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Abstract: The current research objective is to employ numerical methods to observe the Maxwell fluid flow 

dynamics in the vicinity of a stretched surface through a chemical reaction of medium that is porous, 

nanoparticles, multiple slip, and magnetic field effects are influenced by convective boundary conditions. The 

outcome of thermophoresis and Brownian motion on the energy and concentration equations will be taken into 

account even as modelling the Maxwell-nanofluid flow. The dimensionless form of the fundamental governing 

equations is obtained through similarity transformations. The numerical solution of these dimensionless 

problems has been achieved through the utilisation of the Runge-Kutta technique through shooting method. This 

study's primary objective is to investigate key engineering factors that stem from the governing equations and 

their impact on profiles of temperature, concentration, and velocity. The graphic depicts an analysis of the 

aforementioned consequences. Furthermore, tabular formats are employed to communicate the quantitative 

values of diverse engineering parameters, such as skin-friction, Sherwood number, and Nusselt number 

coefficients. Also, a numerical comparison with previously published data at program code validation is 

presented 
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1. Introduction: 

 Nanofluids have been a subject of interest as cutting-edge heat transfer fluids used for approximately 

two decades. Despite the complex and diverse characteristics of nanofluid systems, there is currently no 

consensus on the magnitude of potential benefits associated with the use of heat transfer nanofluids appliances. 

Findings of every inquiries into heat transfer utilising nanofluids suggest that the present considerate of 

nanofluids remains somewhat restricted. The community of researchers studying nanofluids is faced with a 

range of challenges that encompass aspects such as formulation and real-world implementation, as well as 

gaining a deeper understanding of the fundamental mechanisms involved. The challenge of generating 

nanofluids among suitable particle size and morphology to enable efficient heat transfer utilisation continues to 

be a major hurdle in the engineering domain. Besides the influence of thermal conductivity, it is advisable for 

future inquiries to deem other relevant possessions, namely viscosity and wettability, and thoroughly inspect its 

impacts on both fluid dynamics and thermal energy transfer. A thorough 

considerate of the interaction among the particles, stabilisers, the suspending medium, and the heating interface 

is crucial for practical applications. Nano-fluids are produced using solid particles, which can be either metallic 

or non-metallic. Examples of metallic solids that are commonly used include gold, silver and copper; while non-

metallic solids such as alumina, silica and titanium oxide are also employed. Additionally, metallic liquids like 

sodium can be utilised in the production of nano-fluids. The notion of nano-fluid theory was first proposed by 

Choi [1] and has subsequently garnered significant attention within the field of fluid dynamics. A study was 

performed by Njane- Mutuku and Makinde [2] about the flowing of nanofluids above a surface that is permeable 

through Newtonian heating, specifically focusing on the MHD boundary layer. Behseresht [3] investigated the 

https://jcamech.ut.ac.ir/?_action=article&au=809229&_au=Chandu+M+Koli
https://jcamech.ut.ac.ir/?_action=article&au=813127&_au=S.N.++Salunkhe


Tuijin Jishu/Journal of Propulsion Technology 

ISSN: 1001-4055 

Vol. 45 No. 4 (2024) 

___________________________________________________________________________ 

382 

influence of forces of thermophoresis  & Brownian motion on the transfer of heat of nanofluids natural 

convection in the vicinity of an erect cone located in a drenched porous medium. Numerical data obtained 

through the utilisation of the Runge-Kutta method. A novel numerical methodology has been presented by 

Sheikholeslami [4] for analysing the flow of nanofluid MHD throughout a porous enclosure. Sheikholeslami et. 

al. [5] performed a research study aimed at investigating the effect of thawing transfer of heat on the 

augmentation of heat transfer nanofluid within an existing magnetic field. Chamkha et al. [6] observed that 

analysed the mixed convection boundary layer above an erect wedge situated into a porous medium. The 

medium was drenched through a nanofluid non-Newtonian of power law variety. Chamkha et. al. [7] looked at 

an investigation on the effects of lateral uniform mass flux on natural convection non-Darcy of non-Newtonian 

fluid with a vertical cone that is submerged into a nanofluid medium that is porous. Rashad et. al. [8] deliberated 

the phenomenon of hydrodynamic- magneto mixed convection contained by a square cavity that employed a lid-

driven mechanism. Rashad et al. [9] examined the influence of thermophoresis and thermal radiation on the 

conduction of mass and heat transfer in a mixed convection scenario above an erect cone that is rotating. 

