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Abstract:- In this paper, we build a completely exponentially fitted modified upwind finite difference method for
solving two-parameters singularly perturbed boundary value problems on a uniform mesh. Because the problem
has dual layers, we divide the domain into two subintervals and develop the discretization equation for the problem
using two fitting factors that take care of the problem’s two parameters. We solve the discretization equation by
using discrete invariant imbedding. We establish the convergence of the method and tabulate the maximum
absolute errors with comparisons for the standard examples selected from the literature to demonstrate the
method's efficiency.
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1. Introduction

Two-parameter singularly perturbed boundary value problems (TPSPBVPs) are a distinct type of differential
equations that feature two small parameters, which have a significant impact on the solution’s behavior. These
problems are particularly fascinating because they model intricate phenomena such as boundary layers and rapid
variations in the solution. These types of problems arise in various fields, including physics, chemistry, biology,
chemical reactor theory, mechanics, lubrication theory, and DC motor theory [1, 2, 5, 6, 17, 30]. In recent years,
significant research has been conducted on single-parameter convection-diffusion and reaction-diffusion
problems [16, 23, 27]. However, only a limited number of researchers have explored two-parameter singular
perturbation problems [7, 15, 25, 26, 28, 30].

O’Malley [18-21] was the first to do a thorough investigation on the asymptotic solutions to TPSPBVPs, to the
2
best of our knowledge. O’Malley examined the behavior of these problems in two scenarios: ”: —-0a €—-0

and % — 0as u — 0 and determined adequate criteria for convergence.

Kadalbajoo and Yadaw [11] have introduced a B-spline collocation approach to derive the approximate solution
for singularly perturbed two parameter boundary value problems. Kadalbajoo and Yadaw [12] presented the Ritz-
Galerkin finite element approach utilizing a Shishkin mesh to address two-parameter boundary value problems.
Kumar [13] has investigated the finite difference method on a non-uniform grid for TPSPBVPs. Kumar et al. [14]
investigated a parameter uniform technique utilizing asymptotic expansion to address TPSPBVPs. Linb and Roos
[15] have examined the analysis of a finite difference scheme for a singular perturbation involving two parameters.
Kadalbajoo and Yadaw [17] conducted a comparative analysis of the finite difference, finite element, and B-spline
collocation methods for TPSPBVPs. Pandit and Kumar [25] have devised a Haar wavelet method for addressing
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second-order singly perturbed boundary value problems with two parameters. Patidar [22] has introduced a fitted
operator finite difference approach for a TPSPBVP. Zahra and Mhlawy [31] have examined the exponential spline
method for the numerical resolution of TPSPBVPs.

The article is structured as follows: Section 2 provides a description of the situation. The formulation of the
numerical scheme is presented in Section 3. Section 4 presents a comprehensive analysis of convergence.
Numerical experiments are conducted in Section 5. The final section addresses discussions and conclusions.

2. Description of the Problem

We have Consider two parameters singularly perturbed two-point boundary value problem of the form:

£0"(£) + up(t)8' () — q(H)O (L) = f(¢) (1)

with boundary conditions 6(0)=¢& and 6(1)=n )

where 0 < e << 1 and 0 < u << lare two small parameters. The functions p(t), q(t), f(t)are sufficiently

smooth with p(t) =p > 0and q(t) =G >0, % =>¢>0.

The solution to Equation (1.1) may be determined by finding the roots of the characteristic equation
eA()? + up(DA(L) —q(t) = 0

This equation yields two continuous functions

2
A(8) = _kwp@® (up(t)) + a®) A3)

2¢ 2¢ &

2(t) = =122+

201 (1) 4 20 4

2¢ &

The function A; < 0 characterises the boundary layer at the left end point t = 0, while 1, > 0 describes
boundary layer at the rightend t 1. Put 6;: trg[g,’f]’h(t) <-I< 0 and 9,: trer%éq]lz(t).

The depletion of the solution in the boundary layer area is determined by the variables by 6, and 6,.

