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Abstract
A simple graph G with N junctions admits fuzzy prime if there exists a junction labeling o :V (G) - (O,l]
such that for any two neighborhood junctions U and v, gcd(a(u),a(v)) =1. The labeling o is called

prime combination labeling if for each positive integer r such that 10" <n <10", the induced bridge

labeling y(xy) equals 1(:; [igrzgn or %(EFZEQJ according as O'(X)>O'(y) or

0(y)>c7(x) is injective onto the subset of (0,1] . In this paper, we study fuzzy prime and fuzzy

combination labeling of some families of connected graphs.
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1. Introduction

Graph theory has obvious utility in its applications in Science. However, when viewed apart from these
applications, it yields beautiful mathematical gems, and can be used as a lens to study other area of
Mathematics. We use graph theory and specifically graph labeling as a lens to study prime numbers. Fuzzy set is
a newly emerging mathematical framework to exemplify the phenomenon of uncertainty in real life tribulations.
This article is a further contribution on fuzzy labeling graphs.

Mathematically in graph hypothesis, a graph labeling is the allocation of labels (commonly represented
by an integer) to the graph junctions or graph bridges or both. There are several types of labeling. Among the
various types of labeling, our focus is on prime labeling.

Motivated by the concepts of fuzzy labeling and prime labeling in this paper, we define fuzzy prime
and fuzzy prime combination labeling. In this paper we investigate the fuzzy prime labeling behavior of several
graphs like grid, ladder, generalized Petersen graph and duplication of helm, Gear, Crown and star graphs. We
also show a few classes of graphs are fuzzy prime combination labeling graphs.

2. Review of literature

The notion of graph labeling was introduced by Rosa [26] in 1967. The various types of labeling are
investigated by Gallian [13]. In 1965, Zadeh [38] introduced the concept of fuzzy set as a generalization of crisp
sets. In 1975, Rosenfeld [27] discussed the concept of fuzzy graph whose basic idea was introduced by
Kauffman [20] in 1973. Yeh and Bang [37] have introduced various connectedness concepts in fuzzy graph.
Fuzzy end nodes and fuzzy cut nodes were studied by Bhattacharya [6], Bhutani et al. [7] and Bhutani and
Rosenfeld [8]. Bhutani and Rosenfeld [9] developed the strong arcs in fuzzy graph. The concept of fuzzy
labeling was introduced by Nagoor gani and Rajalaxmi [23] in 2012. For recent result of fuzzy labeling we refer
to Shanmugapriya et al. [31], Tabraiz et al. [34], Jayasimman et al. [16] and Sujatha et al. [32].
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The notion of the prime labeling originated with Entringer [12] and was introduced by Tout et al. [35]
in 1982. Acharya and Gill [2] defined grid graph structures and Sundaram et al. [33] discussed prime labeling
concept of planar grid graphs. Prime labeling concept of ladder graphs is discuss by Berliner et al. [5]. Prime
labeling concepts of prism graphs is given by Prajapati and Gajjar [24]. Meena and Naveen [22] have
investigated prime labeling for the duplication of the graphs. Watkins [36] defined generalized Petersen graphs
and Holton and Sheehan [15], Prajapati and Gajjar [25] and Sarazin et al. [29] developed the prime labeling of
generalized Petersen graphs. For recent result of fuzzy labeling we refer to Kansagara and Patel [19], Schroeder
[30], Donovan and Wiglesworth [11], Arockiamary and Vijayalakshmi [4] and Abughazaleb and Abughneim
[1].

Hedge and Shetty [14] have introduced combination labeling and they established many interesting properties
on them. Annadurai and Megala [3] combined the ideas of prime and combination labeling into prime
combination labeling in which they investigated several results on this concept.

3. Preliminaries

A graph is an ordered pair G = (V, E), where V s the set of all junctions of G, which is non

empty and E is the set of all bridges of G . Two junctions X, Y in agraph G are said to be neighborhood in

G if xy is an bridge of G . A simple graph is a graph without loops and multiple bridges. A graph is a

connected graph if, for each pair of junctions, there exists at least one single path which joins them. A finite
graph is a graph in which the junction set and the bridge set are finite sets. An undirected graph is graph, i.e., a
set of objects (called junctions or bridges) that are connected together, where all the bridges are bidirectional.
The degree of a junction U is the number of bridges incidentto U.

Next, we define a few important families of graphs. For N > 2, the path is a connected graph
consisting of two junctions with degree 1 and N — 2 junctions of degree 2 and is denoted by P.Forn > 3

, the cycle is a connected graph consisting of n junctions, each of degree 2 and is denoted by C, . Note that both

P, and C_ have n junctions while P, hasn— 1 bridges and C has n bridges.

The following definitions and theorems are used in our study.

Definition 3.1 (Rosa [26]) If the junctions or bridges or both of the graph are assigned valued subject to certain
conditions it is known as graph labeling.

Definition 3.2 (Rosenfeld [27]) Let V be a set. A fuzzy graph G =(o, i) is a pair of functions
o:V —>[01] and :V xV —[0,1], where forall u,veV ,wehave (u,v)<o(u)ac(v).

Definition 3.3 (Nagoor gani and Rajalaxmi [23]) Let G = (o, 1) be a fuzzy graph. If o and 4 are bijective

functions. Then G is said to be a fuzzy labeling graph if the membership value if bridges and junctions are
distinctand z(u,v)<o(u)Ao(v) forall u,veV .

Definition 3.4 (Tout et al. [35]) Let G = (V, E) be a graph. If f:V —>{1, 2|V|} is an one-to-one
correspondence function. Then f is said to be a prime labeling if for each e=uUve E , we have

gcd( f (u), f (V)) =1. The graph that admits a prime labeling is called a prime graph.

Definition 3.5 (Annadurai and Megala [3]) Let G = (V,E) be a graph with P junctions and § bridges. An

one-to-one correspondence f :V (G) - {l, 2,..., p} is said to be a prime combination labeling if
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Q) for each pair of neighborhood junctions U and V, ng( f (u), f (V)) =1, and
N f(u f(v
(i) the induced bridge labeling P; (uv) equals ( ) or ( ) according as f(u)> f(v) or
f(v))  (f(u)
f (V) > f (u) is injective onto the set of natural numbers.
A graph with a prime combination labeling is called a prime combination graph.
Definition 3.6 Let G, = (Vl, El) and G, = (Vz, EZ) be any two graphs. The Cartesian product G, xG, of

graphs G, and G, is a graph such that

0] The junction set of G, x G, is the Cartesian product V (Gl)xV (Gz) ; and
(i) The junctions (ul,vl) and (uz,vz) are neighborhood in G, x G, if and only if either
€)] U, =U, and V, is neighborhood to V, in G, , or

(b) V, =V, and U, is neighborhood to U, in G;.

Definition 3.7 (Acharya and Gill [2]) The Cartesian product P, x P, where m <n, is called a grid graph,

where P is a path of order Nn.

Theorem 3.1 (Sundaram et al. [33]) The planer grid P, x P, has a prime labeling.
Theorem 3.2 (Kanetkar [18]) Let N is an odd prime. Then,

(i) If n=50orn=3or 9 (mod 10) and (n+ 1)*+ 1 is a prime, then P,

n+1

x P

.1 has a prime

labeling.
(i) If N isnotcongruentto 2 (mod 7),then P xP

).+ has a prime labeling.

Definition 3.8 The Cartesian product P, x P, is called a ladder, where P, is the path on N junctions.
Theorem 3.3 (Berliner et al. [5]) The ladder graphs are prime.

Definition 3.9 A cycle of order N is denoted by C . The Cartesian product C_ x P, is called prism graph.
Theorem 3.4 (Prajapati and Gajjar [24]) The prism graphs are prime.

Definition 3.10 The set of junctions neighborhood to a junction U of G is denoted by N (u) . Duplication of
a junction Vv, of a graph G produces a new graphs G, by adding a junction v', with N (v',)=N(v,).
The graph obtained by duplicating all the junctions of a graph G is called duplication of G .

Definition 3.11 (Watkins [36]) Let N>3 and ke Z, — {O} be the integers. The generalized Petersen graph
P(n,k) is defined on the set {v;,u;:ieZ } of 2n junctions, with the neighborhoods given by
V.V, ., ViU, uu., for 1<i<n, subscripts modulo N.

4, Fuzzy prime labeling of graphs
Now, we define fuzzy prime labeling as follows:
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Definition 4.1. Let G be a graph with n junctions. Let o :V (G) - (0,1] be an injective map. Then o is

called a fuzzy prime labeling of G if ng(O'(X),O'(y)) =1 where X and Yy are neighborhood. A graph

with fuzzy prime labeling is called a fuzzy prime graph.
Fuzzy prime labeling of grid, ladder and prism graphs are proved as follows.

