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Abstract 

Innovations driven by technology and data-driven methodologies, precision farming has emerged as a 

revolutionary area in modern agriculture. This study presents a review of recent advancements in Machine 

Learning (ML) techniques employed for Crop Prediction, followed by performance analysis of recent models 

(2019-2023). It explores the integration of advanced technologies, collaborative aims, and data-centric 

approaches aimed at overcoming the challenges in traditional agriculture. This paper presents the capabilities 

and complexity of precision farming through an analysis of various ML, Deep Learning, Reinforcement 

Learning, and Ensemble Learning models. Emphasising the important role of global collaboration and data-

sharing initiatives provides information on the precision farming industry's changing environment and shows 

future developments in the field. 
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1. Introduction 

Crop prediction through precision farming is an academically captivating and advanced approach, that aligns 

with the evolving agricultural domain [1]. This method relies on the careful application of advanced technology, 

including remote sensing, to estimate crop yields. Its rapid ascent in the agricultural domain is reshaping 

farming practices, providing farmers with a data-centric strategy that significantly boosts overall productivity 

[2]. At the core of precision farming lies the use of satellite imagery, a powerful tool for generating dynamic 

vegetation index maps. These maps serve as invaluable guides for making well-informed decisions in 

agricultural practices. The process starts by classifying these maps into distinct zones, each corresponding to the 

health status of the vegetation. This spatial categorization enables strategic resource placement and agricultural 

practices. 

A subsequent step involves carefully collecting crop yield samples within these zones, intricately correlated with 

adjacent vegetation indices. The development of sophisticated yield prediction algorithms plays a key role in 

generating precise forecasts, marking a departure from traditional agricultural methods. What distinguishes crop 

prediction through precision farming is its various impacts. Primarily, it redefines crop management by offering 

a real-time, data-driven approach, optimizing resource allocation, minimizing wastage, and ultimately leading to 

higher crop yields. Empowered with data-driven information, farmers can make timely decisions, enhancing 

agricultural efficiency and profitability [3].Furthermore, integrating ML and data analysis techniques broadens 

the horizons of crop prediction. These algorithms efficiently process large datasets and adapt to evolving 

conditions, continually improving prediction accuracy. Machine learning, in this context, emerges as a powerful 

tool for synthesizing multi-dimensional data sources, including soil quality assessments, weather data, and 

satellite imagery [4]. 

The inclusion of remote sensing, and ML in precision farming and crop prediction propels research and 

innovation. Scholars in this field actively explore avenues to improve predictive capabilities, develop user-
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friendly interfaces, and increase accessibility for farmers [5]. Crop prediction through precision farming stands 

as aninteresting domain of academic exploration and innovation, showcasing the transformative potential of 

modern technologies in agriculture. This fusion of technology and agriculture takes a forefront position in 

scientific research, poised to reshape the future of farming practices, promising increased efficiency, reduced 

waste, and higher crop yields [6].  

Contributions: 

 A comprehensive study of ML Techniques,performance analysis, challenges, and future directions. 

 Performed performance comparison of recent machine learning, deep learning, reinforcement learning, 

and ensemble learning models in the context of crop prediction. 

 Identification and discussion of the challenges and obstacles faced in crop prediction through precision 

farming techniques. 

 Exploration of potential future directions, offering knowledge and a roadmap for further research, 

innovation, and development in precision farming and agriculture. 

 

2 Literature Survey of ML Techniques in Precision Farming for Crop Prediction  

In the context of our research, we have undertaken a comprehensive exploration of a curated selection of articles 

that explores deeply into the complex domain of crop prediction and precision farming techniques. Through a 

detailed analysis of these articles, we aim to uncover the latest trends, address pertinent challenges, and identify 

promising opportunities within crop prediction and precision farming. This exploration serves as a vital 

foundation for our research, enriching our understanding of the contemporary agricultural landscape and 

providing valuable knowledgeabout the innovative practices that are shaping the future of farming.  

Pudumalar, S.et al [7], In their comprehensive study, the authors provide an advanced precision agriculture crop 

recommendation system, strategically using data mining techniques to offer precise crop recommendations 

aligned with the unique soil conditions of Indian farmers. The paper presentsan important role of crop selection 

in the domain of precision farming. A comprehensive literature survey follows, exploring the related studies and 

classification algorithms, laying a robust foundation for their research. The methodology elucidates the origins 

of their dataset, encompassing soil-specific attributes and using a sophisticated ensemble model. The result 

showcases the model's impressive performance in classifying liver disease data, regrettably, it does not explore 

the model's efficiency in the context of crop yield prediction. Khalid et al. [8], explored the application of 

precision agriculture techniques for predicting potato crop yield in three irrigated fields within Saudi Arabia. 

Employing GIS and remote sensing methods, the study used Landsat-8 and Sentinel-2 satellite imagery to 

estimate the tuber crop yield. The authors generated vegetation index maps using vegetation indices which were 

then divided into zones according to vegetation health evaluations. Next, stratified random sample locations 

were established, and crop yield samples were collected and correlated with adjacent vegetation indices, leading 

to the development of yield prediction algorithms. The study's findings indicated that these precision agriculture 

techniques were effective in predicting potato crop yield, with prediction errors ranging from 7.9 to 13.5% for 

Landsat-8 images and 3.8 to 10.2% for Sentinel-2 images. The authors highlighted the potential for these 

techniques to change agriculture by enhancing crop management and resource efficiency. However, the study's 

limited scope, focusing on just three irrigated fields in Saudi Arabia, suggests that the results may not be 

universally applied to other parts of the world or crops.Thilakarathne et al [9]built a recommendation method 

which is a cloud-enabled crop tool for ML-driven precision farming, which significantly advanced the field of 

precision farming. This innovative platform uses satellite imaging, soil sensors, weather stations, and other data 

sources that may all be analysed using machine-learning techniques to deliver tailored crop recommendations 

for individual farms. The authors comprehensively explore precision farming's potential, addressing the 

challenges of traditional farming methods and underscoring machine learning's advantages in crop prediction, 

such as efficient data processing. The authors detail the platform's design, encompassing data loading, 

preprocessing, model building, and generalization stages, along with its real-time capabilities and user-friendly 

interface. They emphasize the need for making these technologies accessible to farmers, particularly in remote 
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areas, and highlight the importance of continued research and development to improve crop prediction accuracy 

and efficiency through machine learning. 

