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Abstract  

   ECG inverse problem is a mathematical formulation of cardiac electrical activity on the heart surface that can 

be solved to determine the electric potential on the heart surface. In this paper, a forward problem to ECG will be 

formulated using a mathematical formulation similar to the ECG forward problem. The forward problem will be 

solved using radial basis collocation techniques by taking different discretization points of N=9 and N=25 points 

to predict the solution u(x,t) to the forward problem.  
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 1. Introduction 

   Universally Cardiovascular diseases (CVDs) remain the basic cause of death among people [11]. In 2019, 

around 18 million people died due to CVDs [4]. Proper treatment at the early stage is the only way of preventing 

deaths due to CVDs [12]. ECG (Electrocardiogram) who’s another name is EKG is used mostly to measure the 

electrical activity on the heart surface to detect heart disease. From the measured electric potential physicians 

identify anomalies on the heart surface such as coronary artery disease, ischemia, arrhythmia, atrial fibrillation 

etc. ECG lacks in sensitivity and specificity and its resolution is limited to a great extent.  

   Lots of work has been done to recreate the electric potential from the body surface potential on the heart surface 

using different methods. This process of obtaining the electric potential is called forward/inverse problem in ECG. 

The forward/inverse problem is a mathematical model which has the form of Laplace equation with Neumann 

boundary conditions. To obtain the electric potential on the heart surface the forward problem is first solved and 

then the inverse problem. 

   Numerical methods are used to address the forward/inverse problem. Boundary Element Methods (BEM) [8], 

finite element methods (FEM) [8], and finite volume methods (FVM) [3] are some of the most commonly used 

numerical approaches. Numerical approaches necessitate domain meshing, which is difficult in irregular geometry 

and results in weakly solving DE’s (Differential Equations) over discretization. Due to the uneven geometry of 

the heart, typical methods for solving the forward problem of the ECG do not yield promising results. The 

generated solutions are discrete or have limited differentiability, which is a shortcoming of this method. In [11] 

the authors solved the inverse problem using the domain decomposition method. It is put to the test using fictitious 

data. The authors find that even with a high amount of noise, the wave front is successfully captured. In [5] the 

authors looked at the use of the generalised minimal residual (GMRes) method, which has been shown to be 

effective in tackling ill-posed issues in image processing. The performance of GMRes in imaging normal and 

aberrant electrical activity in calves is evaluated by the authors. 

   As the traditional method requires mesh generation which is complex for irregular domain geometry, many 

researchers are using meshless method to find the solution to the PDE. Radial basis function (RBF) is a meshless 

method which is used by many researchers for solving PDE, control problems etc. and it gives promising result 

as compared to the traditional method [7,9 9, 11, 13, 14, 15].  
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   In this paper, a forward problem to ECG will be formulated by a similar mathematical formulation. RBF method 

will be used to evaluate the solution to the forward problem. In the first phase, collocation techniques will be 

utilized that converts the equation and boundary conditions into a nonlinear system of equations. By taking 

different values of discretization points equations will be solved using Matlab. 

2. Radial Basis Function Approximation 

    RBF is a feed forward neural network model with an input, hidden and output layer. The network collects the 

user data through the input nodes and then pass on for processing to the inner layer. The network model is 

presented in Figure 1, with 𝑥1, 𝑥2, … . . 𝑥𝑛 representing input nodes and 𝑐1, 𝑐2, …… . 𝑐𝑛 representing hidden nodes 

respectively. The input information is collected and gives an output ∅𝑗(𝑥𝑖) = ∅(‖𝑥𝑖 − 𝑐𝑗‖), where ∅𝑗(𝑥𝑖) is the 

result of the activation function used.  

Table 1.  Radial Basis Function. 