Theorem 4.1. Let N be an odd prime. Then the grid P, x P, ,, has a fuzzy prime labeling for N % 2(m0d 7)

Proof. Let N be an odd prime such that N # 2(mod 7) . Let U;; be the junctions of the grid B, x P, , where

n+2

1<i<n+2 and 1< j<n. Let Uy, ., , 1<i<n+2,1<j<n-1 and Y, ;, 1<i<n+l,

1< j<n be the bridges of the grid p, x p, ..

For r=12,3,... suich that 10" <n<10" , we define the junction membership function
o:V(P,xP,,)—(0,1] as O'(Ull):<n2+2n)10_r o o(uy)=10"((j-1)n+i)
(I<is<n-12<j<n-1)  o(u,)=10"ni (i=35..,n-2) , o(u,)=10"i
(i=24,6,..n-1), o(u;)=10"j (j=135,..n=2), o(u;)=10"nj (j=2,4,6,.,n-1),

o(u,)=10"((n-1)n+i)  (I<i<nizn-2izn) | o(unn)=10’r(n2—2)
0 (Uyon) =107 (U )=(n*+j)107  (1<j<n) |, o(Uy,;)=(n*+n+j)10"

n-2,n n+2,j

(2<i<n-1), 6(Uy,)=n10" and & (U, ) =(n*+n+j)10",

Then o is an injection. Let € = XY be an arbitrary bridge. We claim that the above junction labeling
gives a fuzzy prime labeling.

Case 1: If @ =UyU; ,,;, then, for 1<i<n-land 2< j<n-2,

ged (o (g ). (U 1)) = ged (i -2)n+i)207,((j+1-1)n+i)10™)
=ged((jn—n+i)10™,(jn+i)10™")
= ged(jn—n+i, jn+i)
Now, we claim that gcd( jn—n-+i, jn+i)=1. Suppose that d|(jn—n-+i) and d|(jn+i). Then
d‘((jn—n+i)—(jn+i)) = d|-n = d|n = d =1 or n (Since N is a prime). If d =n, then
n|(jn+i). since njn, n|jn. Now, n|(jn+i) and n|jn = n|(jn+i)— jn = nfi 5 ie., =< since

i<n.Thus, d =1. Therefore, gcd (O'(Uij),a(uivm)) =1.

Case 2: If € =U;U;,, ;, then
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ged (o (g ), (U ;) = ged (i -2)n+i)207,((j~1)n+i+1)10™)
=ged((jn—n+i)10™,(jn—n+i+1)10")
= ged(jn—n+i, jn—n+i+1)
=1

for 1<i<n—-2and 2< j<n-1 (Since jn—n+i and jn—n-+i+1 are consecutive integer).
Case 3: If €=U,,U, . Suppose that d‘(n2+2n) and d[2. Then d =1 or 2. Now, d|2 = d[2n =
d‘(n2+2n—2n) = d‘n2 DI d=2, Z‘n2 which is not possible. Thus, d =1 . Therefore,

ged ((n2 +2n)10°",2 ><10‘r) =1. Hence gcd (o (uy, ), 0 (uy))=1.

Case 4: If @ =U,U,,. If d‘(n2+2n) and d|(n+1), then dn(n+1) = d‘{(n2+2n)—n(n +1)} =
d‘(n2+2n—n2—n) =d |n. If d=n, then n|(n +1) which is impossible. Thus, d =1. Therefore,
ged(n®+2n,n+1)=1= gcd((n2+2n)10”,(n +1)10”):1:> ged (o (uy, ), o (uy,)) =1.

Case 5. If e=uu,, ( i=23.,n-1 ) then we need to verity that

ged (O-(uil)’o-(ui—l,l)) =gcd (O-(uil) , O-(ui+1,l)) =gcd (O-(un—l,l)' O-(unl)) =1 for
i=3,5,...,n—2. Now, we have,

) 1t d|niand d|(i-1), then d|n(i-1) = d|(ni-n(i-1)) = d|n.1f d =n, n|(i-1) which
cannot happen, since i—l<n . Thus, d=1 . .. gcd(nilO’r,(i—l)lo")zl . Hence,
gcd (O-(uil)’o-(ui—l,l))zl'

()  1fd|ni and d|(i+1), then d|n(i+1) = d‘(n(i+1)—ni) = d|n.if d=n, n|(i+1) which
again is not possible. That is, d=1 . .. ng(ﬂilO’r,(i+l)10’r):1 . Hence,
gcd (O-(uil)’o-(uiﬂ,l)):l'

(i) Clearly, gcd((n—1)10",10"")=1. Thus, QCd(G(Unfl,l),G(Unl))ﬂ-

Case 6: If e=U,U;,, then we need to verity that gcd (a(uil),a(uiz))=1 for 1 =2,3,...,n. Now, we
have,

(i) Suppose  d|ni and d|(n+i) , then d|n(n+i) = d‘(n2+ni—ni) = d‘n2 =
d=n’ornorl.ifd=n’, n’jni = nli, not possible. If d =n, njn+i = n|(n+i-n) (ince
n|n) = n|i , ie, =< (Since i<n ). Thus, d=1 = gcd(nilO’r,(n+i)10’r):1, for

i=35,...n-2 = ged(o(uy),o(u,))=1,fori=35,..,n-2.

139



Tuijin Jishu/Journal of Propulsion Technology
ISSN: 1001-4055
Vol. 45 No. 4 (2024)

(ii) If d|i and d|(i+1), then d|(n+i—i) = d|n. 1f d =n, nli (which is not possible). That is,
d=1= ged(i10",(n+i)10")=1, for i=2,4,.,n-1 = ged(o(uy),o(u,))=1, for
i=24,.,n-1.

(i) Clearly, gcd(2nlO_r,10_r):1. Hence, gcd (o (uy, ). o (u,,))=1.

Case 7: If e=u.u ) . We now show that

nithn(i-
ged (O‘(Uni ), O-(un(i—l))) = gcd (a(uni),a<un(i+l))) = gcd (a(un(n_l)),a(um)) =1 for
i=3,5,...,n—2. That is to verify that

()  ged(i10",n(i-1)10")=1.

(i)  ged(i107,n(i+1)10")=1.

(iii) gcd(n(n—1)1o-f,(n2—2)10-')=1.

In this cases, if d is a common factor, then d |n. But d =n yields n|i (First two cases) and n|n —2 (Last

case), which should not happen.

Case8:1f e=U, U, then for i=12,.,n-1i#n-2,
ged (o (U 4),0 (U, )) = ged (((N—2)n+i)10™",(n-1)n+i)10™")
:gcd((n2—2n+| 10 n —n+|)10 )

= ged(n®-2n+i,n —n+|)

Let d‘(n2—2n+i) and d‘(nz—n+i). Then d‘(n2—2n+i—n2+n—i) = dl-n = dnp =
d =1 or n(Since N is a prime). If d =n, then n‘(n2—2n+i) = n‘(n2—2n+i—n2+2n):> n|i ,
not possible. Thus, d =1. Therefore, gcd (o-(ui’nfl),a(um)) =1.

Case9:Ife=u then

n-2,n 1 n-2,n’

gcd (o (Uy 04),0(Uy ) = gcd (((N=1-1)n+n—-2)10",n’107")

(((
((n-2)n+n-2)10",n*10")
:gcd(n2 2n+n-— 210r n’10 )
:gcd((nz—n 2)10",n*10" )

=ged(n® —n-2,n%)
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Let d‘(nz—n—Z) and d‘n2 . Then d =1 or norn? (Since N is a prime). If d =n?, we have
nz‘(nz—n—Z) - nz‘(nz—n—Z—nz) = n|-n—-2 = n|n+2 which happens only when
n=0orlor2.1fd=n, n‘(nz—n—Z) = n‘(nz—n—Z—n2+n) = n|-2 = nf2, which is
impossibility. Thus, d =1. Hence, gcd (o(Uy 50 1),0(Uy 50)) =1

Case 10: If e=uU u then

n+1,j 7 n+, j+1°
ged (0(un+l,j ) (U j0)) = ged ((n2 +j)107,(n° + | +1)10")
= ged(n?+ j,n® + j+1)
=1
for 1< j<n—1 (Since n®+ j and N+ j+1 are consecutive integer).