Yasam et al [10] presented a supervised learning-based model to predict seed germination ability, a vital aspect 

of precision farming. They begin by emphasizing the significance of seed germination highlighting the 

drawbacks of conventional measurement methods, and propose a machine-learning approach as an alternative 

solution. They detail the materials and methods employed, showcasing the dataset of seed images and 

corresponding germination rates, data preprocessing, and presenting the model architecture, incorporating a 

CNN for feature extraction and a multilayer perceptron for classification. Hyperparameters and performance 

evaluation metrics are also expounded. The results indicate the model's superiority over traditional techniques 

and include insightful ablation studies. Shaikh, Tawseef Ayoub et al [11] explored Information and 

Communication Technology (ICT) and its transformative potential within traditional agriculture. They 

systematically explore a spectrum of advanced technologies, encompassing robotics, IoT devices, ML, and 

artificial intelligence, exploring their applicability in precision farming. The authors scrutinize the hurdles 

inherent to the integration of these technologies, including the formidable cost of equipment and the requisite 

expertise for proficient operation. Furthermore, a review of existing literature is presented, highlighting the 

utility of ML and AI in agriculture, particularly in domains such as crop yield prediction, disease detection, and 

soil analysis. Theyextend to the adoption of drones for crop surveillance and management, offering 

knowledgeof the advantages and complexities associated with their implementation. Finger, Robert et al [12] 

presented an extensive analysis of precision farming and its effects on the environment and agricultural output. 

They examined the most recent advancements in big data and technology to make it more precise, linked, 

efficient, and broadly applicable. They also addressed how PF technologies may be made more widely 

accessible and, thus, have a greater overall positive impact on society through advancements in the legal and 

technological infrastructure. They provided a thorough analysis of PF's present situation as well as its potential 

to change agriculture and advance sustainable development. They gave insights into the mechanisms, use, 

trends, and prospects of PF. Additionally, they looked at the policy elements of PF and how they related to other 

environmental and agricultural policies. Provided case studies and examples of successful PF implementation in 

different regions of the world, which can serve as a guide for farmers and policymakers.Tsouros, Dimosthenis 

C. et al [13], examined UAV-based applications in precision agriculture, exploring the transformative potential 

of emerging technologies like IoT and UAVs for real-time decision-making in agriculture. The review 

encompassed an analysis of hyperspectral imagery and associated techniques, evaluating the suitability of 

various sensors for different applications. Additionally, a survey addressed the utilization of DL in handling 

data. The authors highlighted the absence of a literature review specifically focusing on commonly employed 

techniques for utilizing and processing UAV imagery in agricultural contexts, emphasizing its essential role. 

Machine Learning 
Methods in Crop 

Prediction Models for 
Smart Farming

Supervised Learning

Support Vector Machine 
(SVM), Logistic Regression 

(LR), Random Forest 
(RF), Naive Bayes (NB), K-
Nearest Neighbour (KNN)

Unsupervised 
Learning

Clustering

K-means

Deep Learning

Artificial Neural Network 
(ANN), Convolutional 

Neural Network 
(CNN), Recurrent Neural 

Network 
(RNN), LSTM......

Ensemble Learning

Bagging, Adaptive 
Boost, Gradient 

Boost
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They emphasized the critical need for a standardized workflow, as the lack thereof hinders the widespread 

adoption of UAV systems in commercial precision agriculture applications. The diversity in procedures and 

methods among researchers pursuing the same goal may lead to suboptimal outcomes. 

Ahmed et al [14], To monitor and manage agricultural and remote farms, this study presents a scalable network 

architecture that makes use of fog computing and a long-distance WiFi-based network inside the Internet of 

Things (IoT). To reduce network latency, the suggested approach provides a cross-layer-based  

channel access and routing mechanism for sensing and actuating. The authors used testbed tests and simulations  

to analyse the system's performance. The simulation study was conducted in two stages: first, the performance 

of the proposed Wireless Sensor Network (WSN) and WiLD network was evaluated individually. Next, the 

performance of the entire framework was evaluated by using the findings from the first phase. In the testbed 

evaluation, the authors detailed the evaluation processes and analyzed the architecture's performance. 

Figure 1.  ML Algorithms in Precision farming for Crop Prediction 

Figure 1 illustrates various Machine Learning algorithms employed in precision farming for crop prediction. 

These include supervised learning techniques as well as deep learning methods such as Convolutional Neural 

Networks (CNN) and Recurrent Neural Networks (RNN). Ensemble methods like Gradient Boosting and 

Adaptive Boosting are also shown.  

2.1 Supervised Learning Techniques 

The implementation of Supervised Learning methods is widely recognized in precision farming. These methods 

encompass several well-established techniques, each contributing uniquely to the domain. SVM [15], LR [16], 

KNN [17], Naïve Bayes [18] and Random Forest [19] are among the most prevalent and extensively applied 

Supervised Learning methods. SVM excels in creating decision boundaries, LR is adept at modelling 

probabilities, KNN relies on proximity for classification, Naïve Bayes is based on probability theory, and RF 

utilizes an ensemble of decision trees. The utilization of these diverse methods allows precision farming 

practitioners to use the strengths of each approach, designing their choice based on specific requirements and 

characteristics of the agricultural data present. 