1

For 5 < 1,|91|=0(§) and|92|=0(;),
“2<1|9| 0(1) d 16, 0(1)
— <1, =0(—] an =0(—).
£ ! Ve ? Ve

Att = 0 the layer is controlled by the term e=%¢ and at t = 1 the layer is controlled by e=%2(1=_ From [7],
we have

i _y iy
9 c’e T a 9 _ 2\/2,5_6'
1= ap u? Y ! 2= vy u? Y
—— =7 — =
g & a 2u” € a

where, @ = mi t)yandy = min X2,
a=minp®andy = mn

3. Numerical Scheme

Discretize the interval [0, 1] into N equal subintervals of mesh size h = % sothatt; =t, +ih, ,i=01,2,..,N
are the nodal points with 0 = t,, 1 = ty. Since, the problem exhibits two boundary layersatt =0andt =1,
we divide the domain [0, 1] into two subintervals [0, t,,,] and [t,,,, /] where t,,, = % Here, in [0, t,,] the layer will
be at the leftend t = 0 and in [t,,, 1] the layer isatrightend t = 1.

We consider the difference scheme
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£0;(0)D,D_6; + p(t)ut;i(p)D,6; — q(t)0; = f (&) for i =12..,m
©)
EO'i(p)D+D_9i + p(tl),u'rl(p)ﬁ_el - q(tl)gl = f(tl) fori =m + 1,m + 2, ,N -1 (6)
with 6o =% On=1
(@)

The values of g;(p) and 7;(p) are selected in such a way that the solution of the homogeneous differential equation
matches exactly with the solution of the corresponding homogeneous difference equation, as given in Eqg. (5) and

Eq. (6).
Here D+D_9i ~ Bi_l_zn#e’ 5+9i ~ Ziv17i _91‘”, D—ei ~ % + %91'” and p= %

Substituting Eq. (3) and Eqg. (4) in the corresponding homogeneous difference Eq. (5) and Eg. (6), we can
determine the fitting factors

_(upgti)h)
] _ __akph e € ;o
a;(p) 4[p_u7pi] (Sinh(ll(zti)h) Sinh(h(zti)h>> for i 1,2,...,m
(82)
(upgfi)h)
] - _ q(tph e € - _
O'l(p) 4[p+u717i] (sinh(ll(zti)h) sinh(AZ(zti)h>>, l m+ l,m + 2, N 1 (8b)
7;(p) = Zq;;"():) (coth (Al(zt")h) + coth ()Q(Zﬂ)) fori = 1,2,..N—1
9)
The system of tridiagonal of Eq. (1.5) and Eqg. (1.6) is
(fele =22 ) 0 = (G e =257 + 25 @) o (el = 2% + 257) 00a = £ (10
fori = 1,2,..,m
(Rele 2] =25 oun = (Gt e - 2270) - 24+ o) 0+ (e + 5]) 000a = £ 1y

fori=m+1m +2.. N—-1.

We solve the system of Eq. (10) and (11) by using Thomas algorithm using the boundary conditions Eq. (7).
4, Conergence Analysis

Writing the tridiagonal system Eqg. (10) in matrix-vector form, we get

AY =C (12)

where 4 = (m;;), 1 <1i,j <m-1 isatridiagonal matrix of order (m-1), with

gi upih
miies = e =47
20; h UT;
(-2 o3
i ih iUT
i = (2 +228]) @

and C = (d;)is a column vector with d; = f; where i = 1,2,...,m — 1 with local truncation error

Ty(h) = h (B2 6" + n2 (2L gy 4 % [¢ — 2] o' )+On (13)
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i.e., truncation error in the difference scheme is of O (h).
Writing the tridiagonal system Eq. (11) in matrix-vector form, we get

AY =¢C
(14)

where A = (m;;), m+1<1i,j <N-I isatri-diagonal matrix with
_ (o upih]  pint
m”‘l_(hz[g-l- 2 ] h )
_ 20; upih)\  piut
M=o\ fT ) T e