Case11:If e=uU u then

n+2,j-n+2,j+11?

ged (a(uMj ),a(uwz’jﬂ)) = ged ((n2 +n+j)107,(n*+n+ j +1)10‘r)

= ged(n*+n+j,n’+n+j+1)

=1
for 1< j<n-—1 (Since N +n+ j and n*+n+ j+1 are consecutive integer).
Case 12: If @ =U,,,,U,,,,, then we have to verify that ng(nlO’r,(n2 +n+ 2)10”) =1. Suppose that
d|n and d‘(n2+n+2) . Then djn = d=1orn. Now, if d=n, we get n‘(n2+n+2) =
n‘(nz +n+2—n2—n) = n|2 which is not possible. Thus, d =1 . Therefore,

ged (nlO’r,(n2 +Nn+ 2)10") =1. Hence gcd (o(Uy 1), (Uy,,)) =1

Case 13: If €=U,,,,,U,,,,, then we have to prove that ng((n2 +2n —1)10’r,(n2 +n +1)10’r) =1

Let d ‘(n2 +2n —1) and d

(n2+n+1), then d‘(n2+2n—1—n2—n—1) =dn-2=dn(n-2)
= d‘(nZ—Zn) = d‘(nz—Zn—nz—n—l) = d|(-3n-1) = d|(3n+1) . But d|(n-2) =
d[3(n-2) = d|(3n-6) . But d|(3n+1) and d|(3n-6) = d|(3n+1-3n+6) = d[7 =
d=1or7.1fd=7, then 7|(n—2) which should not happen because N =2(mod 7). .. d=1.

Therefore, gcd ((n2 +2n-1)10",(n* +n +1)10") =1.Hence gcd (o(Uy,pn 1), (Uyizn)) =1.
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Case 14: If e=U_, .U .. , then we claim that gcd((n2+j)lO‘“,(n2+n+j)10‘r):1,

n+l, 7 n+2,j

j=2,3..,n—1. Now, d‘(n2+ j) and d‘(n2 +N+ j). Then d‘((n2+n+ j)-(n*+ j)):> djn =

d =1 or n. Suppose d =n, then n‘(nz + j) = n‘((nz + j)—nz) = n|j which cannot happen, since
j<n.
~d=

= gcd( n’+j)107",(n*+n+ j)10° ) 1,j=2,3..,n-1

= ged (o (U,4;) n+2’j))=1,j:2,3,...,n—1.

Case 15: If €=U, ,U,,,,, then we have to show that ng((n2+1)10_r,nlO"r)=l. If d|n and

n+1,1

d‘(n2+1) , we have d|n2 and d‘(n2+1) = d‘(n2+1—n2) = d|1 = d =1. Therefore,
gcd ((n2 +1)10"r, n10") =1.Hence gcd (a(unﬂvl),a(umzyl)) =1.

Case 16: If e=u u , then

n+1,n~"n+2,n

gcd (o (U1 ), Uy, )) = gcd ((n2 +n)10™",(n* +n +1)10"): ged (n?+n,n?+n+1)=1.
That is, there are odd primes N for which N £ 2(mod 7), yet the prescribed labeling is successful.

Theorem 4.2. Let N be an odd prime, N =3 or 9(mod 10) and (n +1)2 +1 also a prime, then the grid
P.xP

)1 X P, has a fuzzy prime labeling.

2
Proof. Let N be an odd prime such that N =3 or 9(mod 10) and (n +1) +1 are prime, Let U; be the

where 1<i<n+1 and 0<j<n . Let uu .,, 1<i<n+1,

junctions of the grid P, xP Ui 1

n+1

0<j<n-land u.u 1<i<n,0< j<n be the bridges of the grid P, X P,.; -

Ui

For r=12,3,... such that 10"'<n<10" , we define the vertex membership function
o:V (P, xP.)—(0]] by o(u;)=((j-)n+i)10" (1<i<n-12<j<n-1)
o(uy)=nil0" (i=135..,n-2) . o(u,)=i10" (i=24...n-1) , o(u;)=jl0"
(j=185..n-2) . o(uy)=nj10" (j=24..n-1) , o(u,)=((n-Yn+i)10"
(I<i<nji#n-2i%n) , o(u,)=10" , o(um):(n2—2)10‘r . o(u,,,)=n"10"
& (Ug) =((n+1)° +1-1)107 (i =1,2,..,n+1), and & (Uy.y,; ) =(n*+ )20 (j=1,2....n).

Then this map o is an injective map. In order to show that fuzzy prime labeling is fuzzy prime, we
must verify that the junction labels of the newly added column 0 by U;, where 1<i<n+1 and the junctions
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of the row N+1 by Uyt where 1< j < n arising from the endpoints of the new bridges are mutually prime.
Let € = XY be an arbitrary bridge.

Case 1: If e=uu, , i=13..,n-2 . Let d‘((n+1)2+1—i) and d|ni , this implies that
d‘(n2+2n+2—i) and d |ni . Suppose that n‘(n2+2n+2—i), then n‘(n2+2n+2—i—n2—2n)
=> n|(2-1) which is not possible. That is, d =n. Now, d|ni = d i = d|(i+n”+2n+2-i) =
d‘(n2+2n+2) = d‘((n +1)2+1) =d=1or(n+1)"+1.1fd =(n+1)"+1. then (n+1)" +1]i
which is impossible, since i< (n+1)"+1. Thus, d =1and ged (o (u,), o (u,))=1,i=13..,n-2.

- d =1.Thus, gcd(((n +1)2+1—i)10_r,ni10"r)=1. Hence ged (o (uy, ), o (u;,)) =1.
Case 2: If e=uUg U, and let d‘((n+1)2+1—i) and d|i , then d‘(((n+1)2+l—i)+i) =
d‘((n +1)2 +1) =d=1or (n +1)2 +1. Suppose that d =(n +1)2+1. Then (n +1)2+1|i which

cannot happen, since i<(n+l)2+1. . d=1. Thus, gcd(((n+l)2+1—i)10*r,i10"):1,
i=24,..,n—-1.Henceged (o (Uyp),o(uy))=1,i=24,..,n-1.
Case 3: If €=U, o, , then

ged (G(un,o)’o-(un,l)) = ged (((n +1)° +1—n)10’r,10*'): ged ((n +1)" +1- n,l) =1.

Case 4: If e=uU, Uy, - Let d‘((n+1)2+1—(n+1)) and d‘(n2+1) , then we have

d (((n+1)2+1—(n+1))—(n2+1)) = d‘(((n+l)2—n)—(n2+l)) =

d((n2+2n+1—n)—n2—1) = d‘(n2+n+l—n2—1) = dn = djn”. But d‘(n2+1) =

d ((n2+1)—n2) = d[l = d =1. Therefore, gcd(((n +1)" +1—(n +1))10‘r,(n2+1)10‘r)=1.
Hence gcd (o-(unﬂ’o),o-(unﬂ’l)) =1.

Case5:Ife=U, U, ;, j=13,..,n—2. Assume that d ‘(n2 + J) and d|j, then d

((n*+3)-1)=
d ‘nz =d=n’ornorl. If d ‘nz, then n2|j , which is not possible, since j<n’. If d =n, we get

n|j , which is an impossibility (Since j<n). Thus, d =1. Therefore, gcd((nz + j)lO’r, le’r) =1=

ged (G(UMJ),G(UM)) =1,j=13,..,n-2.
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Case 6: If €=U, U ,, J=2,4,..,n—1. Assume that d ‘(n2 + J) and d|nj, then d ‘n(nz + j) =

d‘(n3+nj):> d

((n"‘+nj)—nj):>d‘n3:>d:n3 ornornorl.Ifd=norn?, then we get
n|j, and if d =n®, then we get n2|j. But j<n®and j<n. Therefore d =n°n?&n. Thus, d =1.

Therefore, gcd((n2 + j)lO‘r,njlo‘r) =1= gcd (a(uml’j),o-(un’j )) =1,j=2,4,..,n-1.

Case 7: If e=U,, U, . If d‘(n2 +n) and d‘(nz—z), then d‘((n2+n)—n2+2) = d|(n+2) =
djn(n+2) = d|(n°+2n) = d‘((n2+2n)—(n2—2)) = d|(2n+2) . But d|(n+2) =
d2(n+2) = d|(2n+4) = d‘((2n+4)—(2n+2)) = d2 > d‘(Z—(n+2)) = d|-n =
d|n . If d=n , then n|2 , an impossibility (Since 2<n ). Thus, d =1 . Therefore,

ged((n®+n)10,(n* =2)10") =1 = ged (o(u,,y, ). o (U, )) =1

Case 8: If € =U,U,,, o, thenfor 1<i<n,

ged (0 (), (uys0)) = ged (((n+1)" +1-1)107,((n+2)" +1-(i+1) 207 )
= gcd ((n2 +2n+1+1-i)10",(n*+2n +1+1—i—1)10")
= ged ((n2 +2n+2-i)10",(n* +2n +1—i)10")
=ged(n® +2n+2-i,n* +2n+1-i)

=1(Since n> +2n+2—i and n*+2n+1—i are consecutive integer).

