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Abstract

In this paper, we determine the neighbour vertex distinguishing total chromatic number of comb product of some
graph path by path, path by cycle and cycle by path. Also determine chromatic number of the skew product and
converse skew product of B,, & B, in detail.
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1 Introduction

All the graphs considered here are undirected graph, simple and connected graph G = (V(G), E(G)).
For every vertex x,y € V(G), xy € E(G) denotes the edge connecting two vertices. For all other
standard concepts of graph theory, we see [1], [2], [4].

[5], [6] The neighbour vertex distinguishing total coloring (abbreviated as NVDTC) of the graph G is a
mapping ¢ : V(G) UE(G) — {1,2,---,t},t € Z* such that any two adjacent or incident elements in
V(G) U E(G) have different colors. Then Cy(x) # Cy(y) whenever xy € E(G), where Cy () is the

color class of the vertex y (with respect to ¢).

Cp(x)
Eq; (x)

{p()} U {d(xy) | xy € E(G)}}
{1,283 \ Cg(x)

The minimum number of colors required to give an NVDTC to the graph G is denoted by y,,.,:(G).
AVDTC of tensor product of graphs are discussed in literature [5] and Quadrilateral snake in [6].

Yot (G) < A(G) + 2, if G is a bipartite graph. For all other basic terminology of graph theory, we see
[11. [2]. [4].
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2 NVDTCof Gy > G,

[3] Let G, and G, be two connected graphs. Let v be a vertex of G,. The comb product denoted by
G, > G, between G; and G, is a graph obtained by taking one copy of G, and |V (G;)| copies of G, and
grafting the i-th copy of G, at the vertex v to the i-th vertex of G,. By the definition of comb product,
we can say that V(G, > G,) = {¢p(a;x)| a € V(G1);x € V(G,)} and (a,x)(b,y) € E(G; > G5)
whenever a = b and xy € E(G,), or ab € E(G,) and x =y = v. In this paper, we will show the
results related to comb product of path and cycle graph namely Pm > B,, Pm > C, and Cm >

P,,m,n €N.

The NVDTC of comb product of two graphs G, and G, are discussed in this section. Let
{vi, vy, v} be the vertices of G; and {wy,w,,---,w,} be the vertices of G,. By the

definition of comb product, we obtain a graph with vertex set {ur,S forr=1,2,---,mand s =

1,2, ,n}.
Theorem 2.1.
Xnvt(Pm & Pn) =5 m=4

Proof. Let {vy,v,, -, vy} IS the vertex set of B, and {w;, wy, -+, w,} is the vertex set of B,.
Define ¢:V(P, > B,) UE(P, > P,) — {1,2,---,t},t € Z*. The vertex and edge set of P, >

B, is given by
Ve PR) = {ups|r=123-,m s=123,n}
m-—1 m
E(P,>B,) = {(rL=J1 umurﬂ,l) U (rlleuT,Sur,Sﬂ), s=123,,(n— 1)}

Clearly, B,, = B, has mn vertices and mn — 1 edges.
Now, the general graph B,, > B, for m,n > 4.

1, forr =1 (mod 2)

Fori<srsm, ¢(uy,) = {2, forr = 0 (mod 2)

3, forr=1(mod?2
Fori<r<m-—1, ¢(upiurs11) = {4 forr=0 Emod 2% and ¢(uy1ur2) = {5}

1, fors = 1 (mod 2)

Forr=1(mod?2), ¢(urs)= {2 for s = 0 (mod 2)

1, for s = 0 (mod 2)

For s =0 (mod 2), ¢(u,s) = {2 fors = 1 (mod 2)
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3, fors = 0 (mod 2
For2<s<n-1and 1<r<m, ¢(upsUpss1)= {4 fors = 1 Emod 23
The color classes are

1, forr = 0 (mod 2)

For2<r<m-—1, C¢(ur,1) - {2, forr =1 (mod 2)

Cp(usq) ={1,3,5},

¢ um’l - {1;4‘;5}: ifm=1 (mOd 2)

