
Tuijin Jishu/Journal of Propulsion Technology 

ISSN: 1001-4055 

Vol. 45 No. 4 (2024) 

__________________________________________________________________________________ 

29 

Computation Method for a Differential-

Difference Equation with Boundary Layer 

in Neuronal Variability Modelling using a 

Mixed Nonpolynomial Spline 
K. Mamatha1, BSL Soujanya G2*, K. Phaneendra3 

1Department of Mathematics, Vardaman College of Engineering, Shamshad, Hyderabad, Telangana,500018, 

India. Email: mamatha.kodipaka@gmail.com 

2*Department of Mathematics, Kakatiya University, Warangal, Telangana, 506009, India.                                     

Email: gbslsoujanya@gmail.com 

3Department of Mathematics, University College of Science, Osmania University, Hyderabad, Telangana, 

500007, India. Email: kollojuphaneendra@yahoo.co.in 

Abstract:- This article introduces a computational difference scheme designed to solve singularly perturbed 

differential-difference equations (SPDDE) exhibiting boundary layer behaviour, utilizing a mixed nonpolynomial 

spline. To effectively manage boundary layer oscillations, the SPDDE is transformed into an equivalent two-point 

boundary layer problem. The adjustment of the fitting factor within the difference scheme is crucial for controlling 

these oscillations. The Thomas algorithm is employed to illustrate the discrete system of the difference scheme. 

This computational strategy demonstrates a second-order convergence rate, with a brief discussion on 

convergence analysis. The effectiveness of this approach is validated through numerical examples, with 

comprehensive comparisons confirming its reliability and consistency. Graphical representations of layer profiles 

are provided for various delay and advance parameter values.  
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1. Introduction 

The use of singularly perturbed differential difference equations (SPDDEs) is widespread in mathematical 

modelling across many scientific and engineering fields to accurately depict real-world scenarios. Generally, these 

equations require a small positive parameter that multiplies the largest derivative in the equation, while also 

including a delay/advance parameter. The significance of such differential equations is paramount in the fields of 

biosciences, control theory, economics, and engineering. Over the past few decades, several approaches have been 

developed to tackle the difficulties presented by singularly perturbed differential-difference problems. Control 

analysis and design studies [10], hybrid optical systems [2], population dynamics study [11], physiological control 

system investigations [16], predator-prey modelling [17], and competitive tumour growth models [27] frequently 

confront these problems. For a more comprehensive exploration of the mathematical models in this field, we 

decided to organize our equations by referring to the publications of Doolan and Miller [3] and Kokotovic et al. 

[10].  

Over recent years, several investigative techniques have been devised to tackle problems associated with 

singularly perturbed convection delay problems. The pioneering research conducted by Lange & Miura [13–14] 

has been significant in exploring boundary value algorithms for solving SPDDEs. A particular focus of these 

authors is the analysis of singularly perturbed linear second-order differential-difference equations that include 
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small shifts. SPDDEs are frequently derived from mathematical approaches that employ first exit time theory to 

estimate the time until the initial spike occurs at a certain initiating point in diffusive processes [19]. 

0.5 𝜎2∅″(𝒮) + (𝜇𝐷 −
𝒮

𝜏
)∅′(𝒮) + 𝜋𝒮∅(𝒮 + 𝑎𝒮) + 𝜗𝒮∅(𝒮 + 𝑖𝒮) + (𝜋𝒮 + 𝜗𝒮)∅(𝒮) = −1 

where the initial characteristic term is derived from the logarithmic decrease observed in two successive jumps in 

response to the supply operations. The diffusion moments 𝜇𝐷 and 𝜎 quantify the impact of neural connections on 

cell stimulation in the Weiner manipulation. In this manipulation, the barrier potential decreases in a linear manner 

to reach a stationary level, with a barrier time constant 𝜏. Given that the reaction components are the combination 

of excitation and inhibitory inputs, that they follow a Poisson distribution [23]. 