Case 9: If e=u u , then

n+1, jYn+, j+1
ged (O-(un+l,j)'o-(un+l,j+l)) = gcd ((n2 +j)107,(n? + +1)10’r): ged (n*+j,n®+ j+1)=1
for 1<i<n-—1 (Since N+ j and n”+ j+1 are consecutive integer).
That is, there are odd primes N such that N =3 or 9(mod 10) for which (n +1)2 +1 is a prime, yet the
prescribed labeling is successful.
Theorem 4.3.1f N+1 is a prime, then the ladder P, x P, has a fuzzy prime labeling.
Proof. Let N+1 be a prime. Let P, x P, be the ladder with junctions V,,V,,...,V. and U,,U,,...,U. , where

v, is neighborhood to U, for 1<i<n, v, is neighborhood to Vv, , for L<1<n-1, and u; is neighborhood
to U, for 1<i<n-1.
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For r=12,3,... such that 10""<n<10" , we define the junction membership function
o:V(P,xP,)—>(01] by o(v;)=i10" (1<i<n), o(u)=(n+i+1)10" (1<i<n-1) and
o(u,)=(n+1)10",

Then o is an injection. Let €=Xy be an arbitrary bridge of P,xP, . To prove

gcd (G(X) : 0'( y)) =1 we have the following cases:

Case 1: If =V, , then gcd (o(V;),o(V;,))=gcd (1107, (i+1)10™" ) = ged (i,i+1) = 1, for
1<i<n-1 (Since i and i+1 are consecutive integer).

Case 2: If e=uu,, : then
ged (o(u), o (u,,)) =ged ((n+i+1)107,(n+i+2)10" )= ged (n+i+Ln+i+2) =1, for
1<i<n-2 (Since n+i+1and Nn+1i+2 are consecutive integer).

Case 3: If e=u, U, , then if d[2n and d|(n+1). This implies that d [2(n+1) = d|(2n+2) =
d |(2n+2—2n) =d |2 =d=1or 2.1fd =2, then 2|(n +1) which is impossible because N +1 is

a prime. That is, gcd (2n10‘r,(n +1)10_r) = 1. Hence, ged (o (u,,).0(u,))=1.

Case 4: If e=vu,, 1<i<n—L1.1f d|i and d|((n+1)-+i). This implies that d‘(((n +1)+i)-i) =

d |(n +1) . Since n+1 is a prime, N+1 does not divide i . That is, gcd(n+1i) =1 =
ged (10, (n+1+i)107") = 1. Hence, ged (o(v;),o(u;)) =1.

Case 4: If e =V, U, . Then gcd (o' (V,),o(u,)) =ged (n10",(n+1)10") = ged (n,n+1) = 1.
Hence the ladder P, x P, has a fuzzy prime labeling if n+1 is a prime.

Theorem 4.4. If p >3 is a prime number, then the prism graph Cp_l x P, is fuzzy prime labeling.

Proof. Let p=>3 be a prime number. Let V,;,Vy,,Vys,...,Vy o, be the junctions of one cycle and

V511 V50, Vo3,--s V5 1 De the junctions of other cycle and a junction V,; is joined with V,; by an bridge for

i=12,..,p-1.

For r=12,3,... such that 10" <n<10" , we define the junction membership function
o:V(C,,xP,)—(01] by o(v;)=j10" (i=1j=12,.,p-1) ,
o(vy)=(p+J)10" (i=2,j=12..,p-2) and o(v;)=pl0" (i=2, j=p-1).

Then clearly o is an injection. Let € be an any bridge of Cp—l xP,. To claim o is a fuzzy prime

labeling of C ; x P, we have the following cases:
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Case 1 If &=V then

1( j+1)
gcd(a(vlj),a(v i) )) ged (j10,(j+1)107")=ged (j,j+1) = 1,for 1< j<p-2 (Since
j and j+1 are consecutive integer).

Case 2: If €=V, Vy(ju , then

gcd(a(vzj),a(v - )) ged ((p+ )10, (p+j+1)10")=ged (p+ j,p+j+1) = 1, for
1< j<p-3 (Since p+ j and p+ j+1 are consecutive integer).

Case 3: If € =VypyVus , then

ged (o(vyy ) (vis)) = ged ((p~1)207,207) = ged (p-11) = 1.

Case 4: If €=V, V(o) then
ng( (Vo z>)"’("z<p—1))): ged ((2p~2)107",p10™") =ged (2(p-1), p) = L.

Case 5: If €=V, 1V : then
gcd( ( 2p- 1)) a(v21))= ged (p10,(p+1)10") =ged (p, p+1) = 1.

Case 6: If e =V,Vy; , then for 1<j<p-2

ged (o(v;). (v, )) = god (1107, (p+ )10 ) =ged (J, p+ ) =ged (j. p) =

Case 7: If e=v then

1(p-1)V2(p-1)
gcd (o(Vip1 ) (Vagp s )) = 900 ((P=2)107, pLO ) = ged (p~L p) =
Thus, Cp_l x P, admits a fuzzy prime labeling. Hence the theorem.

Next we have a fuzzy prime labeling of generalized Petersen graphs are proved as follows.

Theorem 4.5. If 2' +1 isa prime for t > 2, then generalized Petersen graph P (n, k) is a fuzzy prime graph,

where N=2"+2 and k =2"1 +1.

Proof. Let v,,V,,...,V, be the outer junctions and U,,U,,...,U, be the inner junctions of P(n,k). For

r=12,3,.. such that 10"'<n<10" , we define the junction membership function
V(P(nk))—>(01] by o(v)=i0"(1<i<2'+2) , o(u)=(2"+4)10"

a(uM) =(2'+4i-2)10" (i=23..,27 +1), o(u,.,, )= (2" +4i)10" (i=123,.,2"%),

)=(2'+4i+1)10" (i=123,..,2"%) and

( a)=(2+4i-1)107 (i=123,.., 272 +1).
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Then clearly o is an injective function. Let € be an arbitrary bridge of P(n,k). To prove O is a

fuzzy prime labeling of P (n,k) we have the following cases:

Case 1: If e=V.Vv.

i+l

then ged (o(V;),0(V,.,)) = ged (1107, (i+1)10") = ged (i,i+1) = 1, for

i=12,...,2" +1 (Since i and i+1 are consecutive integer).

Case2: If e =V, then gcd (o(v,),0(v,.,,)) = ged (107,(2' +2)10) = ged (1,2 +2) = 1.
Case 3: If e =v,u, , then ged (o (v, ),o(u,)) = ged (10*,(2t+1 +4)10-') =ged (1,2 +4) =1.

Case 4: If €=V, Uy, : then

Y
ged (o(V,,), 0 (Uy ) = ged ((2i 0", (20 +4i-2)10° ) =ged (2i-1,2'+4i-2)=ged (2i-1,2") =1
for i=2,3,...,2"2+1 (Since 2i —1 is not multiple of 2).

. _ - t-2
Case5:If €=V, . U, ., then, for I = 2,3,..2°,

ng (G(V2H+2i+1)’O-(u2171+2i+1)) - ng ((2t71 +2i +1)107r’(2t + 4|)107r) - ng (2til +2i +l’ 2t + 4I)
=ged (271 +2i+1,-1) =1.

Case 6: If e =V,U,; : then,
ged (o(v,), 0 (Uy ) = god (21107, (2 +4i +1)10™" ) = ged (21,2 +4i +1) = ged (2i,2' +1) =1
,as 2t +1 is prime, for i =1,2,...,2"% (Since 2i is not prime).

then, for i =1,2,...,.2" 2 +1,

Case7:1fe =V u

2t L2i ot i

ged (0(Vyer ), (Uyr ) = gcd (27 +20)207, (2 +4i ~1)10°" ) = ged (2 + 20, 2" +4i -1)
= ged (2 +2i,-1) =1.

Case 8: If e=Uu,. ,, then gcd (o(u), (U, ))=ged (27 +4,2'+3) = ged (-2,2' +3) =1
(Since 2' + 3 is odd).
Case 9: If e=Uy U, . , then

ged (0 (Uy 1), o (U ;) = gcd (2 +4i =2)107,(2' +4i ~1)10™") = ged (2' +4i - 2,2 +4i -1) =1

fori=2,3,...,2"% +1 (Since 2' +4i —2 and 2' + 4i —1 are consecutive integer).
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Case 10: If €=Uyl ., , then
ged (o (Uyy ), 0 (Uyr, ., )) = 00d (2 +4i +1)107, (2 +4i)107" ) = ged (2' +4i +1,2' +4i) =1
for i =1,2,...,2"2 (Since 2' +4i+1 and 2' + 4i are consecutive integer).

