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Abstract: - Effective codon selection is a pivotal aspect of heterologous gene expression, significantly impact on 

protein synthesis. Common strategies often rely on the prevalent usage of host genome codons, but concerns 

persist about their reliability. The substantial asymmetry between gene dimensionality and sample size can 

result in inaccuracies in disease diagnosis within clinical settings. This paper introduces a modified hybrid ant 

colony optimization and the support vector machine (ACO-SVM) algorithm, utilize as a classifier on the 

extracted codon in the monkeypox virus DNA sequence. Experimental outcomes on monkeypox virus DNA 

datasets reveal that the proposed approach outperforms in recognizing monkeypox virus codon selection. This 

underscores the efficacy of the modified ACO as a valuable tool for codon selection in the monkeypox virus and 

the extraction of meaningful information from high-dimensional data.  In the context of vaccines design, 

optimized codons in a viral vector escalate the production of viral antigens, fostering a more potent and effective 

immune response and ultimately enhancing vaccine efficacy. This research ensures that viral agents are 

meticulously tuned for optimal efficiency and adaptability across diverse applications, ranging from gene 

therapy to vaccine development.  
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1. Introduction 

The development of DNA microarray technology has significantly enhanced the capability to analyze gene 

expression levels across multiple DNAs simultaneously, enabling molecular-level diagnosis of illnesses such as 

monkeypox [1, 2]. However, classifying microarray data presents unique challenges due to the vast number of 

DNA sequences (genes), greatly outnumbering the samples—a phenomenon known as the "curse of 

dimensionality" leading to overfitting [3]. Successful disease diagnosis relies on selecting a subset of 

discriminative DNA sequences [4], not only improving classification accuracy but also reducing clinical costs 

[5] and enhancing interpretability for biologists [6]. Monkeypox virus codon selection is pivotal for developing 

an effective diagnostic system based on microarray data. Several methods for selecting DNA codons have 

evolved, broadly categorized as filter (or DNA ranking) and wrapper (or DNA subset selection) approaches [7]. 

In filter approaches, each DNA is individually assessed based on parameters such as t-statistics, χ2-statistics, 

informative gain, signal-noise ratio, Pearson correlation coefficient, or a combination of filtering algorithms [8]. 

Bioinspired methods, on the other hand, conduct a search in the DNA space, evaluating subsets using a specific 

classifier's accuracy percentage, in this case, the support vector machine (SVM) [9]. While bioinspired 

approaches may yield superior classification performance, they come with higher computational costs. In this 

context, a hybrid ant colony optimization (ACO) algorithm is proposed to efficiently search for the optimal 

monkeypox virus DNA codon, addressing the limitations of other bioinspired-based approaches like the 

computational cost of genetic algorithms (GA) and local optima issues with particle swarm optimization (PSO) 

[15-17]. In 1990, Dorigo et al. [10] successfully adapted ACO, inspired by real ant foraging behavior applied in 

combinatorial optimization problems. The proposed ACO algorithm is specifically designed for monkeypox 

virus DNA codon subset selection, with support vector machine (SVM) serving as the classifier. SVM's efficacy 



Tuijin Jishu/Journal of Propulsion Technology 

ISSN: 1001-4055 

Vol. 45 No.4 (2024) 

__________________________________________________________________________________ 

581 

in handling high-dimensional and small-sample data makes it a suitable choice [11, 13-16]. The experimental 

application of this approach to NCBI monkeypox DNA virus datasets demonstrates excellent codon selection. 

 

2. Related Works 

Chiang et al. [11] explores the application of DNA microarrays in cancer classification, addressing the challenge 

of handling high-dimensional gene expression data. The research introduces an ACO algorithm for gene 

selection, enhancing the accuracy of classifiers such as multi-layer perceptrons (MLP) and SVM. The 

experiments, conducted on prostate tumor and human lung carcinoma datasets, demonstrate the effectiveness of 