_ ({2,3,5}, forr = 0 (mod 2) _ {{1,3,4}, forr =0 (mod 2)
Colurz) = {{1,3,5}, forr =1 (mod2) ™ C0(43) =134y forr =1 (mod2)

{1,3,4}, forr =1 (mod 2)

For3<r<mands=1(mod2) Cylu,s) = {{2 3,4}, forr = 0 (mod 2)

{2,3,4}, forr =1 (mod 2)

For3<r <mand s =0 (mod 2) C¢(um) ={{134} for r = 0 (mod 2)

The color classes of any two neighbour vertices are different.
Xnvt(Bn & B) =5, form > 4

Hence the theorem. |
Theorem 2.2. The comb product B,, = C,, admits AVDTC and

Yot(Pn > C) =6, m=3, n= 4
Proof. Let V(B,,) = {v, V5, **, U} and V(Cy,) = {wy, wy, -+, wy }.

Define ¢:V(P, > C,) UE(P, > C,) — {1,2,---,t},t € Z*.

VBpeC) = {us|r=123,m s=123,,n}
m—1 m m
E(Pm & Cn) = {( U ur,lur+1,1> U ( U ur,n“r,l)( U ur,sur,s+1>: s=123,--, (n - 1)}
r=1 r=1 r=1
Clearly, B, > C, has mn vertices and m+mn—1 edges.
Case I. When n is even

Now, we consider the general graph B,, > C,, form =3 andn > 4.

1, forr =1 (mod 2)

Forl1l<r<m, ¢(ur.1) = {2, forr = 0 (mod 2)
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5 forr =1 (mod 2
Forisr=m-—1, ¢(ur'1ur+1'1) - {6 forr=0 Emod 23

3, fors =1 (mod 2
Fori1<s<n-—1land for1<r<m, gl)(ur,sur,sﬂ):{4 forszOEmodZ%

Porr=1(mod 2), and for 155 < ¢(u) = {5 o= 1 (mod2

For =0 (mod 2), and for 155 < ¢(u0) = {5 0SS0 mod )

Forl1<r<m, qb(ur,num) =4

The color classes of any two neighbour vertices are different.

Xnwt (B & C,) = 6, form > 3 and n is even.
Case (1), When
Now, we consider the general graph B,, & C,,.

n is odd

1, forr =1 (mod 2)
Fori<r<m, ¢(u.,)= {2, for r = 0 (mod 2)

5, forr =1 (mod 2)
Fori1<r<m-1, ¢(ur,1ur+1,1) = {6 forr =0 (mod 2)

For 1<s<n-1

. _ (1, fors =1 (mod 2) ) _ (1, fors =0 (mod 2)
If risodd, ¢(u.s)= {2’ fors =0 (mod 2) and If ris even, ¢(u, )= {2, fors =1 (mod 2)

Fori<r<m

d)(ur,n) =4
¢(ur,n—1ur,n) =1
¢(ur,nur,1) =2

3, forr =1 (mod?2)
For1<s<n-2 ¢(u1,su1,s+1) = {4 for r =0 (mod 2)

It is clear that the color classes of any two neighbour vertices are distinct.

Xnvt(Pm & Cn) =6, form >3
Hence the theorem.
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Theorem 2.3. The comb product C,, & P, admits NVDTC and
Xnvt(Cm & Pn) =5 m=4

Proof. Define a function ¢: V(C,, = B,) UE(C,, > B,) — {1,2,---,t},t € Z*. The vertex and

edge set of C;,, = P, are
V(Cm (> Pn) = {uT,S | r = 1,2’3’ --.’m’ S = 1’2’3’ ...’n}

m-1 m
{( rL=Jl ur,lur+1,1> U (um,lul,l) U (rzlur,sur,s+1) y S = 1'2'3' Y (n - 1)}

E(Cn & Py)

Clearly, B,, = C,, has mn vertices and mn + m — 1 edges.
Now, the general graph C,, = B, form,n > 4.