Thus, P (n, k) admits a fuzzy prime labeling. Hence the theorem.

Theorem 4.6. If 8n+5 and 8n+9 are prime, then generalized Petersen graph P (4n +2,2n +1) is a fuzzy
prime graph.

Proof. Let v,,V,,V,,...,V,,,, be the outer junctions and u,,U,,Us,...,U,, ., be the inner junctions of

P(4n+2,2n+1).

For r=12,3,... such that 10"'<n<10" , we define the junction membership function

o:V(P(4n+2,2n+1))— (0,1] by o (V,.,)=(4i+1)107" (0<i<n)

o(V,,,)=(8n—4i+4)10" (0<i<n-1) 0 (Vypioiin) = (4i+4)107 (0<i<n)

0(Vypois) =(8n—4i+1)10" (0<i<n-1) o(Uy,)=(4i+2)10" (0<i<n)

o(Uy,,)=(8n—4i+3)10" (0<i<n-1) , o (Uy,,)=(4i+3)107" (0<i<n) and
(

0 (Uyp,zi,3) =(8n—4i+2)107" (0<i<n-1).

Then o is an injection. Let € = XY be an arbitrary bridge of P(4n +2,2n +1) . We now show that
the labeling given above is fuzzy prime for the generalized Petersen graph P(4n +2,2n +1) if 8n+5 and
8n+9 are prime.
Case 1 If €=V, 1 Voiin : then
gcd (0(Vy, ), 0(Vy,,)) = gd ((4i +1)207 (80 —4i +4)10™ ) = ged (4i +1,80 - 4i +4) = ged (4i +1,81+5) =1
for 0<i<n-1 as 8n+5 is prime (Since 4i +1<8n+5).
Case 2: If €=V,,,Vsi3 ) then
00 (V312,57 (V2)) = 960 (0 (V) (Vo)) = 90l (81 4 +4,4i +5) = god (8n+9,4i +5) =1
,for 0<i1<n — 1as 8n+9 isprime (Since 8n+9<4i +5).
then

Case 3: If e=v, .V

2n+1 !
g¢d (0(Vy0.1),0 (Vo)) = gcd (40 +1)107,4x10™" ) = ged (4n+1,4) =1 (Since 4n+1 is not
multiple of 2).

2n+2

Case 4: If e=v Vv then, for 0<i<n-1

2n+2i+2

9¢d (0 (Vanain2)r O (Vaneaiis)) = 9¢d ((4i+4)107, (80— 4i +1)10™" ) = ged (4i +4,8n — 4i +1)
=gcd (4i+4,8n+5)=1

2n+2i+3

(Since 4i +4<8n+5 and 8n+5 is prime).
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Case 5: If € =V, 0iiaVonsoisa : then for 0<i<n-1

ged (0(V2n+2i+3)’G(V2n+2i+4)) =ged (O-(V2n+2i+3) ' O-(V2n+2(i+1)+2 )) = gcd ((Sn —4i+1)107",(4i +8)10_r)
=gcd (8n—4i+1,4i+8)=gcd (8n+9,4i+8) =1

(Since 41 +8<8n+9 and 8n+9 is prime).
Case 6: If € =V,,,V,, then gcd (o(V,,.,),0(V;)) = ged ((4n+4)107,10") = ged (4n +4,1) =1.

Case 7 If €=V, Uy g : then
gcd (o (Vyi, ), 0 (Ug,)) = gcd ((4i +1)107",(4i +2)10" ) = ged (4i +1,4i +2) =1 for 0<i<n
(Since 4i+1 and 4i+ 2 are consecutive integer).

Case 8: If e=V, U, \ then

ged (o(Vyi,z) 0 (Uy,,)) = ged ((8n —4i+4)107",(8n —4i +3)10" ) = ged (8n —4i + 4,80 —4i +3) =1

for 0<i<n-1 (Since 8n—4i+4 and 8n—4i + 3 are consecutive integer).

Case 9: If €=V, 2ioUnizisn : then

9¢d (0 (Vaniziz) 0 (Uppz,2)) = gcd ((4i+4)107",(4i+3)10") = ged (4i+4,4i +3) =1 , for

0<i<n(sSince 4i+3 and 4i +4 are consecutive integer).

Case 10: If €=V, 2iraUonizisa ) then

9¢d (0 (Van.z123)1 0 (Upnizies)) = 9Cd ((8n —4i +1)10°",(8n —4i +2)10°" ) = ged (8n — 4i +1,8n —4i +2) =1,

for 0<i<n-1(Since 8n—4i+1 and 8n—4i+2 are consecutive integer).

Case 11: If €=U, ,1Usp 100 : then

gcd (0 (Uyipy ) (Upn,zi.z)) = 9cd (41 +2)107",(4i+3)10 ") = ged (4i +2,4i +3) =1, for

0<i<n(Since 4i+2 and 4i+ 3 are consecutive integer).

Case 12: If €=Uy, .U 0is3 : then

gcd (0 (Uy,), 0 (Uppezies)) = gcd (80 —4i+3)10™",(8n —4i +2)10™") = ged (8n — 4 +3,8n — 4i + 2)
=gcd (8n—4i+3,8n—-4i+2)=1,

for 0<1<n-—1(Since 8n—4i+3 and 8n—4i+2 are consecutive integer).

Thus, P (4n +2,2n +1) admits a fuzzy prime labeling.

Theorem 4.7. If 2n+1, 4n+3 and 6N +5 are prime, then generalized Petersen graph P(4n +4,2n +1)

is a fuzzy prime graph.
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Proof. Let v,,V,,V,,...,V,,,, be the outer junctions and u,;,U,,Us,...,U,,., be the inner junctions of

P(4n+4,2n+1) . For r=1,2,3,... such that 10" <n<10", we define the junction membership
function o:V(P(4n+4,2n+1)) - (0,1] by o(v;)=i10" (1<i<4n+4)
o(Uy)=(4n+2i+3)10" (1<i<2n+2) , 0 (Up.pis) = (4N +2i+4)107" (1<i<n) and
o (Uy_pns)=(4n+2i+4)107" (n+1<i<2n+2),

Then clearly o is an injective function. Let € be an arbitrary bridge of P (4n +4,2n +1) . To prove

o isafuzzy prime labeling of P(4n+4,2n+1) we have the following cases:

Case 1: If e=Vy,,, then gcd (o(v;),o(V,,))=gcd (1107, (i+1)10") = ged (i,i+1) =1, for
1<i<4n+3(Since i and i+1 are consecutive integer).

Case 2: If €=V, v, then gcd (o'(V,,4),0(v,)) = ged ((4n+4)107,10" ) = ged (4n +4,1) =1.

Case 3 If € = Uy Uy, 3.0i : then

gcd (0 (Uy ), 0 (Ugpuz.zi)) = 9Cd (4 +3+2i)107", (40 +4+2i)10" ) = ged (4n +3+2i,4n + 4+ 2i) =1
for 1<i<n (Since 4n+3+2i and 4n+4-+2i are consecutive integer).

Case 4: If e=Uy,Uy 5,4 : then

gcd (o (U)o (Uy_p4)) = 9gcd ((4n+3+2i)107",(4n +4+2i)10™" ) = ged (4n+3+2i,4n +4+2i) =1
for N+1<i<2n+2 (Since 4n+3+2i and 4n+4+2i are consecutive integer).

Case 5t If €=U, 322 : then

9¢d (& (Upn,3.21 )1 (U, )) = gcd ((4n+4+2i)10°, (40 +5+2i)10 ") = ged (4n+4+2i,4n+5+2i) =1
,for 1<i<n (Since 4n+4+2i and 4n+5+2i are consecutive integer).

Case 6: If €=U, 5,_1Usi» : then

gcd (0 (Uyi_01),0(Ugi,,)) = gcd ((4n+4+2i)10",(4n+5+2i)10 ") = ged (4n+4+2i,4n+5+2i) =1
for N+1<i<2n+1 (Since 4n+4+2i and 4n+5+2i are consecutive integer).

Case 7 If e=1U,,,5U, : then

gcd (o(Uyn,3) o (U,)) = ged ((8n+8)10™",(4n +5)10") = ged (8n +8,4n +5) = ged (—2,4n +5) =1
(Since 4n+5 is an odd).

Case 8: If e=V,Uu, : then

ged (o(vy ), o (uy ) = ged (2i10°,(4n+3+2i)10" ) = ged (2i,4n+3+2i) = ged (2i,4n +3) =1

,for 1<i<2n+2 (Since 4n+ 3is prime and 2i is odd).
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Case 9: If € =V,.300ilUonizii : then
9¢d (0 (Vansi )10 (Ugnuzezi)) = 9cd (20 +3+2i)107", (40 + 4+ 21)10™" ) = ged (2n + 3+ 2i,4n + 4+ 2i )
=gcd (2n+3+2i,2n+1)=ged (2+2i,2n+1) =1

for 1<i<n(Since 2n+1lisprimeand 2+2i is even).

Case 10: If €=V, snalsiona : then

9¢d (0 (Vyi_pn1)1 0 (Uyi_pns)) = gcd (21 20 =1)10",(4n +4+2i)10™") = ged (2i —2n—1,4n +4 +2i)
=gcd(2i-2n-16n+5)=1

for N+1<i<2n+2 (Since 6N +5 is prime).
Thus, P (4n +4,2n +1) admits a fuzzy prime labeling which complete the proof.

Now we have a fuzzy prime labeling of duplicate graphs are proved as follows.

Theorem 4.8. If N is even. Then the graph G obtained by duplicating all the junctions in the rim of helm H,
is a fuzzy prime graph.

Proof. Let C,U;,V;(1<i<n)be the junctions of H_ and let cu;,uyv,(1<i<n), uu, (1<i<n-1)
and U,u_ be the bridges of H . Let G De the graph obtained by duplicating all the rim junctions in H, and

let the new junctions be U',U',,..,U", . Then C,u,V,,u’,(1<i<n) are the junctions of G and

{cus,cu’y,uyv, v (1<i<n), {uu,,,,uu’,,ut v, (T<i<n-1)} and {uu,,u,u’,u', u,} are the
bridges of G .

For r=12,3,... such that 10" <n<10" , we define the junction membership function
o:V(G)—(0,1] by o(c)=10" , o(u)=(3i-1)10" (1<i<n,i=2(mod5))
o(v,)=3i10" (1<i<n) , o(u})=(3i+1)10" (1<i<n,i=2(mod5))

o(u)=(3i+1)10" (1<i<n,i=2(mod5)) and o'(u';)=(3i-1)10~" (1<i<n,i=2(mod5)).

Then clearly the function o is an injective. Let € be an arbitrary bridge of G . To show o is a fuzzy
prime labeling of G we have the following cases:

Case 1: If e=cu; , then gcd(o(c),o(u))=ged(107,(3i-1)10")=ged (L3i-1)=1, for
i¢2(m0d5) 1<i<n. Similarly, ng( (C o(u )) 1 for i=2(mod5),1<i<n.

).
Case 2: If e=cy,", then ged(o(c),o(u,"))=ged (107,(3i+1)10 ") =ged (1,3i+1) =1, for
i¢2(m0d5) 1<i<n. Similarly, ng( (C) 0'( ))zlforis (mod5),1£i£n.
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Case 3: If e=uy,, then gcd (o(u;),o(v;))=ged ((3i-1)107,3i10™") = ged (3i —1,3i) =1, for
i#2(mod5) , 1<i<n (Since 3i—1 and 3i are consecutive integer). Similarly,

gcd (G(Ui),O'(Vi))=1 for i =2(mod5),1<i<n.

Case 4: If e=v,u,", then ged (o(v;),0(1;")) = ged (31107, (3i +1)10™" ) = ged (30,3 +1) =1, for
i=2(mod5) , 1<i<n (Since 3i+1 and 3i are consecutive integer). Similarly,
ged (o(v;), o (y;")) =1 for i =2(mod5) , 1<i<n.

Case 5: If e=uu,, , then
ged (o (u),0(u,,)) =ged ((3i-1)10",(3i+2)10") = ged (3i —1,3i +2) =1 , for
i #2(mod5), 1<i<n-1(Since 3i—1 and 3i+2 are not multiples of 3 and differ by 3). Similarly,

ged (o (u;),0(u;,,)) =1 for i =2(mod5) , 1<i<n-1.
Case 6: If e=U,U, , then
ged (o (uy),0(u,)) =ged (2x107,(3n-1)10™") or ged (2x10™,(3n+1)107")

=gcd(2,3n-1) or gcd(2,3n+1)
=1

(Since 3n—1 and 3n+1 are odd as N is even).

Case 7: If e=u'u,, , then
.0 (u.,))=ged ((3i+1)10,(3i+2)10") = ged (3i +1,3i +2) =1 , for

i #2(mod 5) 1<i<n-1 (Since 3i+1 and 3i+2 are consecutive integer). Similarly,
),

ged (o (u; "), o (u;,,)) =1 for i =2(mod5) , 1<i<n-1.

ged (o (u

Case 8: If e=uy,,’ , then
ged (o (u),0(u,,")) = ged ((3i—1)10™",(3i +4)10™" ) = ged (3i —1,3i +4) =1 , for
i #2(mod ) 1<i<n-1(Since 3i—1 and 3i+4 are not multiples of 5 and differ by 5). Also,
ged (o(u), o (")) =ged ((3i+1)10,(3i+2)10" ) = ged (3i +1,3i +2) =1 for
52(m0d5) 1<i<n-1.

Case 9: If e=u,"u, , then gcd (o'(u,"),o(u,))=ged (4x107,(3n-1)10"") = ged (4,30 —1) =1
(Since 3n—1 isodd as N is even).

Case 10: If e =u, 'y , then gcd (o(u,"),o(u;)) = ged ((3n+1)10,2x10" ) = ged (3n+1,2) =1
(Since 3n+1 isodd as N is even).

Therefore, the graph G admits a fuzzy prime labeling.
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Theorem 4.9. The graph G obtained by duplicating all the junctions of the helm H, . except the apex
junction, is a fuzzy prime graph.

Proof. Let C,u;,V;(1<i<n)be the junctions of H, and let cu;,uV,(1<i<n), uu,, (1<i<n-1)
and U U, be the bridges of H . Let G be the graph obtained by duplicating all the junctions in H, . except
the apex junction C. Let u',u’,,...,u', and V',V',,...,v' be the new junctions of G by duplicating
U, Uy, U, and  Vp,V,,..,V, . Then C,u,V;,u’,v,(1<i<n) are the junctions of G and

{ ” (2<i<n-1)}
{

cu,cu’, Uy, vutuv(I<i<n)b L {uu,(I<i<n-1)p L {uu

i+1

u', U (2<i<n)}and {uu,,u,u’,u’ u,uu’,} are the bridges of G .

For r=12,3,... such that 10" <n<10" , we define the junction membership function
o:V(G)—>(01] by 0'(C)=107r , a(u1)=4><107r , o-(u'l):leO’r , a(v1)=3x10*“ ,

o(v')=(4n+1)10" , o(u)=(4i-1)10" (2<i<n,i #1(mod 3))
o(v)=(4i-2)10" (2<i<n) ,  o(u')=(4i-3)10" (2<i<n,i=1(mod 3))
o(v')=4i10" (2<i<n) , o(u)=(4i-3)10" (2<i<n,i=1(mod 3)) and
o(u')=(4i-1)10" (2<i<n,i=1(mod 3)).

Then o is an injective. Let € be an any bridge of G . To claim o is a fuzzy prime labeling of G
we have the following cases:

Case 1: If e=cu,, then gcd (o (c),o(u;))=1 and if e=cu,", then ged (o (c),o(u;"))=1 for
1<i<n(Since o(c)=1).

Case 2: If €=UV, , then clearly, gcd (o (u;),o(v;)) =1, for L<i<n.

Case 3: If e =U,"V;, then clearly, gcd (o (u; "), o (v,)) =1, for 1<i<n,

Case 4: If e=uu, ,, then, for i =3,4,...,n,

ged (o (u),0(u;,)) = ged ((4i-1)10,(4i-5)10") or ged ((4i—3)107",(4i—7)10"")

=gcd (4i-1,4i-5) or ged(4i-3,4i-7)
=1

(Since 41 —1 and 4i —5 are odd integers that are differ by 4 and also, 4i —3 and 4i —7 are odd integers that
are differ by 4).

Case 5: If e=U,U, , then

ged (o (u,), o (u,))=ged (4x107,(4n—1)10"") or ged (4x107,(4n-3)107)
=gcd (4,4n-1) or gcd(4,4n-3)
=1

153



Tuijin Jishu/Journal of Propulsion Technology
ISSN: 1001-4055
Vol. 45 No. 4 (2024)

(Since 4n—1 and 4n — 3 are odd).