0; up;h
M1 = (h_; [‘g = D

and C = (d;) is a column vector with d; = f;, where i =m+1,m+ 2,...,N — 1 with truncation error
Tl(h) — ( Tﬂpl)e " + hz (T/-Lpz,gm + % O'l <+ Up; ]9! )

We also have A0 —-T(h)=C
(15)

where © = (8, ;. @V)t the actual solution, T(h) = (To(h), Ty (h), ..., Ty (R))" is the local truncation error.
Using Eq. (12), Eq. (14) and Eq. (15), we get

a(e-v)=TH) (16)

Hence, the error equation is AE =T(h) an

Where E :6_Y: (60,61,62,...,6N)t.

Clearly, we have

Si=YNdmy; = —%(e Py )+ql fori=1
Si=YVtm; =29, =B, fori=23,......... N =2
Si=YNdm;=— (s+”p‘)+q1forl— N-1
Since 0 < e << 1l and 0 < u << 1, the matrix A is irreducible and monotone. Then, it follows that A™* exists
and its elements are nonnegative.
Hence, using Eq. (17), we get
E=A"'T(h) (18)

and IEN < AT NIT (W
(19)

Let 1, be the (ki)t" element of A1, Since 17,; = 0, from the theory of matrices we have

N S;=1, k=1,2 .., N-I (20)

1

min S;
1<isN-1

Therefore, Yt my, <

1
=—<
B

(1)

I lo|

for some i, between 1 and N-1 and B;, = 2b;.
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Define ||A7Y|| = 1$<‘}Vx_121iv=_11|mki| and [|IT(h)|| = 1Zni<(11v{1|Ti(h)|' Using Eq. (13), Eq. (18) and Eq. (21), we get
e]' = IiV=—11 ﬁlki Tl(h), ]= 1, 2, 3, ey N-1

which implies
(22)

&< j=1 (1) N-I

00 .
where k = W# is a constant.

Therefore, using Eq. (22), we have  ||E|| = O(h) i.e., the proposed scheme is a first order convergent.
5. Numerical Experiments

Four boundary value problems of types Eq. (1) and Eq. (2) are considered to check the applicability of the
proposed method. We selected these problems due to their extensive discussion in the literature and the availability
of exact solutions for comparison. Since the considered problems have an exact solution, we estimate the
maximum absolute errors using Ey ., = gggalsle(ti) — 6;] where 0(t;) is the exact solution and 6; is the computed

solution.
Examplel. €60”" +ub'—0=—t, 0<t<1lwith 8(0) =1, (1) = 0.
—u—u?+ae

e™! +¢t+u where m; =——,

_ @+w+Qa-we™2 o Q+p)+(A-ple™
0ty =—r———e™M + ———— 2%

eM2 _egMm1 eMmi—em2

The exact solution is
_ —p+ypltae

m
2 2¢

Tables 1 and 2 represent the MAEs for a range of values of N. Figure 1 illustrates the boundary layer behaviour
in the solution.

Example 2. —e0" + u6' + 0 = cosmwt, 0<t<1 with 8(0) =0, 6 (1) = 0.

The exact solution of this problem is 8(t) = p cosnt + q sinmt + Ae*1t + Be=*2(1-D

where p = em?+1 _ um A= 1+e~%2 _ 1+et1 _ uFJpt+4e
b= u?n?+(em2+1)2’ q= u2n2+(em2+1)2' 1—eM—227 7 T q_oA-22 L2 T 2¢e

Tables 3,4 and 5 present the MAEs for a range of values of N. Figure 2 illustrates the boundary layer behaviour
in the solution.

Example 3. —e0” —uf’' + 6 =e(=9 0<t <1 with 6 (0) = 0, 6 (1) = 0.
The exact solution of this problem is
_elmetD_g o gm0 -0
Q(t) - D e+ D ’ g(m1+1)(my+1)
—u—Ju?+4e _ —ptypl+ae

where D = g(e™2 —e™1) (my + 1)(m, + 1), my = m; =

2¢ 2¢

The MAEs are listed in Tables 6 and 7 for numerous values of N. The layer profile is depicted in Figure 4.

6. Discussion and Conclusion

This chapter examines the use of a completely exponentially modified upwind fitted finite difference approach on
a uniform mesh to solve two-parameter singly perturbed boundary value problems with a dual boundary layer
structure. We partitioned the domain into two subintervals and formulated the discretization equation for the
problem by incorporating two fitting factors that account for the problem's two parameters. We employed Thomas
algorithm successfully solve the tridiagonal set of discretization equations. An analysis is conducted to determine
the convergence of the suggested approach. We calculate the maximum absolute errors by comparing them with
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the results in [9], [12], [14], [27] and [33] using MATLAB programming to showcase the effectiveness of the
strategy.

The solutions of the examples are shown graphically, and we observed that the numerical solution is in good
agreement with the exact solution, and for fixed values, as the width of the left and right boundary layers decreases.
This method is uncomplicated and easily executable. One can apply this technique to solve a class of higher-order,
multi-parameter singular perturbation problems.

Table 1. MAEs in the solution of Example 1 for £ = 1073

wlN 26 27 28 2° 210

Proposed method

1072 2.0091(-4)  5.0703(-5)  1.2706(-5)  3.1783(-6) 7.9469(-7)
1073 2.0099(-5)  5.0708(-6) 1.2706(-6)  3.1783(-7)  7.9469(-8)
107* 2.0099(-6)  5.0708(-7) 1.2706(-7)  3.1783(-8)  7.9470(-9)
Results in [12]

1072 3.6590(-3) 1.1005(-3) 2.7573(-4) 6.8812(-5)  1.7196(-5)
1073 3.0262(-3)  7.4023(-4) 1.8406(-4) 4.5953(-5)  1.1484(-5)
10*  2.9008(-3) 7.0989(-4)  1.7654(-4)  4.4076(-5)  1.1015(-5)

Table 2. MAEs in solution of Example 1 for g = 10~*

e/N 26 27 28 2° 210

Proposed method

1071 1.2312(-8) 3.0783(-9) 7.6959(-10) 1.9241(-10)  4.9152(-11)
1072 2.0046(-7) 5.0162(-8) 1.2543(-8)  3.1360(-9) 7.8402(-10)
1073 2.0099(-6) 5.0708(-7) 1.2706(-7)  3.1783(-8) 7.9470(-9)
Results in [12]

1071 1.5752(-5) 3.9408(-6) 9.8514(-7)  2.4628(-7) 6.1570(-8)
1072 2.8064(-4) 7.0125(-5) 1.7522(-5) 4.3807(-6) 1.0952(-6)
1073 2.9008(-3) 7.0989(-4) 1.7654(-4) 4.4076(-5) 1.1015(-5)

Table 3. MAEs in the solution of Example 2 for N = 128

elu 1072 107* 107 1078 10710
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Proposed method

1073 1.6525 (-4) 45638 (-5) 4.1508 (-5) 4.5102(-5) 4.5102(-5)
107*  1.5338 (-3) 5.1058 (-5)  4.7762 (-5) 4.7736(-5) 4.7736(-5)
1075 7.9426 (-3) 1.2653 (-4)  3.7890 (-5) 3.7802(-5) 3.7801(-5)
107  1.0389 (-2) 3.0641 (-4) 1.0101 (-5) 9.6195(-6) 9.6188(-6)
1077 1.0655 (-2) 3.1416 (-4)  3.2928 (-6) 9.8743(-7) 9.8667(-7)
Results in [9]
1073  8.3832(-5) 9.4446(-3) 1.3075(-2) 1.8164(-2) 1.8359(-2)
107*  8.2686(-5) 9.0436(-3) 9.4539(-3) 1.3076(-2) 1.8163(-2)
1075  8.2572(-5) 9.0036(-3) 9.0525(-3) 9.4540(-3) 1.3076(-2)
107  8.2561(-5) 8.9996(-3) 9.0124(-3) 9.0526(-3) 9.4540(-3)
1077 8.2559(-5) 8.9992(-3) 9.0084(-3) 9.0125(-3) 9.0526(-3)