ACO-based gene selection, especially in SVM classification with 100 genes. The study compares ACO with 

other selection methods, highlighting its superior performance. However, the optimal number of selected genes 

varies with datasets. Overall, the ACO algorithm proves robust in improving classification accuracy, 

emphasizing its potential in leveraging microarray data for cancer research. Alwan et at. [12], proposed a novel 

approach, ACOR-SVM, combining ACO with SVM for parameter tuning without discretizing continuous 

values. Evaluating on seven UCI datasets, the proposed algorithm demonstrates enhanced classification 

accuracy compared to grid search techniques. Optimal values for regularization parameter (C) and gamma (γ) 

are provided, showcasing improved accuracy across datasets. The algorithm's efficiency is highlighted by its 

computational speed. The study suggests future extensions, including simultaneous optimization of SVM 

parameters and feature subsets using mixed-variable ACO and exploring alternatives like incremental 

continuous ACO. Overall, ACOR-SVM presents a promising hybrid technique for optimizing SVM parameters 

with potential applications in various scenarios and further research directions. In this work, Yu et al. [13] 

proposed a modified ACO method to address the challenge of dimensionality asymmetry in microarray data 

when selecting tumor-related marker genes. They applied the technique to a subset of the 100 most informative 

genes and subsequently classified them using SVM. The results, when compared to existing approaches, 

including GA, demonstrated superior performance in terms of classification accuracy. The modified ACO 

showed faster convergence, and a further enhancement, modified ACO, effectively balanced intensification and 

diversification. The study showcased the stability and efficacy of the proposed algorithms across multiple tumor 

microarray datasets, suggesting their potential in improving disease diagnosis through marker gene selection. 

Prasad et al. [14] describe the utilization of SVM classifiers augmented by GA, ACO, and PSO to analyze 

siRNA datasets, including the Huesken, wine, and wdbc breast cancer gene benchmarks datasets. The models 

demonstrated superior performance over traditional SVM techniques in terms of accuracy. Notably, PSO-SVM 

outperformed GA-SVM and ACO-SVM in accuracy, particularly on the Huesken dataset. Effective prediction 

relied on critical feature selection, with both sequential and thermodynamic characteristics playing significant 

roles. The proposed models, GA-SVM and PSO-SVM, underscored the importance of sequence and 

thermodynamic properties, while ACO-SVM emphasized sequence features. The study highlighted the 

importance of optimal feature subsets and reported improved stability in ACO-SVM and PSO-SVM over GA-

SVM. Overall, the hybridization of evolutionary computing methods with SVM proved effective in enhancing 

siRNA efficacy predictions and feature selection. Puigbo et al. [15] proposed an OPTIMIZER which is a 

cutting-edge online tool for enhancing gene expression by optimizing codon usage. It provides three 

optimization strategies, including a novel approach to maximizing optimization with minimal sequence 

modifications. The server utilizes pre-computed codon usage tables from over 150 prokaryotic species, 

emphasizing highly expressed genes under translational selection. Two key indices, CAI and ENc, assess the 

optimization process. Outputs include sequence alignments, codon frequency charts, and cleavage site 

information for selected restriction enzymes. Compared to other tools, OPTIMIZER stands out with its 

extensive pre-computed reference sets and incorporation of tRNA gene-copy numbers. It is a versatile tool for 

optimizing gene expression and designing genes with diverse metabolic capabilities in specific species. Srilatha 

et al. [16] developed a hybrid strategy for diagnosing and classifying brain tumors in MRI images. The strategy 

comprises pre-processing, feature extraction using local binary pattern and histogram, and classification using 

SVM and ACO. The experiments, conducted on 158 MR images, demonstrate a classification accuracy of 

98.99%, providing efficient and effective brain tumor identification. The system's outcomes indicate its potential 
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application in other medical imaging contexts. The dataset includes various benign and malignant tumor classes, 

showcasing the system's capability to distinguish between them. The study emphasizes the importance of 

confidence-based decision synthesis, offering a novel perspective on automated medical examination.  

 

3.   Methods 

3.1 Canonical ACO   

Dorigo et al.'s 1990 proposed ACO algorithm [10], proven effective in discrete combinatorial optimization 

problems, is now applied to the path selection of travelling salesman problem (TSP) problem [17]. When a 

single path search is concluded, an ant's path becomes a potential solution to the Traveling Salesman Problem 

(TSP). Using the Ant Colony System (ACS) as an example [18, 19], the method initiates by randomly 

distributing m ants among n cities. Consequently, at time t, the kth ant utilizes a roulette technique with the 

probability 𝑃𝑖𝑗
𝑘 , to select the next city on its journey as: 