The authors in [25] proposed an exponentially fitted spline approach to solve singularly perturbed differential-

difference equations (SPDDEs). Swamy et al. [24] employed an exponentially fitted Galerkin method to address 

SPDDEs with delay and advance parameters, incorporating a fitting factor to manage abrupt changes within the 

boundary layer. Adilaxmi et al. [1] introduced a numerical approach involving two fitting factors at the convective 

and diffusion coefficients to solve SPDDEs exhibiting boundary layer behaviour. This two-parameter fitted 

technique is designed to achieve accurate results. To solve SPDDEs with mixed shifts, where solutions display 

boundary layer behaviour at the left end of the interval, Lakshmi Sirisha et al. [12] proposed a mixed finite 

difference method. This method divides the domain into inner and outer regions and introduces a terminal 

boundary point to the domain. 

The numerical methods for solving SPDDEs utilizing finite difference schemes were proposed by Kadalbajoo and 

Sharma [6-9]. Kadalbajoo and Kumar [5] tackled SPDDEs by utilizing the B-Spline collocation method with a 

fitted mesh configuration on a mesh that is uniformly distributed. To gain deeper understanding of SPDDEs, it is 

recommended that readers refer to the published publications [16, 17, 18, 20] and the corresponding references.  

2. Description of the Problem 

We have considered a boundary layer problem which includes a small delay and advanced terms of the form: 

                            𝜀∅″(𝒮) + 𝒫(𝒮)∅′(𝒮) + 𝑞(𝒮)∅(𝒮 − 𝛿) + 𝑟(𝒮)∅(𝒮) + 𝜔(𝒮)∅(𝒮 + 𝜂) = 𝑓(𝒮)
                    

(1)
  
 

on (0, 1), under the boundary conditions
 

                                   ∅(𝒮) = 𝜑(𝒮) on  − 𝛿 ≤ 𝒮 ≤ 0,   ∅(𝒮) = 𝜗(𝒮)   on   1 ≤ 𝒮 ≤ 1 + 𝜂                            (2) 

where 0 < 𝜀 << 1  is small perturbation parameter, 𝒫(𝒮), 𝑞(𝒮), 𝑟(𝒮), 𝜔(𝒮), 𝑓(𝒮), 𝜑(𝒮) 𝑎𝑛𝑑 𝜗(𝒮) are 

sufficiently smooth enough and 0 < 𝛿 = 𝑜( 𝜀), 0 < 𝜂 = 𝑜( 𝜀) are the delay and the advance terms respectively. 

The layer at the left end of the domain is characterized when 𝒫(𝒮) − 𝛿𝑞(𝒮) + 𝜂𝜔(𝒮) > 0 and layer at the right-

end of the domain is characterized when 𝒫(𝒮) − 𝛿𝑞(𝒮) + 𝜂𝜔(𝒮) < 0. when 𝑝(𝒮) = 0, the problem exhibits 

oscillatory solution or two layers depending upon the result of the expression whether 𝑞(𝒮) + 𝑟(𝒮) + 𝜔(𝒮) yields  

positive or negative value. The terms ∅(𝒮 − 𝛿) and ∅(𝒮 − 𝜂) can be expanded by employing Taylor series, since 

the solution ∅(𝑠) of the problem Eq. (1) is sufficiently differentiable and therefore, 

                    ∅(𝒮 − 𝛿) ≈ ∅(𝒮) − 𝛿∅′(𝒮)                                                                (3a) 

                     ∅(𝒮 + 𝜂) ≈ ∅(𝒮) + 𝜂∅′(𝒮)                                                               (3b) 

Using Eq. (3) in Eq. (1), we get 

                                                    𝜀𝑦∅″(𝒮) + 𝑢(𝒮)∅′(𝑠) + 𝑣(𝒮)∅(𝒮) = 𝑓(𝒮)                                                   (4) 

with boundary conditions                             ∅(0) = 𝜑(0), ∅(1) = 𝜗(1)                                                          (5)                                                                 

Here 𝑢(𝒮) = 𝒫(𝒮) − 𝛿𝑞(𝒮) + 𝜂𝜔(𝒮), 𝑣(𝒮) = 𝑞(𝒮) + 𝑟(𝒮) + 𝜔(𝒮). Eq. (4) is a second order singular 

perturbation problem with perturbation parameter 0 < 𝜀 << 1. The functions 𝑢(𝒮), 𝑣(𝒮), 𝑓(𝒮) and are assumed 

to be sufficiently smooth functions in [a, b], and 𝛼,𝛽 are finite constants. The layer exists in the neighbourhood 
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of 𝒮 = 0 , if 𝑢(𝒮) ≥ 𝐿 > 0 across the entire domain [0, 1], where L is positive constant. The layer exists in the 

neighbourhood of 𝒮 = 1, if  𝑢(𝒮) ≤ 𝐿 < 0 over the domain [0, 1], where 𝐿.is a negative constant 𝐿. 

