝑃𝑞

𝑟 ∗ 𝑓(𝜉) = 𝜉 − ∑ (
𝜐 + 𝑟 − 2

𝑟 − 1 
)

∞

𝜐=2

  𝑞𝜐−1(1 − 𝑞)𝑟𝑎𝜐𝜉𝜐,   𝜉 ∈ 𝑈.        (7) 

By using the convolution (Hadamard product) of two equations (4) and (7), the linear operator 𝑃𝐷𝑞,𝛿,𝜇
𝑛,𝑟 : 𝐴 → 𝐴 is 

defined by  

𝑃𝐷𝑞,𝛿,𝜇
𝑛,𝑟 𝑓(𝜉) = 𝜉 − ∑(𝐶𝜐)

∞

𝜐=2

𝑎𝜐𝜉𝜐 ,                                                                                     (8) 

Where 𝐶𝜐 = [1 + (𝜐 − 1)(𝛿 − 𝜇 + 𝜐𝛿𝜇)]𝑛 (
𝜐 + 𝑟 − 2

𝑟 − 1 
) 𝑞𝜐−1(1 − 𝑞)𝑟 

Now, the new subclass is defined in the following definition:  

 

Definition 2.1  

Let 𝑇𝑄𝑞,𝛿,𝜇
𝑛,𝑟

 represents a class of 𝑓(𝜉) ∈  𝐴. Then  

𝑅𝑒 (1 +
1

𝑏
(

𝜉(𝑃𝐷𝑞,𝛿,𝜇
𝑛,𝑟

𝑓(𝜉))
′

𝑃𝐷𝑞,𝛿,𝜇
𝑛,𝑟

𝑓(𝜉)
− 1)) > 𝜃,                                                                      (9)  

where 𝑟 ≥ 1, 0 ≤ 𝑞 ≤ 1, 𝜇, 𝛿 ≥ 0,  𝑛 ∈ 𝑁0, 0 ≤ θ < 1, b ∈ C − {0}, ξ ∈  𝑈. 

3. Main Results 

Theorem 3.1 (Coefficient Inequality) 

Let 𝑓(𝜉) ∈  𝑇𝑄𝑞,𝛿,𝜇
𝑛,𝑟 . Then  

∑(𝜙𝜐)𝐶𝜐|𝑎𝜐| ≤ (1 − 𝜃)|𝑏|,                                                                                      (10) 

∞

𝜐=2

 

where 𝜙𝜐 = |𝑏 + 𝜐 − 1 − 𝜃𝑏|, 𝐶𝜐 = [1 + (𝜐 − 1)(𝛿 − 𝜇 + 𝜐𝛿𝜇)]𝑛 (
𝜐 + 𝑟 − 2

𝑟 − 1 
) 𝑞𝜐−1(1 − 𝑞)𝑟. 

Proof. Let  

 𝐹(𝜉) =  1 +
1

𝑏
(

𝜉(𝑃𝐷𝑞,𝛿,𝜇
𝑛,𝑟

𝑓(𝜉))
′

𝑃𝐷𝑞,𝛿,𝜇
𝑛,𝑟 𝑓(𝜉)

− 1) − 𝜃 

=  1 + (
𝜉 (𝑃𝐷𝑞,𝛿,𝜇

𝑛,𝑟 𝑓(𝜉))
′

− 𝑏𝑃𝐷𝑞,𝛿,𝜇
𝑛,𝑟 𝑓(𝜉) − 𝜃𝑏𝑃𝐷𝑞,𝛿,𝜇

𝑛,𝑟 𝑓(𝜉)

𝑏𝑃𝐷𝑞,𝛿,𝜇
𝑛,𝑟 𝑓(𝜉)

) 

By the condition of the class, 𝐹(𝜉) ≺
1+𝜉

1−𝜉
. 

A Schwarz function 𝑤(𝜉) exists, and 𝑤(0) = 0 as  𝐹(𝜉) ≺
1+𝑤(𝜉)

1−𝑤(𝜉)
,  where |𝑤| < 1. 