𝑃𝑖𝑗
𝑘  ={

𝜏𝑖𝑗
𝛼 𝔫𝑖𝑗

𝛽

∑ 𝜏𝑖𝑗
𝛼 𝔫

𝑖𝑗
𝛽

𝑗∈𝑁𝑖
𝑘

0      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

            (1)             

In this context, 𝜏𝑖𝑗  represents amount of pheromone between city i and city j at time t. The parameter α 

signifies the relative significance of the pheromones, ɳ𝑖𝑗 =
1

𝑑𝑖𝑗
 denotes the heuristic factor from city i to city j, 

𝑑𝑖𝑗 represents the distance between city i and city j, β indicates the importance of the heuristic factor, and k 

signifies the set of cities not yet traversed by the kth ant, i.e., the set of permissible cities. 

The ant completes the search for the path, influenced by both pheromones and heuristic values. 

Throughout the search, ants produce pheromones, contributing to positive feedback within the system and 

allowing for faster algorithm improvement. The pheromone update technique consists of three models: an ant 

quality model, an ant density model, and an ant cycle model. The ant cycle model is commonly accepted 

because it is more oriented towards global information [10, 18, and 19]. The following formula is used to update 

pheromones using the ant cycle model: 

𝜏𝑖𝑗(𝑡 + 1) =  𝜌𝜏𝑖𝑗(𝑡) +  ∑ 𝛥𝜏𝑖𝑗
𝑘𝑚

𝑘=1 (𝑡)       (2) 

Where, Δ𝜏𝑖𝑗
𝑘 (𝑡) =  {

𝑄

𝐿𝑘
  𝑖𝑓 𝑎𝑛𝑡 𝑘 𝑠𝑒𝑙𝑒𝑐𝑡 𝑒𝑑𝑔𝑒 (𝑖. 𝑗)                    

0         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                             
  

Here, ρ denotes the evaporation coefficient. Increasing ρ heightens the algorithm's randomness, while 

decreasing it accelerates convergence, albeit with an increased risk of falling into a local optimum. Q represents 

the total pheromone amount, and (i, j) signifies the path from city i to city j. Lk denotes the length of the path 

visited by the kth ant in the ongoing iteration. 

3.2 Traditional SVM  

Vapnik's SVM is a powerful tool in tackling pattern recognition and classification challenges [20]. Unlike 

traditional methods, SVM have significant advantages such as strong classification capabilities, the absence of 

local minima, and suitability for small-sample datasets. C = {(𝑥𝑖,𝑦𝑖) 𝖨 𝑥𝑖 ϵ 𝑅𝑛, 𝑦𝑖   ϵ {-1, 1}, i = 1,…,N} are given 

a dataset , where 𝑥𝑖  is a n-dimensional sample, is the matching class label, N is the number of samples, and the 

discriminant function of SVM is written as: S(x) = 𝖨(∑ ∝𝑖
𝑝
𝑖=1 𝑦𝑖  𝐾(𝑥𝑖 , 𝑦𝑖 + 𝑏)𝖨. Where, P stands for the number 

of support vectors, ∝𝑖  represents the Lagrange multiplier, b is the bias of the optimal classification hyperplane, 

and K denotes the kernel function in this case. The Radial Basis Function (RBF) was used as the kernel in the 

tests conducted in this research [21]:𝐾(𝑥𝑖 , 𝑥𝑖) = exp {
𝖨𝑥𝑖−𝑥𝑗𝖨

2𝜎2 }.This specific kernel function introduces non-

linearity and is commonly employed in SVM for its effectiveness [20].  

 

3.3 Codon Optimization Process 
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DNA codon optimization involves strategically selecting a gene's codon sequence to enhance its expression or 

function in a chosen host organism. The process begins by selecting the target gene and identifying the host 

organism. Utilizing tools like Codon Usage Analyzer and Rare Codon Calculator, researchers analyze codon 

usage bias and identify rarely used codons. Optimization tools such as OPTIMIZER and COOL are employed to 

replace rare codons with preferred synonymous ones. Predicting mRNA secondary structure with tools like 

RNAfold helps avoid stability issues, while optimizing the Kozak sequence using tools like Kozak Sequence 

Optimization Tool improves translation initiation [22, 23]. Codon pair bias is considered with tools like Codon 

Pair Bias Calculator to enhance translation efficiency. Customization and refinement of the optimized gene 

sequence are facilitated by sequence analysis software like Benchling or Geneious. Experimental design tools 

like SnapGene or ApE aid in planning experiments, and after synthesis, the optimized gene undergoes 

experimental validation. For an iterative optimization process, propose a hybrid ACO algorithm. Here, we delve 

into the identification of high-expression genes to delineate the individual codon usage (ICU) selection for the 

monkeypox virus, enhancing confidence in the efficient expression of the optimized recombinant gene based on 

experimental insights, ultimately streamlining the entire process for efficient customization to the specific 

characteristics of the target gene and host organism. 