Table 4. Comparison of MAEs for Example 2
u e=10"%,N=128

Kadalbajoo and Zahra and Sapna Pandit and Our method
Yadaw [12] El Mhlawy [31] Manoj Kumar [25]

1073  8.3832(-5) 4.1924(-5) 4.2303(-5) 3.1808(-5)
10~*  8.2686(-5) 4.1296(-5) 4.1318(-5) 3.1107(-5)
107°  8.2572(-5) 4.1232(-5) 4.1220(-5) 3.1037(-5)
107  8.2561(-5) 4.1226(-5) 4.1210(-5) 3.1030(-5)
1077 8.2559(-5) 4.1225(-5) 4.1209(-5) 3.1029(-5)

Table 5. Comparison of MAEs for Example 2
U e=10"% N=128

Kadalbajoo and Zahra and Sapna Pandit and Our method

Yadaw [12]

El Mhlawy [31]

Manoj Kumar [25]
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1073 9.4446(-3) 4.7598(-3) 5.1964(-3) 1.6232(-4)

107*  9.0436(-3) 4.2856(-3) 4.1710(-3) 5.1058(-5)

107> 9.0036(-3) 4.2295(-3) 4.0754(-3) 4.8001(-5)

107  8.9996(-3) 4.2238(-3) 4.0659(-3) 4.7762(-5)

1077 8.9992(-3) 4.2232(-3) 4.0650(-3) 4.7738(-5)
Table 6. MAEs in the solution of Example 3 for u =275

N/ € 2—10 2—11 2—12 2—13 2—14 2—15

27 3.759(-4) 7.849(-4) 1591(-3) 4.440(-3) 5.244(-3) 7.330(-3)
4.440(-3) 2.692(-3)

28

9.426(-5) 1.978(-4) 4.063(-4) 8.165(-4)

2° 2.358(-5) 4.954(-5) 1.021(-4) 2.075(-4)
210 5897(-6) 1.239(-5) 2.557(-5) 5.211(-5) 1.051(-4)

4.143(-4)

8.547(-3)
3.763(-3)
8.881(-4) 1.364(-3)

2.089(-4)  4.440(-4)

Table 7. MAEs in the solution of Example 3 for e = 10716

N/u 2732

2—36 2—40 2—44

2—48

2—52

27
28
29

210

1.115(-5)
3.205(-6)
8.318(-7)
2.099(-7)

1.115(-5)
3.205(-6)
8.318(-7)
2.099(-7)

1.115(-5)
3.205(-6)
8.318(-7)
2.099(-7)

1.115(-5)
3.205(-6)
8.318(-7)
2.099(-7)

1.115(-5)
3.205(-6)
8.318(-7)
2.099(-7)

1.115(-5)
3.205(-6)
8.318(-7)
2.099(-7)

y-solution

T T T
— exact solution
*  numerical solution

y-solution

05
x-mesh points

Fig 1. Graphical representation of solution in

Example 1 with g =103

exact solution
*  numerical solution

05
x-mesh points

Fig 2. Graphical representation of solution

in Example 2 with p = 10™*
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y-solution

exact solution

*  numerical solution
exact solution

* numerical solution 25

£=10

y-solution
-
o
1

1 £=102 q

i L L i i L i i L

0.1 02 03 0.4 05 06 07 08 09 1 0 0.1 02 03 0.4 05 06 07 038 09 1
x-mesh ponts x-mesh points

Fig 3. Graphical representation of solution ig 4. Graphical representation of solution

in Example 3 with g = 1073 in Example 4 with p = 1073
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