Therefore  𝑤(𝜉) ≺ |
𝐹(𝜉)−1

𝐹(𝜉)+1
|. 

Then 

|
𝐹(𝜉) − 1

𝐹(𝜉) + 1
| = |

𝜉 (𝑃𝐷𝑞,𝛿,𝜇
𝑛,𝑟 𝑓(𝜉))

′

− (1 + 𝜃𝑏)𝑃𝐷𝑞,𝛿,𝜇
𝑛,𝑟 𝑓(𝜉)

𝜉 (𝑃𝐷𝑞,𝛿,𝜇
𝑛,𝑟 𝑓(𝜉))

′

− (1 + 𝜃𝑏 − 2𝑏)𝑃𝐷𝑞,𝛿,𝜇
𝑛,𝑟 𝑓(𝜉)

| 

= |
𝜉 − ∑ 𝜐𝐶𝜐𝑎𝜐𝜉𝜐 − (1 + 𝑏𝜃)𝜉 +∞

𝜐=2 ∑ (1 + 𝑏𝜃)𝐶𝜐𝑎𝜐𝜉𝜐∞
𝜐=2

𝜉 − ∑ 𝜐𝐶𝜐𝑎𝜐𝜉𝜐 − (1 + 𝑏𝜃 − 2𝑏)𝜉 +∞
𝜐=2 ∑ (1 + 𝑏𝜃 − 2𝑏)𝐶𝜐𝑎𝜐𝜉𝜐∞

𝜐=2

| 

≤
𝜃|𝑏| + ∑ |(1 + 𝑏𝜃 − 𝜐)||𝐶𝜐||𝑎𝜐||𝜉𝜐−1|∞

𝜐=2

(2 − 𝜃)|𝑏| − ∑ |(1 + 𝑏𝜃 − 𝜐 − 2𝑏𝜐)||𝐶𝜐||𝑎𝜐||𝜉𝜐−1|∞
𝜐=2

 

Which is bounded by 1, if  

𝜃|𝑏| + ∑|(1 + 𝑏𝜃 − 𝜐)||𝐶𝜐||𝑎𝜐||𝜉𝜐−1|

∞

𝜐=2

≤ (2 − 𝜃)|𝑏| − ∑|(1 + 𝑏𝜃 − 𝜐 − 2𝑏)||𝐶𝜐||𝑎𝜐||𝜉𝜐−1|

∞

𝜐=2

 

Which implies that ∑ |(𝑏 + 𝜐 − 1 − 𝜃𝑏)|𝐶𝜐|𝑎𝜐| ≤ (1 − 𝜃)|𝑏|.∞
𝜐=2  

Hence equation (10) holds. 

Corollary 3.2 

Let 𝑓(𝜉) ∈  𝑇𝑄𝑞,𝛿,𝜇
𝑛,𝑟 .  Then we have  



Tuijin Jishu/Journal of Propulsion Technology 

ISSN: 1001-4055 

Vol. 45 No. 4 (2024) 

__________________________________________________________________________________ 

1332 

𝑎𝜐 ≤
(1 − 𝜃)|𝑏|

(𝜙𝜐)𝐶𝜐

,  

and 

𝑓(𝜉) = 𝜉 +
(1−𝜃)|𝑏|

(𝜙𝜐)𝐶𝜐
𝜉𝜐, 𝜐 = 2,3,4, …                                                                       (11) 

equals itself. 

 

The function 𝑓(𝜉) is defined as the subclass of 𝑇𝑄𝑞,𝛿,𝜇
𝑛,𝑟̅̅ ̅̅ ̅̅ ̅̅ ̅ ⊂ 𝑇𝑄𝑞,𝛿,𝜇

𝑛,𝑟
, then the extreme point of the subclass 

𝑇𝑄𝑞,𝛿,𝜇
𝑛,𝑟̅̅ ̅̅ ̅̅ ̅̅ ̅ has been determined as follows. 

Theorem 3.3 (Extreme points) 

Let 

𝑓1(𝜉) = 𝜉, 𝑓𝜐(𝜉) = 𝜉 + ∑ 𝜂𝜐
(1−𝜃)|𝑏|

(𝜙𝜐)𝐶𝜐

∞
𝜐=2 𝜉𝜐, 𝜐 ≥ 2. 

Then 𝑓 ∈ 𝑇𝑄𝑞,𝛿,𝜇
𝑛,𝑟̅̅ ̅̅ ̅̅ ̅̅ ̅ strictly if 𝑓(𝜉) = ∑ 𝜂𝜐𝑓𝜐(𝜉),∞

𝜐=1  where 𝜂𝜐 > 0 and ∑ 𝜂𝜐 = 1.∞
𝜐=2  

Proof. Let 

𝑓(𝜉) = ∑ 𝜂𝜐𝑓𝜐(𝜉)

∞

𝜐=1

 

= 𝜉 + ∑ 𝜂𝜐

(1 − 𝜃)|𝑏|

(𝜙𝜐)𝐶𝜐

𝜉𝜐

∞

𝜐=2

 

= ∑ 𝜂𝜐

(1 − 𝜃)|𝑏|

(𝜙𝜐)𝐶𝜐

(𝜙𝜐)𝐶𝜐

∞

𝜐=2

 

= (1 − 𝜃)|𝑏| ∑ 𝜂𝜐

∞

𝜐=2

 

= (1 − 𝜃)|𝑏|(1 − 𝜂1) 

 

< (1 − 𝜃)|𝑏| 

Which shows that, 𝑓 ∈ 𝑇𝑄𝑞,𝛿,𝜇
𝑛,𝑟̅̅ ̅̅ ̅̅ ̅̅ ̅. 

Conversely, suppose that 𝑓 ∈ 𝑇𝑄𝑞,𝛿,𝜇
𝑛,𝑟̅̅ ̅̅ ̅̅ ̅̅ ̅. Since 𝑎𝜐 ≤

(1−𝜃)|𝑏|

(𝜙𝜐)𝐶𝜐
, 𝜐 = 2,3, …  

Let 

𝜂𝜐 ≤
(𝜙𝜐)𝐶𝜐

(1 − 𝜃)|𝑏|
, 𝜂1 = 1 − ∑ 𝜂𝜐

∞

𝜐=2

. 

Then we obtain  

𝑓(𝜉) = ∑ 𝜂𝜐𝑓𝜐(𝜉).

∞

𝜐=1

 

 

Definition 3.4 (Little wood subordination theorem [8].) 

Considering that 𝑓 and 𝑔 in 𝑈 are analytic, and that 𝑓(𝜉) ≺ 𝑔(𝜉), then 

∫ |𝑓(𝜉)|𝜇𝑑𝜃 ≤ ∫ |𝑔(𝜉)|𝜇𝑑𝜃
2𝜋

0

2𝜋

0
, 𝜇 > 0, and 𝜉 = 𝑟𝑒𝑖𝜃 , 0 < 𝑟 < 1. 

Theorem 3.4 (Integral means of inequality) 

Let 𝑓(𝜉) ∈  𝑇𝑄𝑞,𝛿,𝜇
𝑛,𝑟  and suppose that 𝑔(𝜉) = 𝜉 + ∑

(1−𝜃)|𝑏|𝜖𝜐

(𝜙𝜐)𝐶𝜐
𝜉𝜐 ,   ∞

𝜐=2  𝜐 = 2,3, …,  

|𝜖𝜐| = 1. If 𝑤(𝜉) is real, it is given by (𝑤(𝜉))𝜐−1 =
(𝜙𝜐)𝐶𝜐

(1−𝜃)|𝑏|𝜖𝜐
∑ 𝑎𝜐𝜉𝜐−1,∞

𝜐=2  then ∫ |𝑓(𝜉)|𝜇𝑑𝜃 ≤
2𝜋

0

∫ |𝑔(𝜉)|𝜇𝑑𝜃,
2𝜋

0
 for 𝜇 > 0, and 𝜉 = 𝑟𝑒𝑖𝜃 , 0 < 𝑟 < 1. 