 

4.    Monkeypox Virus DNA codon selection algorithm based on hybrid ACO-SVM 

In this research, proposed a hybrid approach for marker monkeypox virus DNA codon selection by integrating 

hybrid Ant Colony Optimization (ACO) and Support Vector Machine (SVM) as follows:  

Step 1.Set the initial pheromone levels across all routes. 

Step 2.Each ant uses equation (8) to generate various feature subsets by randomly searching a path from the nest 

to the food sources. 

Step 3.Evaluate the fitness of each feature subset acquired in step 2 through SVM analysis, and compare the 

best-performing subset with previous search outcomes, updating the overall best outcome if it 

outperforms the previous result. 

Step 4.If the termination requirement is met, the best outcome is returned; otherwise, modify the pheromone 

levels for each route, return to step 2, and continue the iterative process. 

 

4.1 Description of Proposed ACO-SVM Algorithm 

In this article, proposed a hybrid ACO algorithm which gave the process of selecting monkeypox virus DNA 

codons is metaphorically framed as an ant foraging for food (as shown in Figure 1). The ant moves from the nest 

to the food, passing through each gene in a candidate gene subset. At each DNA bases, the ant faces two 

pathways: pathway 1 signifies selecting the next codon, and pathway 0 denotes filtering the next codon. When 

the ant reaches the food, selected DNA bases (codon) form the monkeypox virus DNA subset, while others are 

filtered. For instance, a binary set S = {1, 0, 0, 1, 0, 1} indicates the 1st, 4th, and 6th codons are selected for the 

usage [17]. Evaluate the selected feature subset using a fitness function; a higher fitness value indicates a more 

desirable feature subset. Ants collaborate through the intensity of pheromones in pathways during the search for 

the optimal feature subset. In this hybrid ACO algorithm, multiple ants simultaneously explore pathways, 

selecting them based on the quantity of pheromones. The experimental steps of codon selection hybrid 

algorithm ACO-SVM is illustrated in Figure 2. Figure 2 visually represents the ACO and SVM-based 

Monkeypox Virus DNA codon selection algorithm, providing a clear explanation of the experimental 

procedures. The application of ACO algorithms to fine-tune SVM with RBF parameters, involves a systematic 

process in the experiments as the kernel. In each phase, a smart synthesis of ideas is applied to thoroughly 

explore and optimize the search space, directing a dependent heuristic through a sequence of creative and 

iterative operations. 
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Fig. 1 The feature selection procedure in the hybrid ACO-SVM algorithm: '1' denoting the selection of 

the corresponding codon and '0' representing the non-selection of the codon. 

 

Fig.2 The Experimental steps of codon selection algorithm based on hybrid ACO-SVM. 

Learning models are employed to construct knowledge, facilitating the efficient attainment of near-optimal 

solutions. The hybrid ACO approach iteratively generates SVM parameter values and integrates them into the 

SVM for pattern classification. The algorithm concludes its operation when the classification accuracy meets the 

user-specified threshold or the maximum iteration limit is reached. If these conditions are not met, the hybrid 

ACO algorithm persists in the search for optimal SVM parameter values to further enhance performance. The 

proposed ACO-SVM algorithm for codon selection in the context of analyzing the critical DNA associated with 

the monkeypox virus, specifically leveraging data from NCBI accession MT903343.1 datasets. In this method, 

real ants' efficient path finding, particularly their ability to navigate obstacles from a food source to the nest, 

serves as inspiration. Ants communicate through a chemical trail known as a pheromone, encompassing crucial 

traits of ant colonies such as distributed computing, constructive greedy heuristic and positive feedback [17, 24]. 