Case I. When m is even

Fori1<r<m, 1<s<n

) (1, fors =1 (mod 2) ) _ (1, fors =0 (mod 2)
If is odd, ¢(urs)= {2, for s =0 (mod 2) and If ris even, ¢(urs) = {2, for s =1 (mod 2)

For1<r<m, ¢(ur,1ur,2) =5, ¢(um,1u1,1) =4
Fori<r<m-1

(3, forr =1 (mod 2)
¢(ur,1ur+1,1) - {4, forr =0 (mod 2)

Fori<r<mand 2<s<n-1

_ (3, fors =0 (mod 2)
¢(ur,sur,5+1) - {4, for s =1 (mod 2)

Case Il. When m is odd

Fori<r<m-1, 1<s<n

. _ (1, fors =1 (mod 2) ) _ (1, fors =0 (mod 2)
If is odd, ¢(urs)= {2, for s =0 (mod 2) and If 1 is even, ¢(ur) = {2, for s =1 (mod 2)

Fori1<r<sm-—1, ¢(ur1ur2) =5 ¢(umi) =4
(Um11ttm1) =1, P(umatizs) = 2.
Fori1<r<m-2
3, forr=1(mod?2)

¢(ur,1ur+1,1) = {4} forr =0 (mod 2)
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Fori<r<mand 2<s<n-1

_ (3, fors=0(mod2)
S (ur,sthr,se1) = {4} for s =1 (mod 2)

Therefore, the color classes of any two neighbour vertices are different.
Xnot(Cp & C) =5, form > 4

Hence the theorem. O

3 NVDTC of skew and converse skew product of graphs
In this section, the skew and converse skew product of path by path graph discussed. The skew product

of two graphs G, and G, denoted by G, A G, has the vertex set V(G,) x V(G,) and the edge set is

(x1,¥1), (X2, ¥2)| x1 = x5 and y,y, € E(Gy)

E(Gl A GZ) = { (Or)xlxz € E(Gl) and ylyz € E(GZ)

The converse skew product of two graphs G, an G, denoted by G,V G-, has the same vertex set of G; A G,
and the edge set is

(x1,¥1), (x2,¥2)| y1 = ¥y, and x1x, € E(Gy)

E(Gl V GZ) = { (Or)xlxz € E(Gl) and ylyz € E(GZ)

In this section, we propose B, A B, and PB,, V P, admits neighbour vertex distinguishing total coloring
conjecture.
Theorem 3.1.

wnvt(PmAPn)=8; mn =>4

Proof. Let V(B,,) = {x1,%2, ", xp} and V(B,) = {y1, 2, *-, ¥n } are the vertex set of the graph B,, and
P, respectively. Define ¢ : V (P, AP,) VU E(P,AP,) — {1,2,--,t},t €Z*.

V(B AP) ={v,s|r=123,-m,  s=123,,n}
m-1 m

Ehn AR = {( U (vr,svr+1,5+1) U (vr+1,svr,s+1)) U <U vr,svr,s+1> ,
r=1 r=1

s=123,-,(n— 1)}

Clearly, B,, A B, has mn vertices and (n — 1)(m — 2) edges.
Forl1 <r<m 1<s <n,

1 s=1Q)
#(vrs) = {2 s=0(2)
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Forl < r < m,

3 =1(2
¢(vr,svr,s+1) = {4 z = ngg forl <s<n-1

Forit <r<m-—-1landl <s<n-1

5 r=1(2 7 r=1(2
¢(vr,svr+1,s+1) = {6 : = ngg and ¢(Vr+1,svr,s+1) = {8 : = 0%2%

The color classes of any two adjacency vertices are different.