Proof. We need to demonstrate that to finish the theorem 

∫ |1 + ∑ 𝑎𝜐𝜉𝜐−1  

∞

𝜐=2

|

𝜇

𝑑𝜃 ≤ ∫ |1 + ∑
(1 − 𝜃)|𝑏|𝜖𝜐

(𝜙𝜐)𝐶𝜐

𝜉𝜐−1  

∞

𝜐=2

|

𝜇

𝑑𝜃 

2𝜋

0

2𝜋

0

 



Tuijin Jishu/Journal of Propulsion Technology 

ISSN: 1001-4055 

Vol. 45 No. 4 (2024) 

__________________________________________________________________________________ 

1333 

The Little wood subordination theorem can be used to demonstrate that  

1 + ∑ 𝑎𝜐𝜉𝜐−1  

∞

𝜐=2

≺ 1 + ∑
(1 − 𝜃)|𝑏|𝜖𝜐

(𝜙𝜐)𝐶𝜐

𝜉𝜐−1.  

∞

𝜐=2

 

Let  

1 + ∑ 𝑎𝜐𝜉𝜐−1  

∞

𝜐=2

≺ 1 + ∑
(1 − 𝜃)|𝑏|𝜖𝜐

(𝜙𝜐)𝐶𝜐

(𝑤(𝜉))𝜐−1.  

∞

𝜐=2

 

Therefore 

(𝑤(𝜉))𝜐−1 =
(𝜙𝜐)𝐶𝜐

(1 − 𝜃)|𝑏|𝜖𝜐

∑ 𝑎𝜐𝜉𝜐−1

∞

𝜐=2

. 

Hence 𝑤(0) = 0. 

Furthermore, if 𝑓(𝜉) ∈  𝐴 satisfy (𝜙𝜐)𝐶𝜐 ≤ (1 − 𝜃)|𝑏|. 

|(𝑤(𝜉))|𝜐−1 = |
(𝜙𝜐)𝐶𝜐

(1 − 𝜃)|𝑏|𝜖𝜐

| ∑|𝑎𝜐||𝜉𝜐−1|

∞

𝜐=2

≤ |𝜉| ≤ 1. 

Theorem 3.5 (Convex of order 𝜎) 

Let 𝑓(𝜉) ∈  𝑇𝑄𝑞,𝛿,𝜇
𝑛,𝑟

. Then 𝑓 is convex of order 𝜎 in |𝜉| < 𝑅3, since 

𝑅3 ≔ 𝑖𝑛𝑓 (
(1 − 𝜎)(𝜙𝜐)𝐶𝜐

𝜐(𝜐 − 𝜎)(1 − 𝜃)|𝑏|
)

1
𝜐−1

, (𝜐 ≥ 2).                                              (12) 

Proof. Assuming that  |𝜉| < 𝑅3 and the inequality (12) is valid, it is demonstrated that 

|
𝜉𝑓′′(𝜉)

𝑓′(𝜉)
| ≤ 1 − 𝜎.                                                                                                (13) 

It is adequate to show that  

|𝜉| ≤ (
(1 − 𝜎)(𝜙𝜐)𝐶𝜐

𝜐(𝜐 − 𝜎)(1 − 𝜃)|𝑏|
)

1
𝜐−1

, (𝜐 ≥ 2).   

From (13), we obtain 

|
∑ 𝜐(𝜐 − 1)𝑎𝜐𝜉𝜐−1∞

𝜐=2

1 − ∑ 𝜐𝑎𝜐𝜉𝜐−1∞
𝜐=2

| ≤ 1 − 𝜎. 

Hence,  

|𝜉| ≤ (
(1 − 𝜎)(𝜙𝜐)𝐶𝜐

𝜐(𝜐 − 𝜎)(1 − 𝜃)|𝑏|
)

1
𝜐−1

, (𝜐 ≥ 2).   