Nischitha K.et al[20] proposed an approach that employs ML algorithms to identify suitable crops for certain 

sites depending on soil composition and weather conditions. Their approach involved data collection from 

sources like government websites and climate data, data preprocessing to clean and handle missing values, and 

the application of ML algorithms such as SVM and decision trees for crop and rainfall prediction. By inputting 

parameters like temperature, humidity, and pH, the system could identify patterns in the data and provide 

recommendations for crop selection, along with information on required seeds, market prices, and approximate 

yields for the recommended crops. Through testing the system with various datasets collected from different 

farmers, including lands with varying pH, humidity, and NPK values, the authors demonstrated the system's 

capability to predict annual rainfall and recommend suitable crops for the year 2020.Pavan Patil et al. [21] 

wanted to help Indian farmers who usually plant the same crops and use a lot of fertilizers without much change. 

They saw how technology, specifically ML, is helping in different areas and decided to use it for farming. While 

past research mostly used ML with just one factor, the authors planned to make their system better by using 

more factors. Their goal was to not only increase crop yields but also to find important patterns for better 

predictions. The purpose of the system is to advise farmers on which crops are best to cultivate in particular 

regions. In the end, the authors successfully created a helpful system for suggesting crops, and they found that 

combining certain ML methods, like naïve Bayes and decision tree classifiers, worked better than using just one. 

This combination improved the system's performance, making it useful for different crops and providing 

accurate suggestions for when to plant and harvest. 

Ersin Elbasi et al. [22], wanted to see how using smart technology and computer programs, like those used in 

self-learning, could help farmers do a better job in growing crops. They looked at different ways these 

technologies could be helpful, like deciding when to plant, water, and harvest crops. They also talked about the 



Tuijin Jishu/Journal of Propulsion Technology 

ISSN: 1001-4055 

Vol. 45 No. 4 (2024) 

___________________________________________________________________________ 

821 
 

difficulties and good things about using these technologies in farming. To show how well these technologies 

work, they did experiments and found that some computer programs were good at predicting things, like what 

kind of crops would grow best. The study suggests that if farmers use these technologies, they could grow more 

crops and waste less. They tried out many different computer programs and found one that worked well, almost 

99.6% accurate. The researchers believe that using smart technology and computers can make farming better 

and help produce more food for everyone, especially when there's not enough. The researchers found that using 

smart technology and computer programs in farming is a big deal. They tested out different ways of using these 

technologies and showed that they could be very helpful for farmers. Even though it's not always easy to use 

these technologies, the results so far look really good. The study suggests that these technologies can help 

farmers grow more crops, waste less, and make sure there's enough food for everyone. The researchers think 

that more research in this area can make farming even better and help solve some of the problems we have with 

food. 

2.2 Unsupervised Learning Techniques 

Unsupervised learning techniques, particularly K-means clustering [23], are powerful in crop prediction, 

offering approaches to understanding complex patterns within agricultural data. Unlike supervised learning, 

where models are trained on labelled datasets, unsupervised learning explores the inherent structures of the data 

without predefined classifications. Within this domain, K-means clustering, a prominent technique, stands out 

for its ability to partition datasets into distinct groups based on inherent similarities. In crop prediction, the 

application of K-means clustering holds promise for uncovering hidden patterns and trends in agricultural data, 

providing valuable insights for farmers and stakeholders. This section explores the principles and applications of 

K-means clustering in crop prediction. 

To meet the growing need for agricultural output brought on by population expansion, Suresh A. et al [24] 

proposed a forecasting approach for the key crops grown in Tamilnadu. For clustering and classification, they 

used the K-means and Modified K Nearest Neighbour (KNN) algorithms, respectively. The objective was to 

maximize crop yield by predicting and understanding the demand for production. The tools employed for 

clustering and classification were Matlab and WEKA. The results indicated that their proposed method, 

incorporating K-means and Modified KNN, outperformed traditional data mining approaches. The authors 

concluded that the study successfully predicted major crop yields in Tamilnadu, with Modified KNN emerging 

as the most effective algorithm among fuzzy, KNN, and Modified KNN. In essence, the authors applied K-

means in conjunction with Modified KNN to develop a predictive model for crop yields, demonstrating its 

superiority over traditional methods and setting the stage for further exploration of advanced algorithms in 

future studies.Venkatesh and Naik[25] The authors conducted a study addressing nutrition management in 

groundnut crops in India, recognizing the importance of factors like soil type, water, environmental conditions, 

and plant nutritional content in determining crop yield. Unlike previous research that often focused solely on 

primary nutrients, this work aimed to detect both primary and micronutrient deficiencies. They employed ESP32 

camera images captured from crop fields for experimentation. The classification of these images was carried out 

using the Visual Geometry Group (VGG16) [26] architecture. To estimate nutrient deficiency percentages, the 

authors implemented the K-Means clustering algorithm. The conclusion highlighted the significance of nutrient 

deficiency, both primary and micro, as a key factor contributing to reduced crop yields. The proposed method, 

utilizing automatic detection and providing deficiency percentages, offers a practical solution to the challenges 

faced by farmers in managing crop nutrition effectively. This automated approach not only streamlines the 

process but also helps minimize crop investments and environmental pollution by addressing nutrient 

deficiencies in a more precise and timely manner. 