 Basis Function 

Gaussian ∅(𝑟) = 𝑒−𝜋2
 

Multiquadric ∅(𝑟) = √𝑠2 + 𝑟2 

Inverse multiquadric ∅(𝑟) = 1 √𝑠2 + 𝑟2⁄  

Thin Plate Splines ∅(𝑟) = 𝑟2log (𝑟) 

𝑌 = 𝑓(𝑥𝑖) = ∑ 𝑤𝑗∅𝑗(𝑥𝑖)
𝑘
𝑗=1  is the output of the RBF. The weight associated with the jth hidden node and the 

output node is 𝑤𝑗 , 𝑗 = 1,2,… . 𝑘. The shape parameter is denoted by s, while the distance between 𝑥𝑖 and the radial 

centre 𝑐𝑗 is denoted by 𝑟 = ‖𝑥𝑖 − 𝑐𝑗‖. With weights related between the hidden and output layers, the RBF 

network's layers are fully connected. Hence the output can be written in the matrix form as, 

𝐴𝑇𝑊 = 𝑓                                                                   (1) 

Where, 𝐴 = [

∅1(𝑥1) ∅1(𝑥2) … ∅1(𝑥𝑛)

∅2(𝑥1) ∅2(𝑥2) … ∅2(𝑥𝑛)
⋮ ⋮ ⋱ ⋮

∅𝑛(𝑥1) ∅𝑛(𝑥2) … ∅𝑛(𝑥𝑛)

] ,𝑊 = [

𝑤1

𝑤2

⋮
𝑤𝑛

] , 𝑓 = [

𝑓1
𝑓2
⋮
𝑓𝑛

]  

Equation (1) is a nonlinear system of equation which will be solve by using MATLAB. Equation (1) is ill posed 

where the condition number can be determined by using 𝐶(𝐴) = ‖𝐴‖‖𝐴−1‖.  

 

Figure -1 Radial Basis Function Network. 

3. Statement of the Problem 
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   The forward/inverse problem of ECG is constructed as a Laplace equation with neumann boundary conditions, 

where the forward equation is, 

∇. (𝛼∇𝑢) = 0 in 𝐵    (3) 

𝑛⃗ . (𝛼∇𝑢) = 0 on 𝜕𝐵    (4) 

𝑢 = 𝑔 on 𝜕𝐻     (5) 

where, B, 𝜕𝐻, 𝜕𝐵 and 𝑔 represents body, heart surface and body surface boundary and electric potential, 𝑛⃗  indicate 

normal on the body surface, which is shown in figure 2. Equation (3)-(5), satisfies 𝑔 on 𝜕𝐻. Solving the above 

equation is finding 𝑢(𝑥, 𝑦) on 𝐵. The above equation is well-posed [15]. 

The inverse problem is, 

∇. (𝛼∇𝑢) = 0 in 𝐵    (6) 

𝑛⃗ . (𝛼∇𝑢) = 0 on 𝜕𝐵    (7) 

𝑢 = 𝑑 on 𝜕𝐵     (8) 

Equation (6)-(8) satisfies the electric potential 𝑑 measured on the body surface. Here 𝑛⃗  is the outward normal on 

the surface of the body. Solution to this equation is ill-posed [15]. 

 

Figure -2 Human torso. 

To solve the forward problem, we consider a simple mathematical model similar to the ECG forward model, 

consider a unit square 𝛺 = (0,1)𝑋(0,1),  

𝜎1 ≔ {(𝑥, 0): 0 ≤ 𝑥 ≤ 1}, 

𝜎2 ≔ {(1, 𝑦): 0 ≤ 𝑦 ≤ 1}, 

𝜎3 ≔ {(𝑥, 1): 0 ≤ 𝑥 ≤ 1}, 

𝜎4 ≔ {(0, 𝑦): 0 ≤ 𝑦 ≤ 1}, 

With 𝜕𝛺 = 𝜎1 ∪ 𝜎2 ∪ 𝜎3 ∪ 𝜎4 as shown in figure 3. 