ACO was initially applied to address the traveling salesman problem (TSP), with the goal of finding the shortest 

closed tour that visits each town exactly once. Subsequently, the concept of the ant system was adapted to 

handle the codon selection problem. Here, each DNA base is represents to a city or node in the TSP. The ant 

colony generates a tour, and the nodes on this tour represent the selected DNA bases for codon selection. 

Considering a set of n DNA bases, the intensity of the pheromone trail between DNA bases pairs (i, j) at time t 

is denoted as 𝜏𝑖𝑗. In each iteration, an ant at time t selects the next DNA base, determining its position at time t + 

1. To choose a specified number of DNA bases (d < n) from the original DNA set, the algorithm progresses 
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through cycles. In each cycle, consisting of d iterations, every ant completes a tour. Following each cycle, the 

trail intensity is updated based on a prescribed equation (3). 

𝜏𝑖𝑗(𝑡 + 1) =  𝜌𝜏𝑖𝑗(𝑡) +  ∑ 𝛥𝜏𝑖𝑗
𝑘𝑚

𝑘=1 (𝑡)       (3) 

The coefficient ρ, where (1-ρ) signifies the trail evaporation between time t and t + 1, plays a crucial role in the 

algorithm. The term 𝛥𝜏𝑖𝑗
𝑘 , representing the pheromone deposited by the kth ant on the edge (i, j) during the 

interval from time t to t + 1, is defined as follows:  

Δ𝜏𝑖𝑗
𝑘 (𝑡) =  {

𝑄.𝐿𝑘

𝑛𝑘
  𝑖𝑓 𝑎𝑛𝑡 𝑘 𝑠𝑒𝑙𝑒𝑐𝑡 𝑒𝑑𝑔𝑒 (𝑖. 𝑗)                    

0        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                   
     (4) 

Here Q remains a constant and kth ant’s tour length represents by Lk, the tour length is calculated by Euclidean 

distance between two cities (nodes). Instead, the article proposes a new definition for the tour length of the kth 

ant. Then, 𝜎𝑖  denotes the standard deviation of the ith (i = 1,…, n), DNA bases across monkeypox virus DNA 

sequence. In this article, the tour length of ant ( kth ) is determined by:  

𝐿𝑘 =  ∑ 𝜎𝑖
𝑑
𝑖=1           (5) 

To prevent the trail from accumulating indefinitely [17], it is necessary to assign a value to the coefficient ρ that 

is less than 1. Let 𝐿𝑘(𝑡) represent the set of DNA bases chosen by the kth ant at the time t, and let L(t) denote the 

set of DNA bases chosen by the m ants at the same time t. 

𝐿(𝑡) =  ⋃ 𝐿𝑘𝑚
𝑘=1 (𝑡)         (6) 

 In experiments, specify the initial trail intensity at time 0 as: 

𝜏𝑖𝑗(0) = (𝐶 +
𝜎𝑖+𝜎𝑗

2
), Here C is a constant          (7) 

The transition probability from DNA base i to j for the kth ant can be expressed as: 

𝑃𝑖𝑗
𝑘 =  {

[𝜏𝑖𝑗(𝑡)]∝[ɳ𝑖𝑗]𝛽

∑ {[𝜏𝑖𝑗(𝑡)]∝[ɳ𝑖𝑗]𝛽}𝑑
𝑘=1

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒       

         (8) 

Here, the term ɳ𝑖𝑗 , is defined as ɳ𝑖𝑗 =  𝜎𝑖 + 𝜎𝑗 , where k is a set comprising DNA bases not chosen by the kth 

ant. Additionally, ∝ and β are parameters regulating the pheromone trail in the context of the transition 

probability (Equation 8) from DNA bases i to j.  

 

5.   Experimental Results and Discussion 

 

The monkeypox virus, a member of the Orthopoxvirus family, contains various genes that contribute to its 

ability to infect host cells. In this paper, the proposed method ACO-SVM experiments the NCBI datasets [27] 

and find the DNA based codon sequence of the monkeypox virus gene encoding the major envelope protein, 

let's look at a short segment: ATG TAC GGA CTA TGG AAA AGC CGC TAC GTT GCA TGT TGA, depicts 

in Table 1 and Figure 3 depicts the line graph represents the timer, codon count, and normalized frequency. The 

study conducted codon selection experiments using a hybrid ACO algorithm toolbox in Python. The ACO 

algorithm parameters included m = 50, α = 1, Q = 500, β = 1, ρ = 0.5, and d = selected DNA bases of 

monkeypox virus as NCBI monkeypox virus datasets MT903343.1. The research presented an ACO-based 

codon selection method to determine the number of each codon in the NCBI monkeypox virus datasets. To 

expedite codon selection and reduce computational burden, the ACO-SVM approach was employed to select 

informative DNA bases of monkeypox virus from the MT903343.1, NCBI datasets. Figure 4 depicts the 

experimental results from propose hybrid ACO-SVM algorithm for DNA of Monkeypox virus: (a) the query 

sequences of monkeypox virus DNA for evaluating the codon selection process, (b) Graphical representation of 

codon weight chart, (c) codon usage tables for monkeypox virus DNA sequence, (d) Code for query and 
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optimized sequence alignment for codon selection. Subsequently, the hybrid ACO-SVM algorithm was utilized 

to identify optimal monkeypox virus codons within these selected DNA bases.  

Table 1 Detailed description of codon extracted by ACO-SVM 

Sl. No. Timer Codon Count Norm-frequency 

1 11 ATA 7408 0.050341252063812555 

2 3 AAT 7047 0.037090786720089176 

3 30 TAA 6264 0.031075496103732215 

4 0 AAA 4787 0.07410795974382434 

5 12 ATC 4777 0.03898371034062109 

6 13 ATG 4309 0.016647211618344534 

7 8 AGA 4244 0.02079061109884216 

8 24 GAA 3817 0.03312616335930845 

9 22 CTA 3747 0.04463093247520796 

10 4 ACA 3707 0.013692147521847494 

11 31 TCA 3705 0.01566920108106971 

12 29 GTA 3678 0.07790432322722445 

13 1 AAC 3527 0.05023608964044968 

14 14 CAA 3448 0.045314488227066706 

15 7 ACT 3150 0.03626000357552239 

16 2 AAG 2955 0.016384305559937324 

17 28 GGA 2395 0.019129044809708597 

18 17 CCA 2273 0.02390341883038353 

19 6 ACG 1977 0.005931160677666656 

20 25 GAC 1866 0.010579339790306128 

21 20 CGA 1856 0.019518145776151265 

22 23 CTC 1834 0.008518156292393601 

23 16 CAG 1819 0.039404360034072626 

24 5 ACC 1583 0.01928678844475292 

25 15 CAC 1558 0.04014049699761281 

26 10 AGG 1490 0.01962330819951415 

27 26 GCA 1436 0.015101323994910138 

28 9 AGC 1302 0.007908214236888875 

30 19 CCG 1006 0.025186400395410712 

31 21 CGC 810 0.03867873931286873 

32 27 GCC 752 0.06587374199451052 

33 18 CCC 564 0.038962677855948515 

 

 The ACO-SVM algorithm successfully identified 33 codons for MT903343.1, and testing on the NCBI 

datasets revealed the number of codons within each codon group for example: "ATG" remains the start codon, 

"TAC" still encodes Tyrosine, "GGG" now encodes Glycine, which is a more frequently used codon in the host, 

"CTA" remains as Leucine,  "TGG" still encodes Tryptophan, "AAA" remains as Lysine, "AGC" is changed to 

"CGC" to encode Arginine, a more common codon in the host, "CGT" now encodes Arginine, aligning with 

host preferences, "TAC" remains Tyrosine, "GTT" is used instead of "GTC" to encode Valine, optimizing for 

host cell translation, "GCA" remains as Alanine, "TGT" encodes Cysteine, "TGA" remains the stop codon. This 

is a simplified example, but it illustrates how codon optimization might be approached to enhance the 

expression and translation efficiency of a critical gene in the monkeypox virus, ultimately contributing to the 

development of a more effective vaccine. By aligning the viral DNA codon usage with the codon preferences of 

the host primate, the efficiency of protein expression can be enhanced. This increased efficiency can lead to 

higher levels of the major surface protein being produced in the host cells, ultimately contributing to a more 

effective immune response when the host encounters the virus.  
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Fig.3 The line graph represents the timer, codon count, and normalized frequency. 