Vani, P. Suvitha, and S. Rathi [27] developed a Proximity Likelihood Maximisation Data Clustering (PLMDC) 

approach, particularly for both sparse and highly distributed agricultural big data to improve crop yield forecast 

accuracy. The PLMDC technique involved a systematic process that commenced with the cleansing of 

unnecessary data through a logical linear regression model. Subsequently, a clustering method based on 

similarity and weight-based Manhattan distance was applied, and feature selection was carried out using a 

genetic algorithm with a well-designed fitness function. Notably, the authors integrated the K-means clustering 
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algorithm, a widely used and effective clustering technique, into their proposed PLMDC methodology to 

improve the initial clustering step. K-means facilitated the grouping of data points into distinct clusters based on 

similarity, thereby contributing to the overall precision of the PLMDC technique. The results demonstrated the 

superiority of the PLMDC technique in terms of clustering accuracy for both sparse and densely distributed 

data, achieving improved accuracy with minimal time and space complexity compared to existing methods. The 

emphasis on data preprocessing, strategic clustering, and feature selection through genetic algorithms, including 

the integration of K-means, contributed to the overall efficiency of the PLMDC technique. 

2.3 Deep Learning Techniques 

This section explores the application of DL techniques in crop prediction, focusing on their remarkable ability in 

object detection [28] [29]. DL is a subset of ML that has demonstrated a significant abilityto recognize and 

analyse complex patterns within data. In crop prediction, these techniques use neural networks to detect and 

understand the difficult features within agricultural imagery, such as crop types, health conditions, and growth 

stages. The utilization of deep learning methods, known for their ability to automatically learn hierarchical 

representations, offers promising advancements in improving the precision and efficiency of crop prediction 

models.  

A comparison study of DL-based techniques and semi-supervised methods was carried out by Hani et al[30] for 

fruit counting and detection in apple orchards. According to their results, CNN, Faster R-CNN, U-Net, and other 

Deep Learning algorithms performed worse for yield mapping than traditional methods like Gaussian Mixture 

Models.In their examination of DL applications for fruit counting and yield estimation, Koirala et al[31] showed 

the efficiency of Deep Learning methods in extracting crucial features. The authors specifically recommended 

employing CNN detectors, deep regression, and LSTM approaches for estimating fruit load, highlighting the 

versatility of these techniques in agricultural contexts. Van Klompenburg et al [32] reported in a systematic 

literature review on machine learning-based agricultural production prediction that neural networks, in 

particular, CNNs, LSTM, and Deep Neural Networks, are widely utilized in this domain. The authors 

highlighted the variability in the number of features employed across studies, emphasizing that certain 

predictions are reliant on object counting and detection rather than traditional tabular data. Additionally, they 

observed a diverse landscape in feature selection strategies.  

With an emphasis on agricultural diseases, Lee et al [33] developed a self-predictive crop yield platform using 

Deep Learning techniques. The study found that the CNN algorithm performed better than the R-CNN and 

YOLO algorithms for the crop disease detection module. The study also demonstrated the performance of the 

Rectified Linear Unit (ReLU) activation function in obtaining high performance for the Crop Yield Prediction 

(CYP) module, highlighting the importance of using it in artificial neural networks. Shifting the focus to the 

integration of DL methods, Chlingaryan et al[34] explored the domain of predicting crop yield and estimating 

nitrogen status using ML techniques. The findings suggested that advancements in ML, particularly within the 

domain of Deep Learning, are poised to deliver cost-effective solutions. In a comprehensive review of DL 

applications in dense agricultural scenes, Zhang et al[35] covered a spectrum of tasks in a survey 

whichdemonstrated that DL excels in handling dense agricultural environmentsincluding recognition and 

classification, detection, counting, and yield estimation. 

2.4 Ensemble Learning Techniques 

This section presents the application of ensemble learning techniques in the domain of crop prediction, 

showcasing their significance and impact on improving predictive accuracy. Ensemble learning involves 

combining multiple models to improve the overall performance and robustness. In the context of crop 

prediction, this approach integrates diverse algorithms, using their collective strength to produce more reliable 

and accurate predictions. Ensemble techniques, such as bagging and boosting, playan important role in 

mitigating the limitations of individual models and contribute to creating more resilient and adaptable crop 

prediction systems. The section explores the methodologies, advantages, and outcomes associated with 

employing ensemble learning techniques in the context of precision agriculture, shedding light on their role in 

changing crop prediction models. 
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Agarwalet al [36], in tackling the complex challenge of precise crop prediction amidst climate variations, 

proposed an innovative solution utilizing ensemble learning. This methodology involves combining predictions 

from distinct machine learning algorithms, recognizing the inherent limitations of individual models and aiming 

to improve accuracy by using the collective strengths of multiple approaches. The authors undertook a training 

process on a diverse dataset using five different machine learning algorithms, selecting the top performers to 

construct an ensemble model. This strategic ensemble approach sought to fortify stability and resilience in crop 

recommendations, acknowledging and accommodating the varied strengths and weaknesses of individual 

models. The study emphasized that ensemble learning stands out in efficiently managing complex agricultural 

data, providing a robust framework for evaluation, and holds the potential to improve the efficiency of crop 

recommendation systems. The overarching goal was to promote improved agricultural practices and higher crop 

yields, resulting in mutual benefits for both farmers and the nation.Keerthanaet al[37] explored machine 

learning's role in crop yield prediction, focusing on ensemble techniques for improved accuracy. Their research 

centred on predicting crop types based on location parameters, utilizing a combination of supervised and 

unsupervised learning methods. Through a comprehensive search and analysis of data from various sources, the 

authors finalized 28242 instances with seven key features, emphasizing climatic conditions' relevance. Notably, 

they experimented with Neural Networks and Decision Tree algorithms, pinpointing the latter's effectiveness. 

The conclusion highlighted the successful implementation of a crop yield prediction system, specifically 

showcasing the Ensemble of Decision Tree Regressor with AdaBoost Regressor as a powerful tool to improve 

accuracy. This system offers practical guidance for farmers in choosing optimal crops based on location and 

weather conditions, addressing key agricultural challenges. 

In keeping with the ambitious Agenda Zero Hunger by 2030, Isaac et al [38] examined the use of tree-based 

ensemble learning models for crop suitability and production prediction. The study's objectives were to create 

and evaluate predictive analytics tree-based ensemble learning models, as well as to understand the complex 

interactions that exist between environmental conditions and crop results. Utilising a Kaggle dataset that was 

made publicly available, the experimental results demonstrated exceptional model performance, with an 

accuracy of 99.32%. The ability of gradient tree-based ensemble models, such as XGBoost and LightGBM, to 

outperform traditional ML models and demonstrate how they may transform crop management strategies for 

higher yields was especially significant. The study's revelations emphasized the significant impact of factors 

such as rainfall and potassium levels on the selection of crops within specific regions. The implications of this 

research extend to furnishing farmers with invaluable decision-making tools, empowering them to optimize 

resource allocation, fine-tune irrigation schedules, and customize agricultural practices to meet the specific 

requirements of different crops, ultimately resulting in heightened productivity. The identification of pivotal 

factors influencing crop growth, including rainfall, potassium, and phosphorus, highlighted the importance of 

sustainable agricultural practices, advocating for targeted and efficient fertilization strategies with positive 

environmental repercussions. 

2.5. PublicAvailable Datasets 

This section presents the various public datasets utilized in the field of crop prediction while some of the 

Datasets are available on request. Examining the diverse datasets is crucial for understanding the breadth of 

information that contributes to accurate predictions in agriculture. Researchers and practitioners often rely on 

these datasets to develop and validate models, incorporating factors such as soil attributes, climate conditions, 

and historical crop performance. The availability and quality of datasets playa keyrole in crop prediction 

models, influencing their reliability and applicability across different regions as shown in Table 1.  

Table 1.Public Datasets in the Domain of Precision Farming [39] 

Reference Purpose  Number of Objects 

[40] Flower Classification 1360 



Tuijin Jishu/Journal of Propulsion Technology 

ISSN: 1001-4055 

Vol. 45 No. 4 (2024) 

___________________________________________________________________________ 

824 
 

 

 

3. Farming 

Farming is a deeply ingrained and vital human endeavour, embodying the very essence of our connection to the 

land and our sustenance. It entails the deliberate and systematic cultivation of crops, the husbandry of livestock, 

and the stewardship of natural resources with the primary objective of generating sustenance in the form of 

food, fibre, and an array of essential products crucial for our survival. This enduring practice, deeply woven into 

the fabric of human history, extends back through millennia, reflecting our innate need to equip the land's 

resources for nourishment and well-being. The variousdomain of farming entails the judicious management of 

agricultural resources, the careful allocation of arable land, and the application of a diverse array of farming 

techniques honed over generations. Through these techniques, farmers skillfully manipulate the environment to 

encourage the growth of crops and the rearing of livestock, serving as stewards of both the land and the 

sustenance it yields. In essence, farming transcends its elemental role as a means of sustenance; it symbolizes 

the enduring partnership between humanity and the earth, embodying the difficult interplay of tradition, 

innovation, and the inexorable drive to feed, clothe, and nurture our civilizations [56]. 

Farming can be classified into: 

1. Traditional Farming. 

[41] Vegetable and Fruit Classification ~160,000 

[42] Species Detection and Classification ~6.6 M 

[43] Pest Detection 18,983 images 

[44] Species Detection and Classification ~49,000 

[45] Object Detection and Instance 

Segmentation 

4432 boxes, 2020 masks 

[46] Robotic Computer Vision Control 7853 

[47] Fruit Detection, Segmentation, 

Counting 

~41,000 

[48] Fruit Detection 1455 

[49] Pest Detection ~264,700 

[50] Fruit Detection and Tracking ~86,000 

[51] Pest Detection 6410 images 

[52] Disease Detection, Tree Counting, 

Classification, and Segmentation 

93 

[53] Grey Mould Detection 121 

[54] Fruit Detection and Tracking ~8000 

[55] Grassland Detection for Agricultural 

Robotics 

15,519 
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2. Modern Farming (Precision Farming). 

 

Figure 2. Basic Classification of Farming. 

Figure 2 shows the fundamental classification of farming, delineating two primary categories: Traditional 

Farming and Modern Farming, with the latter encompassing Precision Farming. Traditional Farming represents 

the conventional, age-old agricultural practices deeply rooted in history, often reliant on manual labour and 

traditional techniques. In stark contrast, Modern Farming, inclusive of Precision Farming, embodies a paradigm 

shift marked by the joining of modern techniques and data-driven approaches. Precision Farming, as a subset of 

Modern Farming, uses advanced technologies, including IoT sensors, Artificial Intelligence, and remote sensing, 

to optimize agricultural practices. This classification lays the foundation for understanding the evolving 

landscape of agriculture, spanning from time-honoured traditions to the innovative frontiers of technology-

driven farming practices. 

3.5. The Traditional Farming Method 

Traditional Farming, a time-honoured practice that has sustained communities for generations, represents a 

cornerstone of global food production. This age-old system is deeply rooted in a series of labour-intensive 

processes that harmonize with the rhythm of the seasons and the unpredictability of nature. At the heart of 

traditional agriculture lies the good preparation of fields, where the soil is worked through hours of toil to create 

fertile ground for crop growth. Seed choice is a decision of paramount importance, where generations of 

farming wisdom guide the selection of seeds ideally suited to the local climate and soil conditions. The act of 

planting, or seeding, is performed with care and precision, often by hand, ensuring that each seed finds its place 

in the earth at the right depth and spacing [57]. 

In the domain of traditional Farming shown in Figure 3 below, a deep reliance on natural resources is 

exemplified by the dependence on seasonal rainfall as the primary source of irrigation. The farmer's 

commitment to the land extends to the application of natural fertilizers, such as compost and animal manure, to 

enrich the fertility of the soil. Yet, the nurturing of crops is a dual effort, as traditional farmers must also contend 

with the persistent challenge of unwanted plants, diligently removing weeds that threaten the health of their 

cherished crops. The agricultural cycle crescendos with the joyous harvest gathering, where the fruits of labour 

are painstakingly collected using age-old tools like sickles or scythes. The selection of crops to be cultivated 

reflects the profound connection between traditional agriculture and local communities, as the choice of what to 

plant is influenced by market demand, local preferences, and the adaptability of crops to the region's specific 

needs. Traditional agriculture stands as a testament to the resilience and wisdom of generations of farmers who 

have persevered through the ages, nurturing the land to provide sustenance and nourishment for their 

communities [58]. 

Types of Farming

Traditional Farming

Modern Farming                     
(Precision Farming)
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Figure 3. Traditional Farming Process 

3.6. The Modern (Precision Farming)Method 

With the use of innovative technologies to optimize agricultural practices, precision farming is a paradigm-

shifting approach in modern agriculture. It embodies a data-driven approach to cultivation when the agricultural 

process is precisely regulated in every way, from seed selection to resource management and harvest. The core 

tenet of precision farming lies in the precise, site-specific understanding of the agricultural landscape, 

empowering farmers to decide and act with understanding. This method allows real-time monitoring, analysis, 

and adaptation by utilizing a variety of modern technologies such as remote sensing, IoT devices, GPS, and data 

analytics. Precision farming is not just an evolution of technology but a fundamental revolution, promising 

increased yields, reduced resource wastage, and sustainable agriculture, while simultaneously tackling the 

problems of environmental sustainability and food security in a time of shifting climatic patterns and expanding 

global population[59]. 

 

Figure 4. Precision Farming Foundation 

Figure 4 shows the key building blocks of the Precision Farming Foundation. Think of it like a toolbox for 

modern farming. In this toolbox, we have IoT (Internet of Things) devices that collect important data from the 

farm. Then, there's Artificial Intelligence (like a smart brain) that uses this data to make smart decisions for the 
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farm. Lastly, we have Robotics, which are like helpful farm machines. All these tools work together to help 

farmers make better choices about crops and resources, making farming more efficient and productive. It's like 

having a high-tech helper for farmers. 

Figure 5. Steps in Precision Farming. 

Figure 5 illustrates the sequential steps in Precision Farming, like a recipe for smart farming. It all starts with 

Agriculture Robotics, which are like high-tech helpers on the farm. These robots carry out tasks and send 

information to a Cloud Database, which is like a big, smart storage place. Then, Data Analytics, powered by 

Artificial Intelligence (a smart brain), processes all the information from the farm and makes clever decisions. 

There are also IOT Sensors (fancy farm sensors) in the fields, wired and wireless, sending data to the same 

Cloud Database. The Cloud Database is like the heart that connects everything. Finally, the End User Services, 

which could be farmers or anyone interested, get messages and prompts from the Cloud Database. It's a smart 

system that helps farms be more efficient and productive, like having a digital farming assistant. 

3.6.1. Crop Prediction  

Crop prediction, as animportant domain within agricultural science and technology, is a field of paramount 

importance in the contemporary agricultural landscape. It embodies a sophisticated interdisciplinary approach 

that melds agronomy, data science, and technology to forecast crop yields, optimize resource allocation, and 

improve agricultural sustainability. This scientific discipline has gained prominence as a response to the 

escalating global demand for food, requiring innovative strategies to boost agricultural productivity and mitigate 

the challenges faced by climate change and resource scarcity. Crop prediction is driven by the premise that data-

driven insights can empower decisions on crop selection, planting dates, and resource management should be 

made by farmers and other agricultural stakeholders with understanding. This introduction serves as the gateway 

to a comprehensive exploration of the methods, models, and technologies underpinning crop prediction, 

exploring its various aspects, applications, and implications in the pursuit of sustainable and resilient 

agricultural systems [60] 
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Figure 6. How Artificial Intelligence Techniques AreUsed in Precision Farming 

Figure 6. illustrates the step-by-step process of how Artificial Intelligence techniques are equipped within 

Precision Farming. It all begins with the Crop Dataset, which contains essential agricultural data. This data is 

then subjected to Data Pre-processing, where it's organized into a Training Set and a Test Set to ensure the AI 

models receive the right information. The core of this AI-powered system is the AI models block, featuring 

Machine Learning, Deep Learning, Reinforcement Learning, and Ensemble Learning, each with its unique 

capabilities. These models analyze the data to make Predictions, helping farmers optimize their crop 

management, reduce waste, and improve yields, making farming smarter and more efficient. 

3.6.2. The Role of Precision Farming in Crop Prediction 

The ability of precision farming to provide accurate, site-specific solutions for crop management and decision-

making has made precision farming, as a full agricultural management system, more popular in recent years. 

Using IoT sensors in agricultural areas is the basis of precision farming's crop prediction [61]. These sensors are 

placed all over the agricultural landscape to gather several data points, such as crop health indicators, weather, 

and soil moisture levels. This data forms the backbone for predictive modelling.Artificial Intelligence, with its 

robust data analytics capabilities, plays a key role in crop prediction [62]. AI algorithms are employed to 

analyze the extensive datasets collected by IoT sensors. The data is scrutinized for patterns, trends, and 

correlations that are not apparent through traditional methods. AI-powered predictive models are designed to 

predict crop yields, know the best time to plant, and even detect diseases or pests early.Furthermore, data 

collecting is aided by remote sensing technologies that provide an aerial perspective of the fields, such as drones 

and satellite photography. By offering insightful information on crop health and growth, these technologies 

increase the precision of predictions [63]. 

4. Performance Analysis of Recent Models for Crop Prediction 

This section presents a detailed comparison of the performance of different categories of learning algorithms, 

specifically ML, DL, reinforcement learning, and ensemble learning. We assess how well these algorithms 

perform in the context of the study's objectives. This performance analysis is crucial for understanding the 

suitability of various learning approaches in the given agricultural context. It aids in identifying which 

algorithms excel in optimizing crop production, reducing waste, and making decisions related to planting, 
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watering, and harvesting crops. We focused only on models developed recently within a 5-year frame (2019-

2023) performance analysis.  

Table 2. Comparative Analysis of Recent ModelsUsed for Crop Prediction and Precision Farming 

Approach Year Authors Algorithm(s) Accuracy 

 

 

 

Supervised 

learning 

 

(2021) Pawar et al  [64] NB 95%  

(2019) Bondre and Mahagaonkar  

[65] 

SVM 99.47% 

(2019) Mayagopal and Bhargavi  

[66] 

M5 Prime 85%  

(2020) Mupangwa et al [67] LR 

KNN 

58%  

54%  

Unsupervised 

Learning 

(2021) Pawar et al  [64] K-means 67.875%  

 

 

Deep learning 

 

 

(2020) Muneshwara et al  [68] ANN 98%  

(2020) Khaki et al  [69] CNN 85.82%  

(2021) Agarwal and Tarar [70] RNN 

LSTM 

97%  

97%  

(2020) Kwaghtyo, Dekera 

Kenneth, and Christopher 

Ifeanyi Eke et al [71]  

ANN 98%  

 

Ensemble 

learning 

 

(2021) Suruliandi et al  [72] Bagging 89%  

(2020) Mishra et al  [73] Adaptive 

Boost 

99.69% 

 

This comprehensive table provides an overview of various approaches in crop prediction using precision 

farming, highlighting the reference papers, algorithms employed, and the corresponding performance metrics. In 

supervised learning, Pawar et al[64] utilized the Naïve Bayes algorithm, achieving a Cohen’s Kappa Score of 

95% accuracy. Bondre and Mahagaonkar [65] employed Support Vector Machines (SVM) with remarkable 

success, reaching 99.47% accuracy. Mayagopal and Bhargavi [66] implemented the M5 Prime algorithm, 

yielding an 85% accuracy rate, while Mupangwa et al[67] applied both Linear Regression and k-nearest 

Neighbors (KNN), resulting in 58% and 54% accuracy, respectively. 

In the approach of unsupervised learning, Pawar et al[64] utilized the K-means algorithm, achieving an accuracy 

of 67.875%. Deep learning approaches showcased promising results, with Muneshwara et al[68] employing 

ANN for 98% accuracy, Khaki et al[69] using CNN with an 85.82% accuracy rate, and Agarwal and Tarar [70] 

employing Recurrent Neural Networks and LSTM models, both achieving a high 97% accuracy. 
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Ensemble learning techniques were also explored, with Suruliandi et al[72] implementing Bagging for an 89% 

accuracy rate. Mishra et al[73] adopted Adaptive Boosting, achieving a remarkable accuracy of 99.69% with a 

100% improvement using Mean Absolute Deviation (MAD) and R2 Score. This detailed summary gave 

valuable knowledge into the diverse approaches and their corresponding performance outcomes in precision 

farming for crop prediction. 

 

Figure 7. Performance of recent models 

Figure 7 illustrates an assessment of the performance of models from the year 2019 to2024 considered in this 

research. This analysis explores the efficiency of these models, offering informationabout their predictive 

capabilities and accuracy. 

5. Challenges  

This section shows the difficulties that come with using precision farming for predicting crop outcomes. These 

difficulties involve issues like making sure data is accurate, having access to the right technology, and following 

regulations. Understanding and solving these challenges is crucial for making precision farming work well in 

agriculture as shown in Figure 8. 

1. Data Security and Privacy [74] 

In precision farming, a big problem is keeping all the farm information safe and private. Because we use a lot of 

smart sensors and special technologies that watch the farm, we collect a ton of important data. This data tells us 

about the soil, and how the crops are doing, and even predicts how much we'll get. But, we need to be careful 

that this information doesn't get into the wrong hands. There's a worry about hackers and people who shouldn't 

see this farm info. To fix this, we have to make really strong security plans to protect the data and follow the 

rules about keeping information safe. This way, we can make sure the farmers' details stay private, and the farm 

data doesn't end up where it shouldn't. It's a big challenge, but having good security and following the rules 

helps us solve it. 

2. Data Quality and Quantity [75] 
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Obtaining the right amount of good information from different places is a challenge in precision farming. We 

use smart sensors, special technologies, and old records to collect this info. But, sometimes, the data we get 

might not be perfect. It can bemistaken or incomplete. This can cause our predictions about the farm to be 

wrong. Also, we need a lot of data to make sure our predictions are really good. But, for smaller farms or places 

with not much data, this can be tough. It's like needing a lot of puzzle pieces to see the whole picture. So, getting 

the right and enough data is a challenge, especially for smaller farms or places with not many records to use. 