3. Mixed Non-Polynomial Cubic Spline 

A uniform mesh 𝛥 with nodal points 𝒮𝑖  on [0,1] has been considered, such that 𝛥: 0 = 𝒮0 < 𝒮1 < 𝒮2 <. . . <

𝒮𝑛−1 < 𝒮𝑛 = 1 where  𝒮𝑖 = 𝑖𝓀, 𝑖 = 0,1, . . . , 𝑛  and  𝓀 =
1

𝑛
. A mixed non polynomial spline function 𝜓𝛥(𝒮) of 

class 𝐶2[0,1]is utilized to interpolate ∅(𝒮) at mesh points 𝒮𝑖, 𝑖 = 0 to 𝑛 depends on a parameter 𝑘, where 𝜓𝛥(𝒮) 

in  [0,1] reduces to ordinary cubic spline as  𝑘 →0. The nonpolynomial spline  𝜓𝛥(𝒮) is considered for each 

subinterval [𝒮𝑖 , 𝒮𝑖+1], 𝑖 = 0,1, . . . , 𝑛 − 1  as below, 

   𝜓𝛥(𝒮) = 𝑎𝑖 𝑠𝑖𝑛 𝒦 (𝒮 − 𝒮𝑖) + 𝑏𝑖 𝑐𝑜𝑠 𝒦 (𝒮 − 𝒮𝑖) + 𝑐𝑖𝑒
𝒦(𝒮−𝒮𝑖) + 𝑑𝑖𝑒

−𝒦(𝒮−𝒮𝑖), 𝑖 = 0,1,2, . . . , 𝑛     (6) 

                                                                                        

where 𝑎𝑖 , 𝑏𝑖 , 𝑐𝑖 and 𝑑𝑖  represents unknown coefficients in Eq. (6) and a free variable 𝑘 is utilised to improve the 

accuracy of the approach. Let the exact solution be ∅(𝒮)  and an approximation to ∅(𝒮𝑖) be ∅𝑖 which is obtained 

by the spline function 𝜓𝑖(𝒮) for each segment and passing through the points (𝒮𝑖, 𝑦𝑖) and (𝒮𝑖+1, 𝑦𝑖+1). The 

coefficients of Eq. (6) are determined in terms of  ∅𝑖 , ∅𝑖+1, 𝑀𝑖, 𝑀𝑖+1 which are defined as  

                                                      𝜓𝛥(𝒮𝑖) = ∅𝑖 , 𝜓𝛥(𝒮𝑖+1) = ∅𝑖+1 

                                                       𝜓𝛥
″(𝒮𝑖) = 𝑀𝑖 , 𝜓𝛥

″(𝒮𝑖+1) = 𝑀𝑖+1                                                             (7)                                                                                

Using these conditions, we have 𝑎𝑖 =
(𝑘2∅𝑖+1−𝑀𝑖+1)−𝑐𝑜𝑠 𝜏(𝑘2∅𝑖−𝑀𝑖)

2𝑘2 𝑠𝑖𝑛 𝜏
, 𝑏𝑖 =

(𝑘2∅𝑖−𝑀𝑖)

2𝑘2 , 𝑐𝑖 =
𝑒𝜏(𝑘2∅𝑖+1+𝑀𝑖+1)−(𝑘2∅𝑖+𝑀𝑖)

2𝑘2(𝑒2𝜏−1)
 

𝑑𝑖 =
𝑒2𝜏(𝑘2∅𝑖 + 𝑀𝑖) − 𝑒𝜏(𝑘2∅𝑖+1 + 𝑀𝑖+1)

2𝑘2(𝑒2𝜏 − 1)
, 𝜏 = 𝑘ℎ  and 𝑖 = 0 to 𝑛 − 1 

Employing the continuity of the first derivative at the point 𝒮 = 𝒮𝑖, the following tridiagonal system is obtained 

for 𝑖 = 1,2, . . . , 𝑛 − 1                                                                                                                                                                                     

                                        ∅𝑖−1 + 𝛾∅𝑖 + ∅𝑖+1 = ℎ2(𝛼𝑀𝑖−1 + 𝛽𝑀𝑖 + 𝛼𝑀𝑖+1)                                                     (8)  

In Eq. (8)  𝛼 =
(𝑒2𝜏−2𝑒𝜏 𝑠𝑖𝑛 𝜏−1)

∅2(𝑒2𝜏+2𝑒𝜏 𝑠𝑖𝑛 𝜏−1)
 ,  𝛽 = 2

[𝑒2𝜏(𝑠𝑖𝑛 𝜏−𝑐𝑜𝑠 𝜏)+(𝑠𝑖𝑛 𝜏+𝑐𝑜𝑠 𝜏)]

∅2(𝑒2𝜏+2𝑒𝜏 𝑠𝑖𝑛 𝜏−1)
,     𝛾 = −2

[𝑒2𝜏(𝑠𝑖𝑛 𝜏+𝑐𝑜𝑠 𝜏)+(𝑠𝑖𝑛 𝜏−𝑐𝑜𝑠 𝜏)]

(𝑒2𝜏+2𝑒𝜏 𝑠𝑖𝑛 𝜏−1)
 

When (𝛼, 𝛽, 𝛾) → (1 6⁄ , 4 ∕ 6, −2) as 𝜏 → 0 and then spline as defined by Eq. (8) has been transformed into 

ordinary cubic spline relation 

                                            (∅𝑖−1 − 2∅𝑖 + ∅𝑖+1) =
ℎ2

6
(𝑀𝑖−1 + 4𝑀𝑖 + 𝑀𝑖+1)                                                   (9)                                    

The Eq. (8) determines a relationship that results in (𝑛 − 1) linear algebraic equations involving (𝑛 + 1) 

unknowns denoted as 𝒮𝑖  where 𝑖 ranges from 1 to 𝑛 − 1.   

4. Derivation of the Difference Scheme 

The proposed boundary value problem Eq. (1) can be discretized at the grid point 𝒮𝑖, using the following approach: 

                                           𝜀∅″(𝒮𝑖) + 𝑢(𝒮𝑖)∅
′(𝒮𝑖) + 𝑣(𝒮𝑖)∅(𝒮𝑖) = 𝑓(𝒮𝑖)                                                       (10)  

By utilizing the second derivative of a spline, we establish  

𝑀𝑖 =
𝑓𝑖 − 𝑢𝑖∅𝑖

′ − 𝑣𝑖∅𝑖

𝜀
,𝑀𝑖−1 =

𝑓𝑖−1 − 𝑢𝑖−1∅𝑖−1
′ − 𝑣𝑖−1∅𝑖−1

𝜀
,𝑀𝑖+1 =

𝑓𝑖+1 − 𝑢𝑖+1∅𝑖+1
′ − 𝑣𝑖+1∅𝑖+1

𝜀
 

where   ∅𝑖
′ ≈

∅𝑖+1−∅𝑖−1

2ℎ
, ∅𝑖−1

′ ≈
−∅𝑖+1+4∅𝑖−3∅𝑖−1

2ℎ
, ∅𝑖+1

′ ≈
3∅𝑖+1−4∅𝑖+∅𝑖+1

2ℎ
,  𝑢𝑖 = 𝑢(𝒮𝑖), 𝑣𝑖 = 𝑣(𝒮𝑖), 𝑓𝑖 = 𝑓(𝒮𝑖). 

Replacing the entries of  𝑀𝑗  for 𝑗 = 𝑖, 𝑖 ± 1 in Eq. (8), we acquire 

[𝜀 −
3

2
𝛼𝑢𝑖−1ℎ + 𝛼𝑣𝑖−1ℎ

2 −
𝑢𝑖

2
𝛽ℎ +

𝛼

2
𝑢𝑖+1ℎ] ∅𝑖−1 + [𝜀𝛾 + 2𝛼𝑢𝑖−1ℎ + 𝑣𝑖𝛽ℎ2 − 2𝛼𝑢𝑖+1ℎ]∅𝑖 + 
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             [𝜀 +
3

2
𝛼𝑢𝑖+1ℎ + 𝛼𝑣𝑖+1ℎ

2 +
𝑢𝑖

2
𝛽ℎ −

𝛼

2
𝑢𝑖−1ℎ] ∅𝑖+1  = ℎ2 [𝛼𝑓𝑖−1 + 𝛽𝑓𝑖 +  𝛼𝑓𝑖+1]                             (11)         

Now introduce a fitting factor 𝜎𝑖(𝜌) in Eq. (11) to manage the boundary layer behaviour, we have 

[𝜎𝑖(𝜌)𝜀 −
3

2
𝛼𝑢𝑖−1ℎ + 𝛼𝑣𝑖−1ℎ

2 −
𝑢𝑖

2
𝛽ℎ +

𝛼

2
𝑢𝑖+1ℎ] ∅𝑖−1 + [𝜎𝑖(𝜌)𝜀𝛾 + 2𝛼𝑢𝑖−1ℎ + 𝑣𝑖𝛽ℎ2 − 2𝛼𝑢𝑖+1ℎ]∅𝑖 + 

             [𝜎𝑖(𝜌)𝜀 +
3

2
𝛼𝑢𝑖+1ℎ + 𝛼𝑣𝑖+1ℎ

2 +
𝑢𝑖

2
𝛽ℎ −

𝛼

2
𝑢𝑖−1ℎ] ∅𝑖+1  = ℎ2 [𝛼𝑓𝑖−1 + 𝛽𝑓𝑖 +  𝛼𝑓𝑖+1]                     (12)                       

The value of 𝜎𝑖(𝜌) is acquired by the procedure given by Doolan et al. [3] and is given by                                      

                                                               𝜎𝑖(𝜌) = 𝑎𝑖𝜌 (𝛼 +
𝛽

2
) 𝑐𝑜𝑡ℎ (

𝑎𝑖𝜌

2
). 

Using Eq. (11), we get the following system of equations:               

                                             𝐿𝑖∅𝑖−1 + 𝐶𝑖∅𝑖 + 𝑈𝑖∅𝑖+1 = 𝐻𝑖    for  𝑖 = 1,2, . . . , 𝑛 − 1                                        (13) 

Here 𝐿𝑖 = 𝜎𝑖(𝜌)𝜀 −
3

2
𝛼𝑢𝑖−1ℎ + 𝛼𝑣𝑖−1ℎ

2 −
𝑢𝑖

2
𝛽ℎ +

𝛼

2
𝑢𝑖+1ℎ,    𝐶𝑖 = 𝜎𝑖(𝜌)𝜀𝛾 + 2𝛼𝑢𝑖−1ℎ + 𝑣𝑖𝛽ℎ2 − 2𝛼𝑢𝑖+1ℎ 

                    𝑈𝑖 = 𝜎𝑖(𝜌)𝜀 +
3

2
𝛼𝑢𝑖+1ℎ + 𝛼𝑣𝑖+1ℎ

2 +
𝑢𝑖

2
𝛽ℎ −

𝛼

2
𝑢𝑖−1ℎ,  𝐻𝑖 =ℎ2 [𝛼𝑓𝑖−1 + 𝛽𝑓𝑖 + 𝛼𝑓𝑖+1]               

The tridiagonal system Eq. (13) is solved for 𝑖 = 1,2, . . . , 𝑛 − 1 to obtain the approximations ∅1,∅2, . . . , ∅𝑛−1 of 

the solution ∅(𝒮) at 𝒮1, 𝒮2, . . . . . . 𝒮𝑛−1 with the boundary conditions Eq. (5). The local truncation error of the 

developed scheme in Eq. (13) is determined as follows: 

𝑇𝑖(ℎ) = 𝜀𝜎𝑖(2 + 𝛾) + [1 − (2𝛼 + 𝛽)]𝜀𝜎𝑖∅𝑖
′′ℎ2 + [𝜀𝜎𝑖∅𝑖

𝑖𝑣 (
1

12
− 𝛼) + 𝑢𝑖∅𝑖

′′′ (
𝛽

6
−

2𝛼

3
)] ℎ4+. .. 

Thus, truncation error indicates different orders for various values of 𝛼 and 𝛽.  

(i) For  𝛼 =
1

6
, 𝛽 =

4

6
, and    𝛾 = − 2, truncation error is fourth order.     

      (ii)         For  𝛼 =
1

12
, 𝛽 =

5

6
, and    𝛾 = − 2, truncation error is sixth order. 

 

5. Convergence Analysis 

The matrix representation of the system of equations Eq. (13) with the boundary conditions is 

                                                          (𝐷 + 𝐹)𝑊 + 𝐺 + 𝑇(ℎ) = 0                                (14) 

where  𝐷 = [𝜀𝜎𝑖 ,  𝜀𝜎𝑖𝛾, 𝜀𝜎𝑖] =

[
 
 
 
 
 
𝜀𝜎𝑖 𝜀 0 0 . . . . . . . . 0
𝜀 𝜀𝜎𝑖𝛾 𝜀 0 . . . . . . . . 0
0 𝜀 𝜀𝜎𝑖 𝜀 . . . . . . . . 0
. . . . . . . . . . . .
. . . . . . . . . . . .
0 . . . . 0 𝜀 𝜀𝛾]

 
 
 
 
 

, 

                     𝐹 = [𝑧̃𝑖 , 𝑟̃𝑖 , 𝑤̃𝑖] =

[
 
 
 
 
 
𝑟̃1 𝑤̃1 0 0 . . . . . . . . 0
𝑧̃2 𝑟̃2 𝑤̃2 0 . . . . . . . . 0
0 𝑧̃3 𝑟̃3 𝑤̃3 . . . . . . . . 0
. . . . . . . . . . . .
. . . . . . . . . . . .
0 . . . . 0 𝑧̃𝑁−1 𝑟̃𝑁−1]

 
 
 
 
 

 

 

 𝑧̃𝑖 = −
3

2
𝛼𝑢𝑖−1ℎ + 𝛼𝑣𝑖−1ℎ

2 −
𝑢𝑖

2
𝛽ℎ +

𝛼

2
𝑢𝑖+1ℎ,  𝑟̃𝑖 = 2𝛼𝑢𝑖−1ℎ + 𝑣𝑖𝛽ℎ2 − 2𝛼𝑢𝑖+1ℎ 
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𝑤̃𝑖 =
3

2
𝛼𝑢𝑖+1ℎ + 𝛼𝑣𝑖+1ℎ

2 +
𝑢𝑖

2
𝛽ℎ −

𝛼

2
𝑢𝑖−1ℎ for 𝑖 = 1,2, . . . , 𝑛 − 1 and 𝐺 = [𝑞1 − 𝑧̃1𝛼, 𝑞2, , . . . , 𝑞𝑛−1 − 𝑤̃𝑛−1𝛽] 

where  𝑞𝑖 = ℎ2[𝛼𝑓𝑖−1 + 𝛽 𝑓𝑖 + 𝛼𝑓𝑖+1] , for  𝑖 = 2,3, . . . , 𝑁 − 1, 𝑇(ℎ) = 𝑂(ℎ4) for  𝛼 =
1

12
, 𝛽 =

5

6
, and  𝛾 = − 2  

and W = [𝑊1,𝑊2,𝑊3, . . . ,𝑊𝑛−1]
𝑇 ,  𝑇(ℎ) = [𝑇1, 𝑇2, . . . , 𝑇𝑛−1]

𝑇 , 𝑂 = [0,0, . . . ,0]𝑇 represents the associated vectors 

of Eq. (14). Let 𝑤 = [𝑤1, 𝑤2, . . . , 𝑤𝑛−1]
𝑇 ≅ 𝑊  which satisfies the equation 

                                                                    (𝐷 + 𝐹)𝑤 + 𝐺 = 𝑂                                                                          (15) 

Let the discretization error be  𝑒𝑖 = 𝑤𝑖 − 𝑊𝑖  where   𝑖 ranges from 1 to 𝑛 − 1  so that𝐸 = [𝑒1, 𝑒2, . . . , 𝑒𝑛−1]
𝑇  =

𝑤 − 𝑊. The error equation is acquired by Subtracting Eq. (14) from Eq. (15)    

                                                                         (𝐷 + 𝐹)𝐸 = 𝑇(ℎ)                                                                       (16) 

Let 𝜉1, 𝜉2 be positive constants such that |𝑢(𝑠)| ≤ 𝜉1 and |𝑣(𝑠)| ≤ 𝜉2. If (𝑖, 𝑗)𝑡ℎelement of F be 𝐹𝑖,𝑗, then 

|𝐹𝑖,𝑖+1| = 𝜎𝑖𝜀 +
3

2
𝛼𝑢𝑖+1ℎ + 𝛼𝑣𝑖+1ℎ

2 +
𝑢𝑖

2
𝛽ℎ −

𝛼

2
𝑢𝑖−1ℎ 

|𝐹𝑖,𝑖−1| = 𝜎𝑖𝜀 −
3

2
𝛼𝑢𝑖−1ℎ + 𝛼𝑣𝑖−1ℎ

2 −
𝑢𝑖

2
𝛽ℎ +

𝛼

2
𝑢𝑖+1ℎ 

Therefore, when the value of ℎ sufficiently small, we conclude that 

                                                |𝐹𝑖,𝑖+1| < 𝜀, 𝑖 ranges from 1 to 𝑛 − 2                                                               (17a)            

                                                 |𝐹𝑖,𝑖−1| < 𝜀, 𝑖 ranges from 2 to 𝑛 − 2                                                             (17b)                                                      

Hence (𝐷 + 𝐹) is irreducible (Ref. [28]). Assume that 𝑆̄𝑖 represents sum of the entries of the 𝑖𝑡ℎ row of the matrix 

(𝐷 + 𝐹), we acquire 

 𝑆̄𝑖 = ∑ 𝑀𝑖𝑗 = −
𝜀𝜎𝑖

ℎ2 +
3𝛼

2ℎ
𝑢𝑖−1 −

𝛼

2ℎ
𝑢𝑖+1 + 𝛼𝑣𝑖+1 + (

𝑢𝑖

2ℎ
+ 𝑣𝑖)𝛽𝑁−1

𝑗=1   for  i = 1 

                             𝑆̄𝑖 = ∑ 𝑀𝑖𝑗 =𝑁−1
𝑗=1  𝛼𝑏𝑖−1 + 𝑏𝑖𝛽 + 𝛼𝑏𝑖+1 for i = 2, 3, …, 𝑛 − 2. 

                             𝑆̄𝑁−1 = ∑ 𝑀𝑁−1 𝑗
𝑁−1
𝑗=1 =

−𝜀𝜎𝑖

ℎ2 −
𝛼

2ℎ
𝑢𝑖−1 −

3𝛼

2ℎ
𝑢𝑖+1 + 𝛼𝑣𝑖−1 − (

𝑢𝑖

2ℎ
− 𝑣𝑖)    for  𝑖 = 𝑛 − 1 

Let  𝜉1∗ = 𝑚𝑖𝑛
1≤𝑖≤𝑁

|𝑢(𝑠𝑖)|  and  𝜉1
∗ = 𝑚𝑎𝑥

1≤𝑖≤𝑁
|𝑢(𝑠𝑖)|,  𝜉2∗ = 𝑚𝑖𝑛

1≤𝑖≤𝑁
|𝑣(𝑠𝑖)|  and  𝜉2

∗ = 𝑚𝑎𝑥
1≤𝑖≤𝑁

|𝑣(𝑠𝑖)|. It is confirmed that 

the monotonicity of (𝐷 + 𝐹) holds true [26,28] for sufficiently small ℎ, since 0 < 𝜀 << 1  and  𝜀 ∝ 𝑜(ℎ).   

Therefore (𝐷 + 𝐹)−1 exists and (𝐷 + 𝐹)−1 ≥ 0.  Thus, using Eq. (16), we get 

                                                        ‖𝐸‖ ≤ ‖(𝐷 + 𝐹)−1‖   ‖𝑇‖                                                                            (18) 

Assume that (𝑖, 𝑘)𝑡ℎ element of (𝐷 + 𝐹)−1 be (𝐷 + 𝐹)𝑖,𝑘
−1 . Now define ‖(𝐷 + 𝐹)−1‖ = 𝑚𝑎𝑥

1≤𝑖≤𝑁−1
∑ (𝐷 +𝑛−1

𝑘=1

𝐹)𝑖,𝑘
−1   and   ‖𝑇(ℎ)‖ = 𝑚𝑎𝑥

1≤𝑖≤𝑁−1
|𝑇(ℎ)| . Since (𝐷 + 𝐹)𝑖,𝑘

−1 ≥ 0  and  ∑ (𝐷 + 𝐹)𝑖,𝑘
−1𝑆̄𝑘 = 1𝑛−1

𝑘=1  where i ranges from  

1 to 𝑛 − 1. