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Abstract 

In this paper, we determine the neighbour vertex distinguishing total chromatic number of comb product of some 

graph path by path, path by cycle and cycle by path.  Also determine chromatic number of the skew product and 

converse skew product of 𝑃𝑚 & 𝑃𝑛 in detail. 
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1     Introduction 

All the graphs considered here are undirected graph, simple and connected graph 𝐺 = (𝑉(𝐺), 𝐸(𝐺)). 

For every vertex 𝑥, 𝑦 ∈ 𝑉(𝐺), 𝑥𝑦 ∈ 𝐸(𝐺) denotes the edge connecting two vertices.  For all other 

standard concepts of graph theory, we see [1], [2], [4]. 

[5], [6] The neighbour vertex distinguishing total coloring (abbreviated as 𝑁𝑉𝐷𝑇𝐶) of the graph 𝐺 is a 

mapping 𝜙 ∶ 𝑉(𝐺) ∪ 𝐸(𝐺) ⟶ {1,2,⋯ , t}, t ∈  ℤ+ such that any two adjacent or incident elements in 

𝑉(𝐺) ∪ 𝐸(𝐺) have different colors.  Then 𝐶𝜙(𝑥) ≠  𝐶𝜙(𝑦) whenever 𝑥𝑦 ∈ 𝐸(𝐺), where 𝐶𝜙(𝑦) is the 

color class of the vertex 𝑦 (with respect to 𝜙). 

𝐶𝜙(𝑥) = {{𝜙(𝑥)} ∪ {𝜙(𝑥𝑦) | 𝑥𝑦 ∈ 𝐸(𝐺)}}

𝐶𝜙(𝑥) = {1,2,⋯ , 𝑡}  ∖  𝐶𝜙(𝑥)
 

The minimum number of colors required to give an 𝑁𝑉𝐷𝑇𝐶 to the graph 𝐺 is denoted by 𝜒𝑛𝑣𝑡(𝐺). 

AVDTC of tensor product of graphs are discussed in literature [5] and Quadrilateral snake in [6].  

𝜒𝑛𝑣𝑡(𝐺) ≤ 𝛥(𝐺) + 2, if 𝐺 is a bipartite graph.  For all other basic terminology of graph theory, we see 

[1], [2], [4]. 
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2     NVDTC of 𝑮𝟏 ⊳ 𝑮𝟐 

[3] Let 𝐺1 and 𝐺2 be two connected graphs.  Let 𝑣 be a vertex of 𝐺2.  The comb product denoted by   

𝐺1 ⊳ 𝐺2 between 𝐺1 and 𝐺2, is a graph obtained by taking one copy of 𝐺1 and |𝑉(𝐺1)| copies of 𝐺2 and 

grafting the 𝑖-th copy of 𝐺2 at the vertex 𝑣 to the 𝑖-th vertex of 𝐺1. By the definition of comb product, 

we can say that 𝑉(𝐺1 ⊳ 𝐺2) = {𝜙(𝑎; 𝑥)| 𝑎 ∈ 𝑉(𝐺1); 𝑥 ∈  𝑉(𝐺2)} and (𝑎, 𝑥)(𝑏, 𝑦) ∈ 𝐸(𝐺1 ⊳ 𝐺2) 

whenever 𝑎 = 𝑏 𝑎𝑛𝑑 𝑥𝑦 ∈ 𝐸(𝐺2), or 𝑎𝑏 ∈ 𝐸(𝐺1) and 𝑥 = 𝑦 = 𝑣.  In this paper, we will show the 

results related to comb product of path and cycle graph namely 𝑃𝑚 ⊳ 𝑃𝑛, 𝑃𝑚 ⊳ 𝐶𝑛 and 𝐶𝑚 ⊳

𝑃𝑛,𝑚, 𝑛 ∈ 𝑁. 

The 𝑁𝑉𝐷𝑇𝐶 of comb product of two graphs 𝐺1 and 𝐺2 are discussed in this section.  Let 

{𝑣1, 𝑣2, ⋯ , 𝑣𝑚} be the vertices of 𝐺1 and {𝑤1, 𝑤2, ⋯ ,𝑤𝑛} be the vertices of 𝐺2.  By the 

definition of comb product, we obtain a graph with vertex set {𝑢𝑟,𝑠 𝑓𝑜𝑟 𝑟 = 1,2,⋯ ,𝑚 𝑎𝑛𝑑 𝑠 =

1,2,⋯ , 𝑛}. 

Theorem 2.1.   

𝜒𝑛𝑣𝑡(𝑃𝑚 ⊳ 𝑃𝑛) = 5,  𝑚 ≥ 4 

Proof. Let {𝑣1, 𝑣2, ⋯ , 𝑣𝑚} is the vertex set of 𝑃𝑚 and {𝑤1, 𝑤2, ⋯ , 𝑤𝑛} is the vertex set of 𝑃𝑛.   