Sivasankaran et al. [10] conducted a study that involved a Cu-water simulation numerical mixed flow 

convection of nanofluid transfer of heat in a square cavity. The transfer of heat, which is turbulent, of a 

homogeneous nanofluid through the utilisation double twisted tapes was explored by Rokni  and Sheikholeslami 

[11]. Muhammad etc. al. [12] examined the nanofluid 3D Eyring-Powell outcomes of thermal radiation non-

linear on MHD slip, via the Cattaneo-Christov heat flux representation. Sreenivasulu et al. [13] premeditated the 

impact of nanofluid UCM Navier-slip effect on the flow, taking into account the influence of non-linear thermal 

radiation,,Lorentzian force. Zaidi et. al. [14] observed an upper-convected MHD flow of Maxwell fluid, while 

considering the consequence of Joule heating and convective boundary conditions, passage during erect slit. 

Ibrahim and Negera [15] analysed the UCM outcomes of slip on the flow performance of fluid into the 

occurrence of a field which is magnetic and chemical reaction. Several contemporary investigations have been 

conducted to evaluate the effectiveness and feasibility of nano-fluids (references [16]-[30]). The works 

mentioned in the literature[31]–[41] had a significant impact on understanding the nature of the reported 

work.References [42]-[49] provided the solutions for the MHD driven heat and mass transfer problem solving 

system. 

     The object of this study is to examine the consequence of velocity and concentration slip impact on 

magnetohydrodynamic nanofluid Maxwell- flow above a stretching surface, taking into consideration the 

existence of chemical reaction and porous medium. This research builds upon previous studies in the field. The 

present investigation deals with a noteworthy matter concerning the impacts of thermophoresis, Brownian 

motion & chemical reactions within the existence of a field that is magnetic and a porous medium. The current 

research problem has been addressed by employing numerical method, specifically the Runge-Kutta scheme in 

combination through the shooting method. The results are depicted in a graphical format, followed by a succinct 

analysis. The present study incorporates an analysis of specific atypical instances to establish a justification for 

our results. The present examination of nano-fluid is of significant importance to researchers and practitioners 

operating in the field of hydrodynamic fluid dynamics, specifically within the scope of lubrication theory. 

Thermo-bio convection, instigated by the presence of motile organisms, is a significant factor in geophysical 

events such as thermopiles and oil reservoirs. 

2. Mathematical Construction: 

In present investigate studied the characteristics of Maxwell fluid on, steady, II-dimensional incompressible, 

viscous electrical conducting nanofluid flow existed by surface stretching in the occurrence of a magnetic field, 

chemical reactions, velocity and concentration slip outcomes. The coordinate of the physical system is shown in 

Fig. 1. Pro this investigation, the subsequent suppositions are made: 
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Fig. 1. Geometry depiction of the fluid 

a) The geometry of the problem is supposed to be in a synchronized system where horizontal the x-axis 

and the y-axis is erect to it.  

b) It is supposed that a nanofluid will flow steadily past a stretching sheet in a 2-dimensional (x, y) 

boundary layer among a linear velocity deviation with x distance and velocity slip  as it wereuw (x) = 

1

u
ax L

y

 
+  

 
. 

c) Steady state of two-dimensional flows through a sheet that is stretched is taken into consideration.  

d) In addition, we have measured the flow of a nanofluid in the continuation of a field that is magnetic 

which is normal to the nanofluid and positioned at y greater than or equal to zero; where y is the synchronized 

calculated normal to the stretching surface. 

e) The nanoparticle volume concentration ‘ C ’at the borders is supposed to be 
wC at the wall, and C

at a distance from the wall. 

The equations for steady, viscous, incompressible, two-dimensional Maxwell-nanofluid boundary layer flow are 

provided in accordance with the presumptions as 

Continuity Equation: 

0=+ yx uu                                                                                                                        (1)          

Momentum Equation: 
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Equation of thermal energy: 
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Equation of species nanoparticle volume concentration: 
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Where 
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The boundary conditions for this Maxwell-nanofluid flow with slip effects are 
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Introducing the following similarity transformations 
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Here ψ the stream function with u
y


=


& v
x


= −


. Thus, the continuity is identically pleased. Applying 

the normal boundary layer approximations, an order-of-magnitude wise investigation of the momentum equation 

along the y-direction (perpendicular to the sheet).  

yxx vvuvu ,,  Shows that 0=xp (7) 

The energy, momentum, boundary condition and volume fraction (concentration) equations diminish to the 

pursuing set of resemblance equations when the gradient of pressure in the direction of y is disregarded. 
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The boundary conditions corresponding to (6) be 
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Herethe physical parameters concerned are express as 
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   (12)        

Quantities of physical interest, the physical parameters of the skin-friction coefficient, local Nusselt number and 

local Sherwood number are obtainable as pursues: 
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Where Re o
x

U x


= be the local Reynolds number. 