 

Figure -3 Boundary of Forward Problem 

The forward problem is formulated as,  
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∆𝑢 = 0 for (𝑥, 𝑦)𝜖𝛺      (9) 

∇𝑢. 𝑛 = 0 for (𝑥, 𝑦)𝜖𝜎1 ∪ 𝜎2 ∪ 𝜎4    (10) 

𝑢 = 𝑔 for (𝑥, 𝑦) ∈∪ 𝜎3     (11) 

Equation (9)-(11) is a direct problem and the solution is finding 𝑢(𝑔)(𝑥, 𝑦) on 𝜎1. The inverse problem is 

∆𝑢 = 0 for (𝑥, 𝑦)𝜖𝛺      (12) 

∇𝑢. 𝑛 = 0 for (𝑥, 𝑦)𝜖𝜎3     (13) 

𝑢 = 𝑑 for (𝑥, 𝑦) ∈∪ 𝜎1     (14) 

Solving equation (12)-(14) is finding the solution on 𝜎3. 

4. Numerical Example 

   Here in this paper, we will concentrate on solving the mathematical model of the forward problem. To evaluate 

the performance of the forward problem given the potential on heart surface 𝜎3, we consider the forward problem. 

∆𝑢 = 0 for (𝑥, 𝑦)𝜖𝛺       

∇𝑢. 𝑛 = 0 for (𝑥, 𝑦)𝜖𝜎1 ∪ 𝜎2 ∪ 𝜎4     

𝑢 = 𝑔 for (𝑥, 𝑦) ∈∪ 𝜎3  

   The analytic solution to the above problem is 𝑢(𝑔𝑖)(𝑥, 𝑦) =
1

cosh (𝑖𝜋)
cos 𝑖𝜋𝑥 cosh 𝑖𝜋𝑦, where 𝑔𝑖 = cos 𝑖𝜋𝑥. The 

above equation is then solved using RBF by taking different discretization points on the square boundary with 

different shape parameters and bias. The discretization points we have taken for our experiment is N=9 and N=25 

and the performance are evaluated using root mean squared error (RMSE). By taking N=9 with different shapes 

parameter we observe that the solution converges around shape parameter 3.5111 giving RMSE convergence with 

2 decimal places only as shown in table 2 and figure 3. 

Table 2. RMSE for U(x,t) and for N=9, 

C(shape parameter) RMS U(x,y) appox bias 

3.5 0.0077 1 

3.51 0.0025 1 

3.511 0.002 1 

3.5111 0.0019 1 

3.51111 0.0019 1 

3.49 0.0128 1 

3.499 0.0082 1 

3.4999 0.0078 1 

3.49999 0.0077 1 

3.52 0.0029 1 

3.53 0.0083 1 

3.54 0.0138 1 

3.55 0.1959 1 
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3.56 0.0254 1 

 

 

Figure -4  RMSE for N=9 

For N=25 we observe as shown in Table 3 and Figure 4 that the solution converges around shape parameter 0.1. 

The RMSE gives the convergence with 1 decimal place only. Figure 5 shows the predicted solution of the forward 

problem for N=25. 

Table 3. RMSE for U(x,t) and for N=25, 

C(shape parameter) RMS U(x,y) appox bias 

0.1 0.0936 1 

0.09 0.1865 1 

0.099 0.0828 1 

0.0999 0.0800 1 

0.09999 0.0780 1 

0.11 0.0954 1 

0.111 0.0963 1 

0.1111 0.1321 1 

0.1111 0.1045 1 

 

 

Figure -5. RMSE for N=25 
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Figure -6 RBF solution 𝒖(𝒙, 𝒕) for N=25 

6. Conclusion  

   RBF collocation method is used to solve a simple mathematical forward problem of ECG. The method is 

evaluated by taking N=9 and N=25 discretization. The performance is evaluated using RMSE, and from the 

predicted solution, it is observed that the method converges for N=9, around shape parameter 3.51, as can be seen 

in Fig 3, and for N=25, it converges around shape parameter 0.1. From the Table 2 and 3 it is observed that the 

solution converges only up to two decimal places which is not a very good prediction of the solution to the 

problem. In future we are using feed forward neural network method like and deep learning to find a better accurate 

solution to the mathematical formulation of the forward problem of ECG and later apply the method to the ECG 

inverse problem for accurate prediction of the electric potential on the heart surface.  
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