The color classes are,

C(vy1) = {135} C(vrn) = {(1,4,7), nis odd

(2,3,7), nis even

(2,3,4,5,7), s=0(2)

For2<s<n-1, C(vys) = {(1,3,4,5,7), s=1(2)

For2<r<m-1, and 2<s<n-1, E(vm)={(2) whens =1(2)

(1) whens =0(2)
For2<r<m-1,

_((1,3,6,7), whenr = 0(2) _{(1,3,7), when mis even
Cer) =358y, whenr =102 and  C(m1) =1(138), whenm s odd

(1,4,5,8), r=0(2)

If nis odd, then C(v,,,) = {(1 4,6,7), r=1(2)

For2<r<m-—1,whennis even

_((2358), r=0(2)
C(vrn) = {(2,3,6,7), r=1(2)

(1,4,5), miseven

If nis odd, then C(vm,n) ={(146) mis odd

(2,3,5), miseven

<s<n-—
(2,3,6), misodd Forzss<n-1

If nis even,then C(vm‘n) = {

(2,3,4-,5,7), S = 0(2) .
C( ) _ {(1,3,4-,5,7)’ s = 1(2) when mis even
Yrin) = {(2,3,4,6,8), s=0(2)

(1,3,4,6,8), s=1(2) when m is odd

It is clear that that the color classes of any to adjacent vertices are different. Hence

wnvt(PmAPn)z& mn =4
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Theorem 3.2.

l/)nvt(PmVPn) =8 mn=2=4

Proof. Let V(P,) = {x1,%x2,*, %} and V(B,) = {y1,¥2, ", ¥n} are the vertex set of the graph B,

and P, respectively. Define ¢: V (B, VB,) U E(B,VB,) — {1,2,-,t},t € Z*.
V(P,VB) = {vr,s | r=123,m, s=1,23,-,n}

m—1 m
E(Pm \% Pn) = {( U (vr,svr+1,s+1) U (vr+1,svr,s+1)) U <U Ur,svr+1,s> ’

s=1 s=1

r=123,:,(m— 1)}

Clearly, B,, V B, has mn verticesand (m — 1)(n — 2) edges. Whenm,n > 3, we have
Forl <r <m, 1 < s < n,then

(1 r=1(2)
P (vrs) = {2 r=0(2)

Forl <r<m-1,1 <s<n

(3 7=1(2)
¢(Ur,517r+1,5) - {4 r=0(2)

Forit <r<m-—-1landl1 <s<n-1

5 s= =
qb(vr,svﬂ_l,sﬂ) = {6 z = ég;% and ¢(vr+1,svr,s+1) = {; z = ég;%

The color classes of any two neighbouring vertices are different.

The color classes are,
C(v11) = {1,3,5}, for2<s<n-1, C(vy)= {

For2<r<m-1,

(1,3,6,7), s=1(2)
(1,3,5,8), s=0(2)

_((2,3,4,5,7), whenr = 1(2) _ {(2,3,7), when m is even
C(ora) = {(1,3,4,5,7), whenr = 0(2) and  Cma) =1(147), whenm is odd
(2345678 r=0(2)
For2<r<m-1, and 2<s<n-1, C(v,)= {1,3,4,5,6,7,8 r=12)

For2<s<n-—1,
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C(vms) = i{(1,4,5,8), s=0(2)

({(2,3,5,8), s = 0(2) Whenm is even

(2,3,6,7), s=1(2)

(14,67, s=1(2) "Whenmisodd

For2<r<m-1

C(vrn) = {(2,3,4,6,8), r=0(2)

Whenmis odd, C(vpn,)= {

When mis even,

2,3,4,5,7), =0(2 ,
{( ), T (2) whenn is even

(1,3457), r=1(2)

(1,3,4,6,8), r=1(2) whenn is odd

(1,4,5), niseven
(1,4,6), nisodd

_((2,3,5), niseven
C(vmn) = {(2,3,6), nis odd

It is clear that all the neighbouring vertices have distinct color class. Hence

O]

Yot (B V Py) = 8, mn =4

Conclusion.

In this paper, we have proved that the neighbouring vertex distinguishing total chromatic

number of comb product of some graph path by path, path by cycle and cycle by path. Also,

we proved that the skew and converse skew product of path by path graphs have the same

neighbour vertex distinguishing total chromatic number.
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