3. Runge-Kutta method Solutions: 

A bounded domain has been substituted for the domain  0,  , where . is a suitable real number, that is 

finite, and that needs to be chosen so that the solution gratifies the domain[0,∞) in order to solve the system of 

ODE’s (8)-(10) numerically with their equivalent preliminary and boundary conditions (11).Additionally, the 

equations (8) through (10) constitute a third and second order ODE’s coupled initial boundary value issue. 

Because of this, (8) through (10) have been condensed to a set of ‘7’ primary problems of the first order with ‘7' 

unknowns from the hypothesis that follows in 

.};;;;; 754321 yyyyfyfyf ======                                                               (16)                                      

As a result, we create the most efficient numerical method in accordance with the fourth order Runge-Kutta 

shooting technique. The numerical solution is obtained using the symbolic program MAPLE. To resolve this 

system, we need seven initial conditions while we have merely four initial conditions for ( )0 ,f ( )0 ,f 

( )0 and ( )0 , whereas the remaining three ( )0 ,f  ( )0   and ( )0 were not specified; therefore, we 

use numerical shooting technique here these three primary conditions are guessed to construct the necessary 

three ending boundary conditions. The step size in the mathematical simulation has to be Δ𝜂. = 0.001 to achieve 

results. The convergence criterion is
1

108
.  

4. Validation of Program Code: 

Table-1.: Results evaluation of Nusselt and Sherwood numbersthrough published Nusselt & Sherwood 

numbers results for diverse values of Nt as Le. = 10, Pr. = 10.0 and Bi. = 0.1. 

Makinde and Aziz [49] results current results 
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results results results results 

0.0929 2.2774 0.091765087652087 2.269567346374340 

0.0927  2.2490 0.091567587567365 2.231756376375635 

0.0925  2.2228 0.091686787981395 2.218678671973699 

0.0923  2.1992 0.091996097304993 2.189676769376308 

0.0921  2.1783 0.091946593409646 2.169689876984857 

 

For verification of program code validation, the current Sherwood and Nusselt number results are contrasted 

among published Sherwood number and Nusselt number results obtained by Makinde and Aziz [50] in table-1 

for M = 0, K = 0, λ = 0, γ = 0, χ = 0, δ = 0, for a variety of values of Nt. while Le. = 10, Pr = 10.0 and Bi = 0.1. 

From this table, it is seen that the data formed via the current code and those of Makinde and Aziz [50] show 

exceptional agreement and the use of the here numerical code is verified. 

5. Results and Discussion: 

                    The concentration, energy and momentum equations, along with the magnetic field, the convective 

boundary condition, and multiple slip effects, are used to regulate a model of non-Newtonian chemically 

reacting Maxwell-nanofluid flow towards a stretched sheet in this study. In order to solve the system of ODEs 

that are highly nonlinear and (8), (9), (10) coupled with the boundary conditions (11) that express the issue, we 

used the R-K approach and the shooting technique. This section's primary goal is to examine the graphical 

results of temperature, concentration distribution, and velocity profiles for a variety of newly discovered 

dimensionless parameters, including M –(magnetic parameter),K –(permeability (porosity) parameter), λ- 

(Maxwell parameter), χ -(velocity slip parameter) , Pr-(Prandtl number),Nb –(Brownian motion parameter), Nt -

(Thermophoresis parameter), Bi-(Biot number), Le-( Lewis number),γ-(Chemical reaction parameter) and δ-

(Concentration slip parameter).This section is split into two sub-sections for easier comprehension.  

The values of the corresponding parameters used in the that graphical analysis are: M = 0.5, K = 0.5, λ = 0.5,   Pr 

= 0.71, Nb = 0.3, Nt = 0.5, Le = 0.5, γ = 0.5, χ = 0.5, Bi = 5.0 and δ = 0.5 The velocity profiles for various values 

of the magnetic field parameter (M) are presented in Fig.2. This graphic makes it obvious that when the 

magnetic field parameter (M). is increased, the velocity reduces. The magnetic field strictures influence on the 

velocity profiles is slowed down by the Lorentz force, which also delays on the velocity field force. The fluid 

velocity and the flow's resistance are both likely to be slowed down by this force. It is therefore conceivable for 

the velocity profiles to drop.  

https://www.sciencedirect.com/science/article/pii/S111001682200206X#e0055
https://www.sciencedirect.com/science/article/pii/S111001682200206X#e0060
https://www.sciencedirect.com/science/article/pii/S111001682200206X#e0065
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Fig. 2. Behaviour of M on velocity fields 

Fig. 3 displays the values of the Permeability (Porosity parameter) (K) on velocity profiles. From this figure, 

additionally, it should be noted that when the parameter K increases, a force opposes the velocity and the 

boundary layer thickness.  

The viscous forces between the nanofluid layers are improved by a high value of the porosity parameter in terms 

of physics, which reduces the fluid's momentum distribution inside the boundary layer. The Deborah number (a 

Maxwell fluid parameter) λ, which is a ratio of the relaxation fluid time to its characteristic scale time, has an 

effect on the velocity profiles, as seen in Fig. 4. The period of time during which the fluid reaches its 

equilibrium position after being subjected to shear stress is known as the relaxation time. For fluids with a high 

viscosity, this time is longer. Therefore, as illustrated in Fig. 4, an increase in λ may result in an augment in the 

fluid's viscosity, which will cause a drop in velocity. 

 

Fig. 3. Behaviour of K Regard velocity                  Fig. 4. Behaviour of λ Regard velocity fields 
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Fig. 5 described how the velocity slip ((χ)) affects the velocity. It is observed that when the velocities slip 

augments, the fluid's velocity drops. Prandtl number fluctuation on temperature profiles is seen in Fig.6. It is 

concluded that narrower temperature boundary layers are produced by increasing Prandtl number values. 

Temperatures drop as a result of reduced thermal diffusivity in fluids with higher Prandtl numbers. 

 

Fig. 5. Behaviour of χ Regard velocity fields     Fig. 6. Behaviour of Pr Regard   temperature 

Figs.7 and 8 show how the parameter of Brownian motion affects the profiles of concentration and 

temperature.As of the figures, it is clear that when the values of the parameter of Brownian motion climb, the 

thickness of the thermal boundary layer rises and the temperature differential at the surface decreases. However, 

when the Brownian motion parameters rise, the scientists have seen the opposite effect on the concentration 

profiles and thickness of concentration boundary layer.  

 

Fig. 7. Behaviour of Nb on temperature fields                    Fig. 8. Behaviour of Nb Regard concentration 

 

The effects of the thermophoresis parameter on temperature and concentration silhouettes are revealed in Figs. 9 

and 10. According to the figures, the temperature and concentration thickness of boundary layer improves while 

the thermophoresis stricture increases.  
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Fig. 9. Behaviour of Nt Regard temperature fields   Fig.10. Behaviour of Nt Regard concentration fields 

Fig. 11 illustrates the influence of the Biot number on temperature. It can be shown that as the number of Biots 

increases, so does the temperature. Figure 12 depicts the effect of the Lewis number Le on nanoparticle 

concentration profiles. It is discovered that when the Lewis number increases, the concentration drops. 

 

Fig. 11. Behaviour of Bi Regard temperature              Fig. 12. Behaviour of Le Regard concentration 

The persuade of the chemical reaction stricture (γ)on the nanofluid concentration (ϕ) of its nanoparticles is 

depicted in Fig. 13. The stronger the chemical reaction parameter value, the lower is the concentration of the 

nano-particle distribution (ϕ). A high rate of chemical conversion among nanofluid molecules is indicated by a 

large chemical reactions parameter γ , resulting in a significant delay in nanofluid concentration, as seen in the 

below diagram. Figure 14 depicts the fluctuation of the concentration slip parameter on dimensionless nanofluid 

concentration profiles. We note that the concentration profiles decreases while δ increases.  
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Fig. 13. Behaviour of γ Regard concentration      Fig. 14. Behaviour of δ Regard concentration 

The numerical values of Skin-friction coefficient due to velocity profiles for variations of Magnetic field 

parameter (M), Permeability (Porosity) parameter (K), Maxwell fluid parameter (λ), Velocity slip parameter (χ), 

Brownian motion parameter (Nb), Prandtl number (Pr), Thermophoresis parameter (Nt), Biot number (Bi), 

Lewis number (Le), Chemical reaction parameter (γ) and Concentration slip parameter (δ) are displayed in table-

2. From this table, the Skin-friction coefficient values are increasing with growing values of Brownian motion 

parameter (Nb), (Nt)Thermophoresis parameter, (Bi) Biot number, and the numerical values of Skin-friction 

coefficient is decreasing with rising values of Magnetic field parameter (M), (K), Permeability (Porosity) 

parameter  (λ)Maxwell fluid parameter, (χ)Velocity slip parameter, (Pr) Prandtl number, (Le)Lewis number, (γ.) 

Chemical reaction parameter, and (δ) Concentration slips parameter.  

Table-2. Skin-friction coefficient results pro variations of M, K, λ, Pr, Nb, Nt, Le, γ, χ, Bi&δ. 

M K λ Pr Nb Nt Le Γ χ Bi δ Cf 

0.5 0.5 0.5 0.71 0.3 0.5 0.5 0.5 0.5 5.0 0.5 2.1874530124536 

0.8           2.1546343436869 

1.0 2.1277582493938 

 0.7 2.1686633476349 

0.9 2.1486347438077 

 0.8 2.1556378373460 

1.0 2.1316642708401 

 1.00 2.1434451878437 

3.00 2.1296744874380 

 0.6 2.2026473834392 

0.9 2.2267474170307 

 0.8 2.2186787394933 

1.0 2.2394634608742 

 0.8 2.1567898196836 

1.2 2.1315674028702 
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 0.8 2.1676743139033 

1.0 2.1377813986234 

 0.7 2.1576634780467 

0.9 2.1315674082402 

 7.0 2.2164637383460 

9.0 2.2346763643086 

 1.0 2.1567673763430 

1.5 2.1216768739363 

The rate of heat transfer coefficient or Nusselt number values are presented in table-3 pro variations of (Pr) 

Prandtl number, (Nb.) Brownian motion parameter, (Nt.) Thermophoresis parameter, (Bi.) Biot number. At the 

table, it is seen that the Nusselt number values are rising with rising values of Brownian motion parameter (Nb.), 

Thermophoresis parameter (Nt.), Biot number (Bi.), and the reverse consequence is viewed in case of Prandtl 

number (Pr.).  

Table-3. Rate of heat transfer coefficient results pro variations of Nb, Pr, Nt, &Bi. 

Pr Nb Nt Bi Nux 

0.71 0.3 0.5 5.0 1.7561396938639 

1.00    1.7275317403640 

3.00 1.7078768183967 

 0.6 1.7875738734783 

0.9 1.8078789481892 

 0.8 1.7998719786897 

1.0 1.8116547387845 

 7.0 1.7965763783641 

9.0 1.8206398463961 

The Sherwood number or rate of mass transfer coefficient due to concentration profiles for variations of Nb-

(Brownian motion parameter), δ – (Concentration slip parameter), γ – (Chemical reaction parameter), Le-(Lewis 

number) and Nt-(Thermophoresis parameter) numerical values are displayed in table-4. From this table, the 

Sherwood number values are decreasing with riseing values of Le-(Lewis number), Nb-(Brownian motion 

parameter), δ –(Concentration slip parameter), γ –(Chemical reaction parameter), while the Sherwood number 

values are increasing with rising values of Nt –(Thermophoresis parameter). 

Table-4. Skin-friction coefficient results for variations of Le, Nb, Nt, γ, &δ. 

Nb Nt Le γ Δ Shx 

0.3 0.5 0.5 0.5 0.5 1.9678719386983 

0.6     1.9488168979181 

0.9 1.9215673468659 

 0.8 1.9878498187367 
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1.0 2.0867847597199 

 0.8 1.9277548185971 

1.2 1.8977888738768 

 0.8 1.9377489304730 

1.0 1.9115643762304 

 1.0 1.9463738368063 

1.5 1.9215674362076 

6. Conclusions: 

  In this research investigation, the authors have to examine the outcomes of two-dimensional, 

steady, conducting electrically, incompressible, Maxwell non-Newtonian fluid flow in addition of nanofluid 

particles towards a stretching sheet surrounded by porous medium in the occurrence of slip Velocity, Magnetic 

field, Concentration slip along with effects of Brownian motion & Thermophoresis. Numerical results were 

found and discussed by graphical and numerical solutions with the Runge-Kutta process and shooting method 

are used. The investigation's findings as below 

● In the occurrence of the Magnetic field parameter, the velocity profiles are reduced.  

● Decreases in velocity are observed for the Permeability and slip Velocity parameters. 

● The velocity profile diminishes in the presence of the Maxwell fluid stricture. 

● Various parameters in the Maxwell-Nanofluid flow Temperature distribution increase as Brownian 

motion, Thermophoresis parameters are increased. 

●  The temperature silhouette diminishes in the presence of the Prandtl number. 

● When Biot number is enhanced, the temperature profiles are enhanced as well. 

● The concentration silhouettes decrease with increasing Lewis number; Brownian motion stricture, 

Chemical reaction stricture & Concentration slip parameter. 

● The concentration silhouettes are increases with Thermophoresis parameter values are increased. 

● This study might be broadened to include non-Newtonian nanofluids such as those included by 

Williamson and Jeffrey, the constricted vein in the elliptical cross-section, and several other types under 

different physical circumstances. 

● In program code validation, the acquire results be good agreement among the published results of 

Makinde and Aziz [50]. 
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