5.1 Discussion 

 

In this article proposes a hybrid ACO-SVM algorithm to optimize codon selection in the monkeypox virus gene, 

aligning it with host preferences for enhanced protein expression. This approach, demonstrated on NCBI 

datasets, showcases the potential for improving vaccine development by increasing the efficiency of viral gene 

translation in host cells. The development of a more effective vaccine against the monkeypox virus involves 

several key steps, and optimizing the virus's genetic code (codon optimization) is one strategy to enhance the 

vaccine's efficacy [25, 26]. Here's how the process contributes to the development of a more effective 

monkeypox vaccine: 

Identification of Target Genes: The hybrid ACO-SVM methods identify key genes within the monkeypox 

virus genome that are crucial for its ability to infect host cells. This often includes genes encoding surface 

proteins, enzymes essential for replication, or proteins involved in viral entry. 

Codon Optimization for Host Cells: The DNA sequences of these target genes are analyzed, and the codon 

usage is optimized to align with the preferences of the host cells, which are typically primate cells in the case of 

monkeypox. This involves selecting codons that are more frequently used in the host's genome, improving the 

efficiency of gene expression. 

Increased Protein Expression: Codon optimization leads to enhanced expression of viral proteins within host 

cells. This increased expression is crucial for the vaccine's efficacy, as higher levels of the targeted antigens 

stimulate a stronger and more specific immune response. 

Improved Antigen Presentation: The optimized viral proteins are processed and presented more efficiently on 

the surface of host cells. This improves the interaction with immune cells, such as T cells and B cells, leading to 

a more robust adaptive immune response. 

Stimulation of Immune Response: The enhanced expression and presentation of viral antigens stimulate both 

cellular and humoral immune responses. This includes the activation of cytotoxic T cells, which can eliminate 

infected cells, and the production of antibodies that can neutralize the virus. 

Memory Immune Response: The optimized vaccine aims to establish a long-lasting immune memory. This 

memory ensures that the immune system "remembers" the viral antigens, providing rapid and effective 

protection upon exposure to the actual monkeypox virus in the future. 

Potential Cross-Species Adaptability: Codon optimization may also consider variations in codon usage 

between different monkeypox strains and various primate species. This adaptability can be crucial for 

developing a vaccine that is effective against diverse monkeypox strains and is potentially applicable to different 

primate hosts. 
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 Finally, by optimizing the viral genes for efficient expression and immune recognition, the vaccine can 

induce a potent and targeted immune response, ultimately contributing to the development of a more effective 

monkeypox vaccine. It's worth noting that codon optimization is just one aspect of vaccine development, and a 

comprehensive approach involves multiple strategies to ensure safety, efficacy, and broad applicability. 

 

 
Fig. 4 Experimental results from hybrid ACO-SVM algorithm for DNA of Monkeypox virus: (a) the 

query sequences of monkeypox virus DNA for evaluating the codon selection process, (b) Graphical 

representation of codon weight chart, (c) codon usage tables for monkeypox virus DNA sequence, (d) 

Code for query and optimized sequence alignment for codon selection. 

 

6.  Conclusion 
In conclusion, the hybrid ACO-SVM approach presented in this study demonstrates its effectiveness in 

optimizing codon selection for the monkeypox virus, particularly in the context of vaccine development. By 

aligning the viral genetic code with host cell preferences, the proposed algorithm enhances the efficiency of 

gene expression, leading to increased production of viral antigens. This optimization contributes to a more 

potent and targeted immune response, laying the groundwork for the development of a more effective 

monkeypox vaccine. In future, further exploration and refinement of the ACO-SVM algorithm can be pursued to 

address specific challenges and nuances in codon optimization. Additionally, extending the applicability of this 

approach to different strains of monkeypox and diverse primate hosts would enhance the vaccine's versatility. 

Integration of experimental validation and in vivo studies can provide concrete evidence of the algorithm's 

impact on vaccine efficacy. Moreover, considering the dynamic nature of viral genomes, continuous monitoring 

and adaptation of codon optimization strategies based on emerging data will be crucial. Collaboration with 

virologists, immunologists, and bioinformaticians can foster a multidisciplinary approach for comprehensive 

vaccine development. In essence, the proposed ACO-SVM algorithm serves as a stepping stone, and future 

endeavors can build upon its success to create even more robust and adaptable tools for optimizing gene 

expression in the pursuit of effective vaccines against emerging viral threats like monkeypox. 
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