Theorem 3.6 (Starlike of order 𝜎) 

Let 𝑓(𝜉) ∈  𝑇𝑄𝑞,𝛿,𝜇
𝑛,𝑟

. Then 𝑓 is starlike of order 𝜎 in |𝜉| < 𝑅2, since 

𝑅2 ≔ 𝑖𝑛𝑓 (
(1 − 𝜎)(𝜙𝜐)𝐶𝜐

(𝜐 − 𝜎)(1 − 𝜃)|𝑏|
)

1
𝜐−1

, (𝜐 ≥ 2).                                              (14) 

Proof. Assuming that  |𝜉| < 𝑅2 and the inequality (14) is valid, it is demonstrated that 
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|
𝜉𝑓′(𝜉)

𝑓(𝜉)
− 1| ≤ 1 − 𝜎.                                                                                       (15) 

It is adequate to show that  

|𝜉| ≤ (
(1 − 𝜎)(𝜙𝜐)𝐶𝜐

(𝜐 − 𝜎)(1 − 𝜃)|𝑏|
)

1
𝜐−1

, (𝜐 ≥ 2).  

From (15), we obtain 

|
𝜉 − ∑ 𝜐𝑎𝜐𝜉𝜐∞

𝜐=2

𝜉 − ∑ 𝑎𝜐𝜉𝜐∞
𝜐=2

− 1| ≤ 1 − 𝜎. 

Hence,  

|𝜉| ≤ (
(1 − 𝜎)(𝜙𝜐)𝐶𝜐

(𝜐 − 𝜎)(1 − 𝜃)|𝑏|
)

1
𝜐−1

, (𝜐 ≥ 2).  

Theorem 3.7 (Close to Convex of order 𝜎) 

Let 𝑓(𝜉) ∈  𝑇𝑄𝑞,𝛿,𝜇
𝑛,𝑟

. Then 𝑓 is close to convex of order 𝜎 in |𝜉| < 𝑅1, since 

𝑅1 ≔ 𝑖𝑛𝑓 (
(1 − 𝜎)(𝜙𝜐)𝐶𝜐

𝜐(1 − 𝜃)|𝑏|
)

1
𝜐−1

, (𝜐 ≥ 2).                                              (16) 

Proof. Assuming that  |𝜉| < 𝑅1 and the inequality (16) is valid, it is demonstrated that 

|𝑓′(𝜉) − 1| ≤ 1 − 𝜎.                                                                                                (17) 

It is adequate to show that  

|𝜉| ≤ (
(1 − 𝜎)(𝜙𝜐)𝐶𝜐

𝜐(1 − 𝜃)|𝑏|
)

1
𝜐−1

, (𝜐 ≥ 2). 

From (17), we obtain 

|1 − ∑ 𝜐𝑎𝜐𝜉𝜐−1

∞

𝜐=2

| ≤ 1 − 𝜎. 

Hence,  

|𝜉| ≤ (
(1 − 𝜎)(𝜙𝜐)𝐶𝜐

𝜐(1 − 𝜃)|𝑏|
)

1
𝜐−1

, (𝜐 ≥ 2). 

Theorem 3.8 (Growth theorem) 

Let 𝑓(𝜉) ∈  𝑇𝑄𝑞,𝛿,𝜇
𝑛,𝑟

. Then for |𝜉| = 𝑟∗,  

𝑟∗ −
(1 − 𝜃)|𝑏|

(1 + 𝑏 − 𝜃𝑏)𝐶2

𝑟∗2
≤ |𝑓(𝜉)| ≤ 𝑟∗ +

(1 − 𝜃)|𝑏|

(1 + 𝑏 − 𝜃𝑏)𝐶2

𝑟∗2
                            (18) 

Where 𝐶2 = (1 + (𝛿 − 𝜇 + 2𝛿𝜇))
𝑛

𝑟𝑞(1 − 𝑞)𝑟. 

Proof. Since  

𝑎𝜐 ≤
(1 − 𝜃)|𝑏|

(𝜙𝜐)𝐶𝜐

.  



Tuijin Jishu/Journal of Propulsion Technology 

ISSN: 1001-4055 

Vol. 45 No. 4 (2024) 

__________________________________________________________________________________ 

1335 

And  

𝑓(𝜉) = 𝜉 − ∑ 𝑎𝜐𝜉𝜐 

∞

𝜐=2

 

Then  

|𝑓(𝜉)| = 𝑟∗ + ∑ 𝑎𝜐(𝑟∗)𝜐 

∞

𝜐=2

 

⟹ |𝑓(𝜉)| = 𝑟∗ + ∑
(1 − 𝜃)|𝑏|

(𝜙𝜐)𝐶𝜐

(𝑟∗)𝜐 

∞

𝜐=2

 

⟹ |𝑓(𝜉)| ≤ 𝑟∗ +
(1 − 𝜃)|𝑏|

(1 + 𝑏 − 𝜃𝑏)𝐶2

𝑟∗2
. 

Similarly 

|𝑓(𝜉)| ≥ 𝑟∗ −
(1 − 𝜃)|𝑏|

(1 + 𝑏 − 𝜃𝑏)𝐶2

𝑟∗2
. 

Theorem 3.9 (Distortion theorem) 

Let 𝑓(𝜉) ∈  𝑇𝑄𝑞,𝛿,𝜇
𝑛,𝑟

. Then for |𝜉| = 𝑟∗,  

1 −
2(1 − 𝜃)|𝑏|

(1 + 𝑏 − 𝜃𝑏)𝐶2

𝑟∗ ≤ |𝑓′(𝜉)| ≤ 1 +
2(1 − 𝜃)|𝑏|

(1 + 𝑏 − 𝜃𝑏)𝐶2

𝑟∗                            (19) 

Where 𝐶2 = (1 + (𝛿 − 𝜇 + 2𝛿𝜇))
𝑛

𝑟𝑞(1 − 𝑞)𝑟. 

Proof. Since  

𝑎𝜐 ≤
(1 − 𝜃)|𝑏|

(𝜙𝜐)𝐶𝜐

.  

And  

𝑓(𝜉) = 𝜉 − ∑ 𝑎𝜐𝜉𝜐 

∞

𝜐=2

 

Then  

|𝑓′(𝜉)| = |1 + ∑ 𝜐𝑎𝜐(𝜉)𝜐−1 

∞

𝜐=2

| 

⟹ |𝑓′(𝜉)| ≤ 1 +
2(1 − 𝜃)|𝑏|

(1 + 𝑏 − 𝜃𝑏)𝐶2

𝑟∗ 

Similarly 

|𝑓′(𝜉)| ≥ 1 −
2(1 − 𝜃)|𝑏|

(1 + 𝑏 − 𝜃𝑏)𝐶2

𝑟∗. 

4. Application- stealth combat aircraft  

Aerodynamics relies heavily on univalent functions, which are single-valued, conformal mappings in complex 

analysis. This is especially true when designing stealth combat aircraft. To reduce radar cross-section (RCS) and 

improve aerodynamic efficiency, univalent functions are useful in modelling and optimizing air foil forms. 
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Designers can study and enhance air ow properties by translating complicated shapes into simpler forms. These 

functions facilitate the study of ow patterns around an aircraft, allowing engineers to predict how changes in shape 

affect drag and lift, which is crucial for stealth performance. These features make it easier to analyse the patterns 

surrounding an aircraft, which enables engineers to forecast how shape changes will impact drag and lift an 

essential aspect of stealth performance [15]-[19]. The principles of univalent functions can be applied to develop 

surfaces that scatter radar waves in ways that reduce detectability. By controlling the geometry of the aircraft's 

surfaces, engineers can create shapes that detect radar signals away from the source. Develop surfaces that scatter 

radar waves in a way that decreases detectability using the concepts of univalent functions. Engineers can build 

shapes that detect radar signals away from the source of the signal by manipulating the aircraft's surface geometry.  

5. Conclusion  

We have examined the coefficient challenges related to the newly created subclass of univalent functions in U, as 

stated in Definition (2.1), in this work. Additionally, the radius of starlikeness, extreme points, development and 

distortion, convexity of the subclass, and integral means of inequalities are found. A greater comprehension of the 

composition and behaviour of analytic functions is offered by the examined subclass. Promising avenues for 

further research are indicated by the examination of Hankel determinants of orders between two and three on the 

before described subclass, as well as by the investigation and estimations associated with the Fekete-Szegö 

functional problem.  
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