Define 𝜙: 𝑉(𝑃𝑚 ⊳ 𝑃𝑛) ∪ 𝐸(𝑃𝑚 ⊳ 𝑃𝑛) → {1,2,⋯ , 𝑡}, t ∈ ℤ+.  The vertex and edge set of 𝑃𝑚 ⊳

𝑃𝑛 is given by 

𝑉(𝑃𝑚 ⊳ 𝑃𝑛) = {𝑢𝑟,𝑠 | 𝑟 = 1,2,3,⋯ ,𝑚,   𝑠 = 1,2,3,⋯ , 𝑛}

𝐸(𝑃𝑚 ⊳ 𝑃𝑛) = {( ⋃
𝑚−1

𝑟=1
𝑢𝑟,1𝑢𝑟+1,1) ∪ ( ⋃

𝑚

𝑟=1
𝑢𝑟,𝑠𝑢𝑟,𝑠+1) ,     𝑠 = 1,2,3,⋯ , (𝑛 − 1)}

 

Clearly, 𝑃𝑚 ⊳ 𝑃𝑛 has 𝑚𝑛 vertices and 𝑚𝑛 − 1 edges. 

Now, the general graph 𝑃𝑚 ⊳ 𝑃𝑛 for 𝑚, 𝑛 ≥ 4. 

𝐹𝑜𝑟 1 ≤ 𝑟 ≤ 𝑚,   𝜙(𝑢𝑟,1) = {
1,  for 𝑟 ≡ 1 (𝑚𝑜𝑑 2)

2,  for 𝑟 ≡ 0 (𝑚𝑜𝑑 2)
 

𝐹𝑜𝑟 1 ≤ 𝑟 ≤ 𝑚 − 1,   𝜙(𝑢𝑟,1𝑢𝑟+1,1) = {
3, for 𝑟 ≡ 1 (𝑚𝑜𝑑 2)

4, 𝑓𝑜𝑟 𝑟 ≡ 0 (𝑚𝑜𝑑 2)
 𝑎𝑛𝑑 𝜙(𝑢𝑟,1,𝑢𝑟,2) = {5} 

𝐹𝑜𝑟 𝑟 ≡ 1 (𝑚𝑜𝑑 2),   𝜙(𝑢𝑟,𝑠) = {
1,  for 𝑠 ≡ 1 (𝑚𝑜𝑑 2)

2,  for 𝑠 ≡ 0 (𝑚𝑜𝑑 2)
 

𝐹𝑜𝑟 𝑠 ≡ 0 (𝑚𝑜𝑑 2),   𝜙(𝑢𝑟,𝑠) = {
1,  for 𝑠 ≡ 0 (𝑚𝑜𝑑 2)

2,  for 𝑠 ≡ 1 (𝑚𝑜𝑑 2)
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𝐹𝑜𝑟 2 ≤ 𝑠 ≤ 𝑛 − 1  𝑎𝑛𝑑  1 ≤ 𝑟 ≤ 𝑚,   𝜙(𝑢𝑟,𝑠𝑢𝑟,𝑠+1) = {
3,  for 𝑠 ≡ 0 (𝑚𝑜𝑑 2)

4,  for 𝑠 ≡ 1 (𝑚𝑜𝑑 2)
 

The color classes are 

𝐹𝑜𝑟 2 ≤ 𝑟 ≤ 𝑚 − 1,   𝐶𝜙(𝑢𝑟,1) = {
1,  for 𝑟 ≡ 0 (𝑚𝑜𝑑 2)

2,  for 𝑟 ≡ 1 (𝑚𝑜𝑑 2)
 

𝐶𝜙(𝑢1,1) = {1,3,5},   

𝐶𝜙(𝑢𝑚,1) = {
{2,3,5},  if 𝑚 ≡ 0 (𝑚𝑜𝑑 2)

{1,4,5},  if 𝑚 ≡ 1 (𝑚𝑜𝑑 2)
 

𝐶𝜙(𝑢𝑟,2) = {
{2,3,5},  for 𝑟 ≡ 0 (𝑚𝑜𝑑 2)

{1,3,5},  for 𝑟 ≡ 1 (𝑚𝑜𝑑 2)
  𝑎𝑛𝑑  𝐶𝜙(𝑢𝑟,3) = {

{1,3,4},   𝑓𝑜𝑟 𝑟 ≡ 0 (𝑚𝑜𝑑 2)

{2,3,4},   𝑓𝑜𝑟 𝑟 ≡ 1 (𝑚𝑜𝑑 2)
 

𝐹𝑜𝑟 3 ≤ 𝑟 ≤ 𝑚 𝑎𝑛𝑑 𝑠 ≡ 1 (𝑚𝑜𝑑 2)  𝐶𝜙(𝑢𝑟,𝑠) = {
{1,3,4},  for 𝑟 ≡ 1 (𝑚𝑜𝑑 2)

{2,3,4},  for 𝑟 ≡ 0 (𝑚𝑜𝑑 2)
 

𝐹𝑜𝑟 3 ≤ 𝑟 ≤ 𝑚 𝑎𝑛𝑑 𝑠 ≡ 0 (𝑚𝑜𝑑 2)  𝐶𝜙(𝑢𝑟,𝑠) = {
{2,3,4},  for 𝑟 ≡ 1 (𝑚𝑜𝑑 2)

{1,3,4},  for 𝑟 ≡ 0 (𝑚𝑜𝑑 2)
 

∴ The color classes of any two neighbour vertices are different. 