Case 6: If €= U,U,, then obviously, gcd (o (,),o(u,)) =1,

Case 7: If e=uu,,’ : then for 2<i<n-1 :
ged (o (u),0(ug,,")) = ged ((4i —1)10°",(4i +1)10™") or ged ((4i—3)107",(4i+3)10™")
=gcd (4i—1,4i+1) or ged (4i—3,4i+3)
=1

(Since 4i —1 and 4i +1 are odd integers that are differ by 2 and also, 4i —3 and 4i + 3are odd integers that
are not multiples of 3 and differ by 6).

Case 8: If €=U,u", , then obviously, gcd (o' (u,),o(u',))=1.
Case 9: If e=U_U",, then clearly, gcd (a(un ).o(u 1)) =1.
Case 10: If e=uu’, : then for 3<i<n-1 :
ged (o (u;), o (u',)) = ged ((4i-1)107,(4i—7)10") or ged ((4i-3)10",(4i-5)10")
=gcd (4i-1,4i—7) or ged (4i—3,4i-5)
=1

(Since 4i —1 and 4i —7 are odd integers that are not multiples of 3 and differ by 6 and also, 4i —3 and
4i —5are odd consecutive integer).

Case 11: If e=U", U,, then clearly, gcd (O'(U'n),O'(Ul)) =1

Case 12: If @ =U,U",, then obviously, gcd (a(uz),a(u'l)) =1.

Case 13: If e=uv' : then for 2<i<n :
ged (o (u;), o (v'y)) = ged ((4i —1)107",4i10") or ged ((4i—3)10,4i10™")

=gcd (4i—1,4i) or ged (4i-3,4i)
=1

(Since 4i —1 and 4i are consecutive integer and also, 4i —3 and 4i are not multiples of 3 and differ by 3).
Case 14: If e =Uu,V'}, then clearly, gcd (O‘(Ul),O'(V'l)) =1.
Therefore, the graph G is a fuzzy prime graph.

Theorem 4.10. The graph obtained by duplicating all the junctions in crown Cn* is a fuzzy prime graph.

Proof. Let Cn* be the crown with junctions V,,V,,...,V, and U;,U,,...,U, , where V; is neighborhood to U,
for 1<i<n, U, is neighborhood to U,,, for 1<i<n-1and U, is neighborhood to U,. Let G be the

graph obtained by duplicating all the junctions in C,~ . Let U',,U",,...,U". and V',V',,...,V'  be the new
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junctions of G by duplicating Uj,U,,...,U. and V,,V,,...,V. respectively. Then U;,V;,U";,V", (1<| n) are

the junctions of G and {Uv,Vvu',uv'(1<i<n)}, {uu,,u’uy,

(AR i’ i+l i i+l I I+l

(1<i<n-1)} and
{u,u,,u U, U’ U, }oare the bridges of G .

For r=12,3... such that 10" <n<10" , we define the junction membership function
o:V(G)—(01] by of(u)=10" , o(u})=2x10" | o(v)=3x10"
u)=(4i-1)10" (2<i<n,i=1(mod 3) o(v)=(4i-2)10" (2<i<n)

( )
(u')=(4i-3)10" (2<i<n,i=1(mod 3)) , o(v')=4i10" (1<i<n)
( )
( 3)

o

Q

and

o

u;)=(4i-3)10° (Zéién,i_ (mod 3
u';)=(4i-1)10" (2<i<n,i=1(mod 3)).

o

Then the map o is an injective. If € is an any bridge of G . We now o is a fuzzy prime for the
following cases:

Case 1 If e=uu., , then

ged (o (1), o (u,.,)) = ged ((4i —1)10°",(4i +3)10") = ged (4i —1,4i +3) =1, for i 1(mod 3)
2<i<n-1 (Since 4i—1 and 4i+3 are odd integer and differ by 4). Similarly,

ged (o(u;), o (uy,)) =1 for i =1(mod3) , 2<i<n-1.

Case 2: If @ =u,U,, then clearly, gcd (a(un),a(ul)) =1.

Case 3: If @ =u,U, , then obviously, gcd (G(UZ),O'(Ul)) =1.

Case 4: If e=uyV , then

ged (o (u;),o(v;)) = ged ((4i—1)10",(4i —2)10°") = ged (4i —1,4i —2)=1, for i #1(mod3),

2<i<n, (Since 4i—1 and 4i—2 are consecutive integer). Similarly, gcd (O‘(Ui),G(Vi))=1 for

=1(mod3), 2<i<n.

Case 5: If €=U,V,  then clearly, gcd (o'(u,),0(v,)) =1.

Case 6: If e=Vvu' , then
ged (o (v, ), o (u'y)) = ged ((4i—2)10",(4i-3)10") = ged (4i —2,4i —3)=1 , for
i # 1(mod 3) , 2<i<n , (Since 4i—2 and 4i—3 are consecutive integer). Similarly,

ged (o(v;),0(u'y)) =1 for i =1(mod3), 2<i<n.

Case 7: If €=V,U',, then clearly, gcd (o(v,), o (u'))=1.
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Case 6: If e=UV",, then gcd (a(ui),a(v'i)) = gcd ((4i —1)10",4i10") = ged (4i—1,4i)=1, for

i ¢1(mod 3) , 2<i<n, (Since 4i —1 and 4i are consecutive integer).

Case 8: If e=UV';, then ged (o (u;),o(v"))=ged ((4i —3)10’r,4i10’r) =gcd (4i—3,4i)=1,
for | El(mod 3) , 2<i<n,(Since 4i —3 and 4i are not multiples of 3 and differ by 3).

Case 9: If e=uu;, : then
ged (o (u;), o (u',)) = ged ((4i —3)10°",(4i —5)10") = ged (4i —3,4i —5)=1 , for
i sl(mod 3) , 2<i<n, (Since 4i —3 and 4i —5 are odd consecutive integer).

Case 10: If e=uu’,, : then
ged (o (u;), o (u',)) = ged ((4i—1)10",(4i-7)10" ) = ged (4i —1,4i -7)=1 , for
i ;tl(mod 3) , 2<1<n,(Since 4i —1 and 4i —7 are not multiples of 3 and differ by 6).

Case 11: If e =U,U’, , then clearly, gcd (o'(u,),o'(u',)) =1.

Case 12: If e=uu’,, : then
ged (o (1), o(u',,)) = ged ((4i —1)10",(4i +1)10") = ged (4i —1,4i +1)=1 , for
i ¢1(mod 3) , 2<i<n-1, (Since 4i —1 and 4i +1 are odd consecutive integer).

Case 13 If e=uu then

i i+l !

ged (o (u;), o (u',,)) = ged ((4i —3)10°,(4i +3)10™" ) = ged (4i—3,4i +3)=1 , for

i sl(mod 3) , 2<i<n-1, (Since i is not multiple of 3 and that 4i —3 and 4i + 3 are differ by 6).
Case 14: If e=U_U",, then clearly, gcd (a(un),a(u'l)) =1.

Case 15: If € =U,U’, , then obviously, ged (o (u,), o (u',)) =1.

Therefore, every two neighborhood junction membership values are distinct and mutually prime which
completes the proof. Thus, the graph G is a fuzzy prime graph.

Theorem 4.11. The graph obtained by duplicating all the junctions of the star KLn is a fuzzy prime graph.

Proof. Let K, be the crown with junctions C,V; (1<i<n), where ¢ is neighborhood to V; for 1<i<n.
Let G be the graph obtained by duplicating all the junctions of the star K . Let v';,V',,...,V' and C' be
the new junctions of G by duplicating V;,V,,...,V, and C respectively. Then C,C",V;,V", (1£ i< n) are the

junctions of G and {CVi,C'Vi,CV'i (lS i< n)} are the bridges of G .
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For r=12,3,... such that 10" <n<10" , we define the junction membership function
o:V(G)— (01 by o(c)=10"  o(c')=2x10" | o(v,)=(2i+1)107,1<i<n and
o(vi)=2i10".

Therefore, it can be easily verified that every two neighborhood junction membership values are
distinct and mutually prime which complete the proof.

5. Fuzzy prime combination labeling of graphs

In this section, we modify another type of labeling of a graph G with n junctions called fuzzy prime
combination labeling. A fuzzy prime labeling o on a graph G on n junctions is called a fuzzy prime

combination labeling if for each positive integer r such that 10" <n<10", the induced bridge labeling

1 1OFG(X) 1 1Or0( ) i >0 or O >0 is
0 (10r0(y)j or o (10“0(1)] according as G(X) (y) (y) (X)

injective onto the subset of (O,l] . A graph with a fuzzy prime combination labeling is called a fuzzy prime

1 (xy) equals

combination graph.

Now, the fuzzy prime combination labeling is defined below.