3. Technology Accessibility [76] 

In certain regions, using advanced technology and stable internet is not so easy because it's not available 

everywhere. This makes it hard for farmers to use and benefit from precision farming methods. You see, for 

these methods to work well, we need good technology and fast internet to connect smart sensors and share data. 

But in some places, they don't have these things, making it tough for farmers to use the latest farming techniques 

that could help them. It's like having a cool tool but not having all the necessary parts to make it work smoothly. 

So, the limited access to advanced technology and speedy internet in some regions is a challenge because it 

slows down the use of precision farming, making it less effective for those farmers. 

4. Regulatory Compliance [77] 

Following the rules and standards set by the local and national governments about how we use data, manage 

land, and take care of the environment can be hard for precision farming users. There are many different rules, 

and they can make precision farming more complicated and expensive. It's like having a lot of different puzzle 

pieces that need to fit just right. So, sticking to all these rules about how we use data, treat the land, and care for 

the environment can be a big challenge for farmers using precision farming. It adds extra layers of complexity 

and can cost more money to follow all the rules correctly. 

5. Scalability [78] 

A challenge in agriculture is making sure that precision farming methods can work for all kinds of farms, 

whether they're small family ones or really big commercial ones. Sometimes, the solutions that are good for 

huge farms don't fit well with smaller, more varied farms. It's like having a tool that works great in a big garden 

but doesn't fit well in a tiny one with different plants. So, making precision farming work for all farm sizes and 

types is a challenge because one size doesn't fit all in farming. There is a need for a solution that can adapt to 

different farm setups and sizes. 

 

Figure 8. Challenges of Precision Farming 

 

6. Future Prospects of Crop Prediction 

In this section, we look ahead to where precision farming is headed in figure 9. This means exploring exciting 

possibilities like using drones, adapting to climate change, and making agriculture more sustainable. These 

future paths aim to make farming smarter, more efficient, and better for our planet and food supply. 
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1. Advanced Robotics and Automation [79] 

Promoting the wider adoption of agricultural robots signifies a significant stride towards modernizing various 

farming operations. These autonomous machines are engineered to undertake a spectrum of tasks, including but 

not limited to planting, harvesting, and pest control. Their integration into agricultural practices has the capacity 

to bring about in the future of sustainability and efficiency. By taking over labour-intensive and time-consuming 

activities, agricultural robots can diminish the dependency on manual labour, contributing to reduced 

operational costs and greater precision in farming processes. This evolution towards automation not only 

optimizes resource utilization but also ensures that crops are managed and cultivated with heightened accuracy, 

promising a more productive and environmentally responsible future for agriculture. 

2. Global Data Sharing and Collaboration [80] 

Encouraging worldwide collaboration and the open exchange of data within the domain of precision farming 

represents an important step towards shaping the future of agriculture. This collaborative approach aims to 

assemble a comprehensive and precise knowledge repository that can empower agricultural decision-makers 

with a wealth of information. By encouraging global cooperation, stakeholders in the agricultural sector can 

collectively gather information from diverse regions, climates, and farming practices, yielding a more robust 

understanding of crop management and resource allocation. The combination of this global knowledge serves as 

a valuable resource for enhancing precision farming techniques, fine-tuning predictive models, and 

implementing sustainable practices on a broader scale, ultimately contributing to the global pursuit of food 

security and environmentally responsible agriculture. 

3. Urban and Vertical Farming Integration [81] 

Adjusting precision farming techniques for urban and vertical agriculture brings significant benefits by making 

the most out of resources and lowering the impact on the environment. In these limited spaces, employing data-

driven methods helps use resources efficiently, save water, and decrease the overall environmental footprint. 

This approach aligns with the increasing need for locally sourced, fresh produce while ensuring sustainable 

practices. Essentially, adapting precision farming for urban and vertical agriculture proves to be an effective 

strategy for meeting the demand for local, eco-friendly produce. 

4. Blockchain for Traceability [82] 

Using blockchain technology for end-to-end traceability of agricultural products is a novel approach that 

changes transparency and trust within the supply chain. By employing blockchain, every step of a product's 

journey, from farm to fork, is recorded and securely stored. This not only allows consumers to trace the origins 

and journey of their food but also provides a robust system for verifying the authenticity of products. It ensures 

that claims of organic, sustainable, or fair-trade practices can be substantiated, promoting consumer confidence. 

Furthermore, it holds immense potential for food safety by swiftly pinpointing the source of contamination in 

the event of a recall, safeguarding public health and enhancing the integrity of the entire food industry. In 

essence, blockchain technology is a transformative force, forging a path towards an era of trust, accountability, 

and transparency in the agricultural supply chain. 
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Figure 9. Future Prospects in Precision Farming 

7. Conclusion 

This study has undertaken a comprehensive exploration of the evolving landscape of crop prediction utilizing 

precision farming techniques. This aim has unveiled both the promises and intricacies inherent to this dynamic 

domain. By combining advanced technologies, encouraging collaboration, and advocating global data exchange, 

precision farming is poised to enact a substantive metamorphosis within the agricultural sphere, encouraging 

enhanced efficiency, sustainability, and transparency. As the authors of this study, our contribution to this 

discourse is highlighted by our analytical assessment of extant models and our ability to proffer valuable 

information into the various challenges and future trajectories of precision farming. Our workshows the 

transformative capacity of precision farming and its pivotal role in sculpting the forthcoming landscape of 

agriculture, harmoniously combining technological innovation with ecological responsibility, thus augmenting a 

more productive, adaptable, and data-informed agricultural sector. 
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