    𝜒𝑛𝑣𝑡(𝑃𝑚 ⊳ 𝑃𝑛) = 5,  for 𝑚 ≥ 4 

Hence the theorem.                                                                                                                         ◻               

Theorem 2.2.  The comb product 𝑃𝑚 ⊳ 𝐶𝑛 admits 𝐴𝑉𝐷𝑇𝐶 and 

𝜒𝑛𝑣𝑡(𝑃𝑚 ⊳ 𝐶𝑛) = 6,  𝑚 ≥ 3,  𝑛 ≥  4 

Proof. Let 𝑉(𝑃𝑚) = {𝑣1, 𝑣2, ⋯ , 𝑣𝑚}  and 𝑉(𝐶𝑛) = {𝑤1, 𝑤2, ⋯ , 𝑤𝑛}.   

Define 𝜙: 𝑉(𝑃𝑚 ⊳ 𝐶𝑛) ∪ 𝐸(𝑃𝑚 ⊳ 𝐶𝑛) → {1,2,⋯ , 𝑡}, t ∈ ℤ+.  

𝑉(𝑃𝑚 ⊳ 𝐶𝑛) = {𝑢𝑟,𝑠 | 𝑟 = 1,2,3,⋯ ,𝑚,   𝑠 = 1,2,3,⋯ , 𝑛}

𝐸(𝑃𝑚 ⊳ 𝐶𝑛) = {( ⋃
𝑚−1

𝑟=1
𝑢𝑟,1𝑢𝑟+1,1) ∪ ( ⋃

𝑚

𝑟=1
𝑢𝑟,𝑛𝑢𝑟,1) ( ⋃

𝑚

𝑟=1
𝑢𝑟,𝑠𝑢𝑟,𝑠+1) ,     𝑠 = 1,2,3,⋯ , (𝑛 − 1)}

 

Clearly, 𝑃𝑚 ⊳ 𝐶𝑛 has 𝑚𝑛 vertices and 𝑚 +𝑚𝑛 − 1 edges. 

Case I.  When 𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛 

Now, we consider the general graph 𝑃𝑚 ⊳ 𝐶𝑛 for 𝑚 ≥ 3 and 𝑛 ≥ 4 . 

𝐹𝑜𝑟 1 ≤ 𝑟 ≤ 𝑚,   𝜙(𝑢𝑟,1) = {
1,  for 𝑟 ≡ 1 (𝑚𝑜𝑑 2)

2,  for 𝑟 ≡ 0 (𝑚𝑜𝑑 2)
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𝐹𝑜𝑟 1 ≤ 𝑟 ≤ 𝑚 − 1,   𝜙(𝑢𝑟,1𝑢𝑟+1,1) = {
5, for 𝑟 ≡ 1 (𝑚𝑜𝑑 2)

6, 𝑓𝑜𝑟 𝑟 ≡ 0 (𝑚𝑜𝑑 2)
  

𝐹𝑜𝑟 1 ≤ 𝑠 ≤ 𝑛 − 1 𝑎𝑛𝑑 𝑓𝑜𝑟 1 ≤ 𝑟 ≤ 𝑚,   𝜙(𝑢𝑟,𝑠𝑢𝑟,𝑠+1) = {
3,  for 𝑠 ≡ 1 (𝑚𝑜𝑑 2)

4,  for 𝑠 ≡ 0 (𝑚𝑜𝑑 2)
 

𝐹𝑜𝑟 𝑟 ≡ 1 (𝑚𝑜𝑑 2),   𝑎𝑛𝑑 𝑓𝑜𝑟  1 ≤ 𝑠 ≤ 𝑛  𝜙(𝑢𝑟,𝑠) = {
1,  for 𝑠 ≡ 1 (𝑚𝑜𝑑 2)

2,  for 𝑠 ≡ 0 (𝑚𝑜𝑑 2)
 

𝐹𝑜𝑟 𝑟 ≡ 0 (𝑚𝑜𝑑 2),   𝑎𝑛𝑑 𝑓𝑜𝑟  1 ≤ 𝑠 ≤ 𝑛   𝜙(𝑢𝑟,𝑠) = {
1,  for 𝑠 ≡ 0 (𝑚𝑜𝑑 2)

2,  for 𝑠 ≡ 1 (𝑚𝑜𝑑 2)
 

𝐹𝑜𝑟 1 ≤ 𝑟 ≤ 𝑚,   𝜙(𝑢𝑟,𝑛𝑢𝑟,1) = 4 

∴ The color classes of any two neighbour vertices are different. 

    𝜒𝑛𝑣𝑡(𝑃𝑚 ⊳ 𝐶𝑛) = 6,  for 𝑚 ≥ 3 𝑎𝑛𝑑 𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛. 

Case (II),    When 𝑛 𝑖𝑠 𝑜𝑑𝑑 

Now, we consider the general graph 𝑃𝑚 ⊳ 𝐶𝑛. 

𝐹𝑜𝑟 1 ≤ 𝑟 ≤ 𝑚,   𝜙(𝑢𝑟,1) = {
1,  for 𝑟 ≡ 1 (𝑚𝑜𝑑 2)

2,  for 𝑟 ≡ 0 (𝑚𝑜𝑑 2)
 

𝐹𝑜𝑟 1 ≤ 𝑟 ≤ 𝑚 − 1,   𝜙(𝑢𝑟,1𝑢𝑟+1,1) = {
5, for 𝑟 ≡ 1 (𝑚𝑜𝑑 2)

6, 𝑓𝑜𝑟 𝑟 ≡ 0 (𝑚𝑜𝑑 2)
  

For 1 ≤ 𝑠 ≤ 𝑛 − 1 

 

𝐼𝑓 𝑟 𝑖𝑠 𝑜𝑑𝑑,   𝜙(𝑢𝑟,𝑠) = {
1, for 𝑠 ≡ 1 (𝑚𝑜𝑑 2)

2, 𝑓𝑜𝑟 𝑠 ≡ 0 (𝑚𝑜𝑑 2)
 𝑎𝑛𝑑   𝐼𝑓 𝑟 𝑖𝑠 𝑒𝑣𝑒𝑛,   𝜙(𝑢𝑟,𝑠) = {

1, for 𝑠 ≡ 0 (𝑚𝑜𝑑 2)

2, 𝑓𝑜𝑟 𝑠 ≡ 1 (𝑚𝑜𝑑 2)
  

For 1 ≤ 𝑟 ≤ 𝑚 

𝜙(𝑢𝑟,𝑛) = 4

𝜙(𝑢𝑟,𝑛−1𝑢𝑟,𝑛) = 1

𝜙(𝑢𝑟,𝑛𝑢𝑟,1) = 2

 

𝐹𝑜𝑟 1 ≤ 𝑠 ≤ 𝑛 − 2,   𝜙(𝑢1,𝑠𝑢1,𝑠+1) = {
3, for 𝑟 ≡ 1 (𝑚𝑜𝑑 2)

4, 𝑓𝑜𝑟 𝑟 ≡ 0 (𝑚𝑜𝑑 2)
  

It is clear that the color classes of any two neighbour vertices are distinct. 

    𝜒𝑛𝑣𝑡(𝑃𝑚 ⊳ 𝐶𝑛) = 6,  for 𝑚 ≥ 3 

Hence the theorem.                                                                                                                         ◻ 
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Theorem 2.3.  The comb product 𝐶𝑚 ⊳ 𝑃𝑛 admits 𝑁𝑉𝐷𝑇𝐶 and 

𝜒𝑛𝑣𝑡(𝐶𝑚 ⊳ 𝑃𝑛) = 5,  𝑚 ≥ 4 

Proof. Define a function 𝜙: 𝑉(𝐶𝑚 ⊳ 𝑃𝑛) ∪ 𝐸(𝐶𝑚 ⊳ 𝑃𝑛) → {1,2,⋯ , 𝑡}, t ∈ ℤ+. The vertex and 

edge set of 𝐶𝑚 ⊳ 𝑃𝑛 are 

𝑉(𝐶𝑚 ⊳ 𝑃𝑛) = {𝑢𝑟,𝑠 | 𝑟 = 1,2,3,⋯ ,𝑚,   𝑠 = 1,2,3,⋯ , 𝑛}

𝐸(𝐶𝑚 ⊳ 𝑃𝑛) = {( ⋃
𝑚−1

𝑟=1
𝑢𝑟,1𝑢𝑟+1,1) ∪ (𝑢𝑚,1𝑢1,1) ∪ ( ⋃

𝑚

𝑟=1
𝑢𝑟,𝑠𝑢𝑟,𝑠+1) ,     𝑠 = 1,2,3,⋯ , (𝑛 − 1)}

 

Clearly, 𝑃𝑚 ⊳ 𝐶𝑛 has 𝑚𝑛 vertices and 𝑚𝑛 +𝑚 − 1 edges. 

Now, the general graph 𝐶𝑚 ⊳ 𝑃𝑛 for 𝑚, 𝑛 ≥ 4. 

Case I.  When 𝑚 𝑖𝑠 𝑒𝑣𝑒𝑛 

For 1 ≤ 𝑟 ≤ 𝑚,   1 ≤ 𝑠 ≤ 𝑛 

𝐼𝑓 𝑟 𝑖𝑠 𝑜𝑑𝑑,   𝜙(𝑢𝑟,𝑠) = {
1, for 𝑠 ≡ 1 (𝑚𝑜𝑑 2)

2, 𝑓𝑜𝑟 𝑠 ≡ 0 (𝑚𝑜𝑑 2)
 𝑎𝑛𝑑   𝐼𝑓 𝑟 𝑖𝑠 𝑒𝑣𝑒𝑛,   𝜙(𝑢𝑟.𝑠) = {

1, for 𝑠 ≡ 0 (𝑚𝑜𝑑 2)

2, 𝑓𝑜𝑟 𝑠 ≡ 1 (𝑚𝑜𝑑 2)
  

𝐹𝑜𝑟 1 ≤ 𝑟 ≤ 𝑚,  𝜙(𝑢𝑟,1𝑢𝑟,2) = 5,    𝜙(𝑢𝑚,1𝑢1,1) = 4 

For 1 ≤ 𝑟 ≤ 𝑚 − 1 

𝜙(𝑢𝑟,1𝑢𝑟+1,1) = {
3, for 𝑟 ≡ 1 (𝑚𝑜𝑑 2)

4, 𝑓𝑜𝑟 𝑟 ≡ 0 (𝑚𝑜𝑑 2)
  

For 1 ≤ 𝑟 ≤ 𝑚  and   2 ≤ 𝑠 ≤ 𝑛 − 1 

𝜙(𝑢𝑟,𝑠𝑢𝑟,𝑠+1) = {
3, for 𝑠 ≡ 0 (𝑚𝑜𝑑 2)

4, 𝑓𝑜𝑟 𝑠 ≡ 1 (𝑚𝑜𝑑 2)
  

Case II.  When 𝑚 𝑖𝑠 𝑜𝑑𝑑 

For 1 ≤ 𝑟 ≤ 𝑚 − 1,   1 ≤ 𝑠 ≤ 𝑛 

𝐼𝑓 𝑟 𝑖𝑠 𝑜𝑑𝑑,   𝜙(𝑢𝑟,𝑠) = {
1, for 𝑠 ≡ 1 (𝑚𝑜𝑑 2)

2, 𝑓𝑜𝑟 𝑠 ≡ 0 (𝑚𝑜𝑑 2)
 𝑎𝑛𝑑   𝐼𝑓 𝑟 𝑖𝑠 𝑒𝑣𝑒𝑛,   𝜙(𝑢𝑟,𝑠) = {

1, for 𝑠 ≡ 0 (𝑚𝑜𝑑 2)

2, 𝑓𝑜𝑟 𝑠 ≡ 1 (𝑚𝑜𝑑 2)
  

𝐹𝑜𝑟 1 ≤ 𝑟 ≤ 𝑚 − 1,  𝜙(𝑢𝑟,1𝑢𝑟,2) = 5,    𝜙(𝑢𝑚,1) = 4,   

𝜙(𝑢𝑚−1,1𝑢𝑚,1) = 1,    𝜙(𝑢𝑚,1𝑢1,1) = 2. 

For 1 ≤ 𝑟 ≤ 𝑚 − 2 

𝜙(𝑢𝑟,1𝑢𝑟+1,1) = {
3, for 𝑟 ≡ 1 (𝑚𝑜𝑑 2)

4, 𝑓𝑜𝑟 𝑟 ≡ 0 (𝑚𝑜𝑑 2)
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For 1 ≤ 𝑟 ≤ 𝑚  and   2 ≤ 𝑠 ≤ 𝑛 − 1 

𝜙(𝑢𝑟,𝑠𝑢𝑟,𝑠+1) = {
3, for 𝑠 ≡ 0 (𝑚𝑜𝑑 2)

4, 𝑓𝑜𝑟 𝑠 ≡ 1 (𝑚𝑜𝑑 2)
  

Therefore, the color classes of any two neighbour vertices are different. 

    𝜒𝑛𝑣𝑡(𝐶𝑚 ⊳ 𝐶𝑛) = 5,  for 𝑚 ≥ 4 

Hence the theorem.                                                                                                                         ◻ 

3     NVDTC of skew and converse skew product of graphs 

In this section, the skew and converse skew product of path by path graph discussed. The skew product 

of two graphs 𝐺1 and 𝐺2 denoted by 𝐺1 ∆ 𝐺2 has the vertex set 𝑉(𝐺1) × 𝑉(𝐺2) and the edge set is 

𝐸(𝐺1 ∆ 𝐺2) = {
(𝑥1, 𝑦1), (𝑥2, 𝑦2)| 𝑥1 = 𝑥2 𝑎𝑛𝑑 𝑦1𝑦2 ∈ 𝐸(𝐺2)
(𝑜𝑟)𝑥1𝑥2  ∈ 𝐸(𝐺1) 𝑎𝑛𝑑 𝑦1𝑦2  ∈ 𝐸(𝐺2)

 

The converse skew product of two graphs 𝐺1 an 𝐺2 denoted by 𝐺1∇ 𝐺2 has the same vertex set of 𝐺1 ∆ 𝐺2 

and the edge set is 

𝐸(𝐺1 ∇ 𝐺2) = {
(𝑥1, 𝑦1), (𝑥2, 𝑦2)| 𝑦1 = 𝑦2 𝑎𝑛𝑑 𝑥1𝑥2 ∈ 𝐸(𝐺1)

(𝑜𝑟)𝑥1𝑥2  ∈ 𝐸(𝐺1) 𝑎𝑛𝑑 𝑦1𝑦2  ∈ 𝐸(𝐺2)
 

In this section, we propose 𝑃𝑚 ∆ 𝑃𝑛 and 𝑃𝑚 ∇ 𝑃𝑛 admits neighbour vertex distinguishing total coloring 

conjecture. 

Theorem 3.1. 

 𝜓𝑛𝑣𝑡(𝑃𝑚 ∆ 𝑃𝑛) = 8,         𝑚, 𝑛 ≥ 4 

Proof. Let 𝑉(𝑃𝑚) = {𝑥1, 𝑥2, ⋯ , 𝑥𝑚} and 𝑉(𝑃𝑛) = {𝑦1, 𝑦2, ⋯ , 𝑦𝑛} are the vertex set of the graph 𝑃𝑚  and 

𝑃𝑛 respectively. Define 𝜙 ∶ 𝑉 (𝑃𝑚 ∆ 𝑃𝑛) ∪  𝐸(𝑃𝑚 ∆ 𝑃𝑛) ⟶ {1,2,··· , 𝑡}, 𝑡 ∈ ℤ+. 

𝑉(𝑃𝑚 ∆ 𝑃𝑛) = {𝑣𝑟,𝑠 | 𝑟 = 1,2,3,⋯𝑚, 𝑠 = 1,2,3,⋯ , 𝑛} 

𝐸(𝑃𝑚 ∆ 𝑃𝑛) = {(⋃(𝑣𝑟,𝑠𝑣𝑟+1,𝑠+1) ∪ (𝑣𝑟+1,𝑠𝑣𝑟,𝑠+1)

𝑚−1

𝑟=1

) ∪ (⋃𝑣𝑟,𝑠𝑣𝑟,𝑠+1

𝑚

𝑟=1

) ,

𝑠 = 1,2,3,⋯ , (𝑛 − 1)} 

Clearly, 𝑃𝑚 ∆ 𝑃𝑛 has 𝑚𝑛 vertices and (𝑛 −  1)(𝑚 −  2) edges. 

For 1 ≤  𝑟 ≤  𝑚, 1 ≤  𝑠 ≤  𝑛, 

𝜙(𝑣𝑟,𝑠) = {
1    𝑠 ≡ 1(2)
2    𝑠 ≡ 0(2)
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For 1 ≤  𝑟 ≤  𝑚, 

𝜙(𝑣𝑟,𝑠𝑣𝑟,𝑠+1) = {
3    𝑠 ≡ 1(2)

4    𝑠 ≡ 0(2)
                𝑓𝑜𝑟 1 ≤ 𝑠 ≤ 𝑛 − 1  

For 1 ≤  𝑟 ≤  𝑚 −  1 𝑎𝑛𝑑 1 ≤  𝑠 ≤  𝑛 −  1 

𝜙(𝑣𝑟,𝑠𝑣𝑟+1,𝑠+1) = {
5    𝑟 ≡ 1(2)
6    𝑟 ≡ 0(2)

       𝑎𝑛𝑑      𝜙(𝑣𝑟+1,𝑠𝑣𝑟,𝑠+1) = {
7    𝑟 ≡ 1(2)
8    𝑟 ≡ 0(2)

 

The color classes of any two adjacency vertices are different. 

The color classes are, 

𝐶(𝑣1,1) = {1,3,5},                𝐶(𝑣1,𝑛) = {
(1,4,7),          𝑛 𝑖𝑠 𝑜𝑑𝑑
(2,3,7), 𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛

 

𝐹𝑜𝑟 2 ≤ 𝑠 ≤ 𝑛 − 1,              𝐶(𝑣1,𝑠) = {
(2,3,4,5,7),    𝑠 ≡ 0(2)

(1,3,4,5,7),    𝑠 ≡ 1(2)
 

𝐹𝑜𝑟 2 ≤ 𝑟 ≤ 𝑚 − 1,    𝑎𝑛𝑑    2 ≤ 𝑠 ≤ 𝑛 − 1, 𝐶(𝑣𝑟,𝑠) = {
(2)   𝑤ℎ𝑒𝑛 𝑠 ≡ 1(2)
(1)   𝑤ℎ𝑒𝑛 𝑠 ≡ 0(2)

 

𝐹𝑜𝑟 2 ≤ 𝑟 ≤ 𝑚 − 1, 

𝐶(𝑣𝑟,1) = {
(1,3,6,7),    𝑤ℎ𝑒𝑛 𝑟 ≡  0(2)

(1,3,5,8),    𝑤ℎ𝑒𝑛 𝑟 ≡ 1(2)
                𝑎𝑛𝑑        𝐶(𝑣𝑚,1) = {

(1,3,7),    𝑤ℎ𝑒𝑛  𝑚 𝑖𝑠 𝑒𝑣𝑒𝑛
(1,3,8),    𝑤ℎ𝑒𝑛 𝑚 𝑖𝑠 𝑜𝑑𝑑  

 

𝐼𝑓 𝑛 𝑖𝑠 𝑜𝑑𝑑, 𝑡ℎ𝑒𝑛 𝐶(𝑣𝑟,𝑛) = {
(1,4,5,8),    𝑟 ≡ 0(2)

(1,4,6,7),    𝑟 ≡ 1(2)
 

𝐹𝑜𝑟 2 ≤ 𝑟 ≤ 𝑚 − 1,𝑤ℎ𝑒𝑛 𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛 

𝐶(𝑣𝑟,𝑛) = {
(2,3,5,8),    𝑟 ≡ 0(2)

(2,3,6,7),    𝑟 ≡ 1(2)
 

𝐼𝑓 𝑛 𝑖𝑠 𝑜𝑑𝑑, 𝑡ℎ𝑒𝑛 𝐶(𝑣𝑚,𝑛) = {
(1,4,5),    𝑚 𝑖𝑠 𝑒𝑣𝑒𝑛
(1,4,6),    𝑚 𝑖𝑠 𝑜𝑑𝑑  

 

𝐼𝑓 𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛, 𝑡ℎ𝑒𝑛 𝐶(𝑣𝑚,𝑛) = {
(2,3,5),    𝑚 𝑖𝑠 𝑒𝑣𝑒𝑛
(2,3,6),    𝑚 𝑖𝑠 𝑜𝑑𝑑  

     𝐹𝑜𝑟 2 ≤ 𝑠 ≤ 𝑛 − 1 

 𝐶(𝑣𝑟,𝑛) =

{
 

 {
(2,3,4,5,7),    𝑠 ≡ 0(2)

(1,3,4,5,7),    𝑠 ≡ 1(2)
    𝑤ℎ𝑒𝑛 𝑚 𝑖𝑠 𝑒𝑣𝑒𝑛

{
(2,3,4,6,8),    𝑠 ≡ 0(2)
(1,3,4,6,8),    𝑠 ≡ 1(2)

    𝑤ℎ𝑒𝑛 𝑚 𝑖𝑠 𝑜𝑑𝑑  

 

It is clear that that the color classes of any to adjacent vertices are different. Hence 

𝜓𝑛𝑣𝑡(𝑃𝑚 ∆ 𝑃𝑛) = 8,         𝑚, 𝑛 ≥ 4 
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Theorem 3.2. 

𝜓𝑛𝑣𝑡(𝑃𝑚 ∇ 𝑃𝑛) =  8,     𝑚, 𝑛 ≥  4 

Proof. Let 𝑉(𝑃𝑚)  =  {𝑥1, 𝑥2,··· , 𝑥𝑚} and 𝑉(𝑃𝑛)  =  {𝑦1, 𝑦2,···, 𝑦𝑛} are the vertex set of the graph 𝑃𝑚 

and 𝑃𝑛  respectively. Define 𝜙: 𝑉 (𝑃𝑚 ∇ 𝑃𝑛)  ∪  𝐸(𝑃𝑚 ∇ 𝑃𝑛)  ⟶ {1,2,··· , 𝑡}, 𝑡 ∈ ℤ+. 

𝑉(𝑃𝑚 ∇ 𝑃𝑛) = {𝑣𝑟,𝑠 | 𝑟 = 1,2,3,⋯𝑚, 𝑠 = 1,2,3,⋯ , 𝑛} 

𝐸(𝑃𝑚 ∇ 𝑃𝑛) = {(⋃(𝑣𝑟,𝑠𝑣𝑟+1,𝑠+1) ∪ (𝑣𝑟+1,𝑠𝑣𝑟,𝑠+1)

𝑚−1

𝑠=1

) ∪ (⋃𝑣𝑟,𝑠𝑣𝑟+1,𝑠

𝑚

𝑠=1

) ,

𝑟 = 1,2,3,⋯ , (𝑚 − 1)} 

Clearly, 𝑃𝑚 ∇ 𝑃𝑛 has 𝑚𝑛 vertices and (𝑚 −  1)(𝑛 −  2) edges.  When 𝑚, 𝑛 ≥ 3, we have 

For 1 ≤  𝑟 ≤  𝑚, 1 ≤  𝑠 ≤  𝑛, then 

𝜙(𝑣𝑟,𝑠) = {
1    𝑟 ≡ 1(2)
2    𝑟 ≡ 0(2)

 

For 1 ≤  𝑟 ≤  𝑚 − 1, 1 ≤ 𝑠 ≤ 𝑛   

𝜙(𝑣𝑟,𝑠𝑣𝑟+1,𝑠) = {
3    𝑟 ≡ 1(2)

4    𝑟 ≡ 0(2)
 

For 1 ≤  𝑟 ≤  𝑚 −  1 𝑎𝑛𝑑 1 ≤  𝑠 ≤  𝑛 −  1 

𝜙(𝑣𝑟,𝑠𝑣𝑟+1,𝑠+1) = {
5    𝑠 ≡ 1(2)
6    𝑠 ≡ 0(2)

       𝑎𝑛𝑑      𝜙(𝑣𝑟+1,𝑠𝑣𝑟,𝑠+1) = {
7    𝑠 ≡ 1(2)
8    𝑠 ≡ 0(2)

 

The color classes of any two neighbouring vertices are different. 

The color classes are, 

𝐶(𝑣1,1) = {1,3,5},               𝑓𝑜𝑟 2 ≤ 𝑠 ≤ 𝑛 − 1,    𝐶(𝑣1,𝑠) = {
(1,3,6,7),    𝑠 ≡ 1(2)
(1,3,5,8),    𝑠 ≡ 0(2)

 

𝐹𝑜𝑟 2 ≤ 𝑟 ≤ 𝑚 − 1, 

𝐶(𝑣𝑟,1) = {
(2,3,4,5,7),    𝑤ℎ𝑒𝑛 𝑟 ≡  1(2)
(1,3,4,5,7),    𝑤ℎ𝑒𝑛 𝑟 ≡ 0(2)

                𝑎𝑛𝑑        𝐶(𝑣𝑚,1) = {
(2,3,7),    𝑤ℎ𝑒𝑛  𝑚 𝑖𝑠 𝑒𝑣𝑒𝑛
(1,4,7),    𝑤ℎ𝑒𝑛 𝑚 𝑖𝑠 𝑜𝑑𝑑  

 

𝐹𝑜𝑟 2 ≤ 𝑟 ≤ 𝑚 − 1,    𝑎𝑛𝑑    2 ≤ 𝑠 ≤ 𝑛 − 1, 𝐶(𝑣𝑟,𝑠) = {
2,3,4,5,6,7,8    𝑟 ≡ 0(2)
1,3,4,5,6,7,8    𝑟 ≡ 1(2)

 

𝐹𝑜𝑟 2 ≤ 𝑠 ≤ 𝑛 − 1, 
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𝐶(𝑣𝑚,𝑠) =

{
 

 {
(2,3,5,8),    𝑠 ≡ 0(2)
(2,3,6,7),    𝑠 ≡ 1(2)

    𝑤ℎ𝑒𝑛 𝑚 𝑖𝑠 𝑒𝑣𝑒𝑛

{
(1,4,5,8),    𝑠 ≡ 0(2)
(1,4,6,7),    𝑠 ≡ 1(2)

    𝑤ℎ𝑒𝑛 𝑚 𝑖𝑠 𝑜𝑑𝑑  

 

𝐹𝑜𝑟 2 ≤ 𝑟 ≤ 𝑚 − 1 

𝐶(𝑣𝑟,𝑛) =

{
 

 {
(2,3,4,5,7),    𝑟 ≡ 0(2)
(1,3,4,5,7),    𝑟 ≡ 1(2)

    𝑤ℎ𝑒𝑛 𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛

{
(2,3,4,6,8),    𝑟 ≡ 0(2)

(1,3,4,6,8),    𝑟 ≡ 1(2)
    𝑤ℎ𝑒𝑛 𝑛 𝑖𝑠 𝑜𝑑𝑑  

 

𝑊ℎ𝑒𝑛 𝑚 𝑖𝑠 𝑜𝑑𝑑,       𝐶(𝑣𝑚,𝑛) = {
(1,4,5),    𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛
(1,4,6),    𝑛 𝑖𝑠 𝑜𝑑𝑑  

 

𝑊ℎ𝑒𝑛 𝑚 𝑖𝑠 𝑒𝑣𝑒𝑛, 𝐶(𝑣𝑚,𝑛) = {
(2,3,5),    𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛
(2,3,6),    𝑛 𝑖𝑠 𝑜𝑑𝑑  

      

It is clear that all the neighbouring vertices have distinct color class. Hence 

𝜓𝑛𝑣𝑡(𝑃𝑚 ∇ 𝑃𝑛) = 8,         𝑚, 𝑛 ≥ 4 

 

Conclusion. 

In this paper, we have proved that the neighbouring vertex distinguishing total chromatic 

number of comb product of some graph path by path, path by cycle and cycle by path. Also, 

we proved that the skew and converse skew product of path by path graphs have the same 

neighbour vertex distinguishing total chromatic number. 
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