Definition 4.1. Let G be a graph with n junctions m bridges. For each positive integer r such that
10" <n<10", let o:V (G) — (0,1] be an injective map such that ng(G(X),O'(y)) =1. Then o is

called a fuzzy prime combination labeling of G if the induced bridge labeling y(xy) equals

1(]5r (igrzxgj or 1; Egrzggj according as O'(X) > U(V) or a(y) > G(X) is injective onto the

subset of (0,1] . A graph with a fuzzy prime combination labeling is called a fuzzy prime combination graph.

We discuss the fuzzy prime combination labeling of some graphs.

Theorem 4.1. The path P, admits a fuzzy prime combination labeling.

Proof. Let P, be the path V,V,...V,. For r =1,2,3,... such that 10" < n <10", define o :V (G) - (0,1]

i .
by a(vi) = F V 1<1<n. Then the neighborhood junction membership values are mutually prime and the

bridgeS Vivi+l n

1 (i+1 )
have distinct membership values W[ . j for 1<i<n-1. Hence the graph P, admits a
|
fuzzy prime combination labeling.

Theorem 4.2. The cycle Cn admits a fuzzy prime combination labeling for N >4 and n is odd.

For r=12,3,... such that 10""<n<10" , define

2 1
TR

neighborhood junction membership values are mutually prime. By the definition of x , it is clear that

Proof. Let C  be the cycle V,V,,...,V

n -

o:V(G)—>(01] by o(v,)= and a(vi)=1iFv3SiSn . Then the
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1 (2 1 (3 1 (i+1 )
IU(UU ) 10r (1j ! ﬂ(UZUS):lor [lj ! ﬂ(u|u|+l) 10r( H jv BSISn—l and

I
1
;u(unul) -

n
F(Z] . Hence the required graph admits a fuzzy prime combination labeling.

Theorem 4.3. The star Kl,n admits a fuzzy prime combination labeling.

Proof. Let V, be a center junction and V,,V,,...,V, be the other junctions of KLn .For r=1,2,3,... such that
10" <n<10", define o:V (G)—(0,1] by o (v,) = % and o (V)= % V1<i<n. Then the
neighborhood junction membership values are mutually prime and the bridges V,V; have distinct membership

i+1 .
values F for 1 <1< n. Hence the given graph admits a fuzzy prime combination labeling.

Theorem 4.4. Olive tree admits a fuzzy prime combination labeling.
Proof. Let V,, be the root of the given Olive tree G . Let V,,V,,,...,V,, be the junctions in the first level such
that there are N bridges. Let V,,,V,,...,V,, be the junctions in the second level such that there are N -1

bridges. Let Vyg,Vay, ..., Vy, be the junctions in the third level such that there are N — 2 bridges.

Proceeding like this, Let V. be the unique junction in the n™ level and the corresponding lonely bridges be

1
Vin-nVon - We define the junction membership function o :V (G)— (0,1] by o(vy,)=— ; and

10"
i r- r
a(vij)za(v(j_l)(j_l)) o 1<j<n,1<i<j,where r=2123,... suchthat 10" <n<10". Then

we get

gcd(a(voo)xlor,a(vlj)xlO“):l, 1<j<n

10
= gcd ( 13:(10 ,O'( 1(3:( =1,1<j<n

= ged(o(Ve),o(vy;)) =1, 1< j<n.
Also, we have

gcd(a(vij)xlO',a(v(i+l)j)x10r):1, 2<j<n,1<i<j-1

0'(Vij ) x10" a(v
10"

(i+1) ] ) x10"
10"

= ged =1,2<j<n,1<i<j-1

= gcd(o(vij),a(v(m)j)):1,2sjsn,1sisj—1
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Hence, every two neighborhood junction membership values are distinct and gcd (10ra(x),10ra(y)) =1

where X and Y are neighborhood. Also, the induced bridge membership values are

ﬂ(voovlj):O'(V(j_l)(j_l))‘i'lor ,1<j<n;and

B i+1 ) .
ﬂ(VijV(i+1),-)—O'(V(j_l)(j_l))“LW: 2<j<n,1<i<j-1

Hence, the membership values of the bridges are all distinct and followed by the definition of bridge function
M ,amap w isinjective. This, completes the proof.

Theorem 4.5. The graph Sm’n admits a fuzzy prime combination labeling.
Proof. Let V, be the center junction of star and Vij be the junctions of path of length M where 1<i<n and

= and for

. 1
1< j<m. We define the junction membership function o :V (G) — (0,1] by o (V,) o

1<i<n, a(v‘j)=1(1)r ((i-1)m+j+1), 1< j<m, where r=12,3,... such that 10" <n<10".
Then, we give

gcd(a(vo)xlOr,O'(Vli)xlor)=1, 1<j<n

(V) x10" a(v))x10°
100 10

= gcd =1,1<j<n

= ged(o(v).o(v'))=1.1<j<n.
Also, we have

gcd(a(vji)xlor,o(vmi)xlOr):l, 1<i<n,1<j<m-1

O'(Vji)xlOr J(VM‘)xlOr
100 10

= gcd =1,1<i<n,1<j<m-1

= gcd(a(vji),a(vj+1‘))=l,1sisn,1sjSm—l

Hence, every two neighborhood junction membership values are distinct and mutually prime. Also, the induced
bridge membership values are

,u(vovli):%((i ~1)m+2),1<i<n and

'U(Vijviju):%((i—l)er j+2),1SiSn, 1<j<m-1.
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Thus, the membership values of the bridges are all distinct. Clearly, the bridge function g is injective. Hence,

the graph Sm’n admits a fuzzy prime combination labeling.
Theorem 4.6. The graph Cn @ P, admits a fuzzy prime combination labeling when m+n is odd.

Proof. Denote the graph G = C_ @ P, be the junctions of C_ by u,,U,,...,U, where U, is neighborhood to

U, and U, is neighborhood to U;,, for 1<i<n—1 and be the junctions of P, byV,V,...v, joined with the

i+1

2
junction U, of C_ . We define the junction membership function o:V (G)— (0,1] by o(u,)= TR

,U(Vi)zﬁ, 1<i<m and a(uj):m-'_—{-’_l
10° 10" 10

such that 10" < n <10". Then we can easily verify that neighborhood junction membership values are all
distinct and mutually prime. Also, the induced bridge membership values are

o(u)= ,2<j<n-1, where r=123...

punlh) =
3
pu) = o0
i+3

,u(vivm)zﬁ,lﬁiém—l,

1 (m+n
zu(un—lun) = 1Or 2 '

Hence, the membership values of the bridges are all distinct and followed by the definition of & which
completes the proof.

Theorem 4.7. The graph Cn @ Kl’m admits a fuzzy prime combination labeling if m+n>5,

Proof. Denote G =C_ @ K be the junctions of C_ by Uj,U,,...,U, where U, is neighborhood to U, and

U, is neighborhood to U

i+l

for 1<i<n-—1 and be the junctions of K, by V;,V,,...,V,, which is attached

with the junction U, of C_ . There are two cases:
Case 1. m+nis odd.

We define the membership function o :V (G) - (0,1] as follows:

1
O-(un) - 10[’ !
2
O'(Unfl) F )
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G(Vi)=%,1£iﬁm and

O'(U )—m+—J+2 1<j<n 2
: 100 T
where r=1,2,3,... such that 10" <n <10".

Case 2. m+nis even.

We define the membership function o :V (G) — (0,1] as follows:

1
a(un)—1Or ,

2
O'(Unfl)—ﬁ7
o(v)=""2 1<i<m-1

10
(Vo) = o and

where r=1,2,3,... such that 10" <n <10".

Clearly, the junction membership values are all distinct and mutually prime. By the definition of

the bridge function is injective. Hence, the graph Cn @ Kl,m admits a fuzzy prime combination labeling for

m+nz2=5.
5.1. Applications

Concept of graph theory have applications in many areas of computer science, including data mining,
image segmentation, clustering, image capturing, networking, etc. Klir and Bo Yuan [21] and Sahoo and Pal
[28] discussed the applications in fuzzy graphs. Labeled graphs serve us useful models for broad range of
applications such as coding theory, X-ray, radar, astronomy, circuit design and communication networks, etc.
Fuzzy labeling models yield more precision, flexibility, and compatibility to the system compared to the
classical and fuzzy models. They have many applications in physics, chemistry, computer science, and other
branches of mathematics. Kalaiarasi and Mahalakshmi [17] and Devaraj and Chellamani [10] discussed the
applications in fuzzy labeling.

Conclusion

In this paper, we have proved that grid, ladder, generalized Petersen graph, duplication of helm, gear, crown and
star graphs are fuzzy prime and some class of graphs are fuzzy prime combination graphs. The study of the
existence of fuzzy prime labeling for other families of graphs is an area for further investigation.
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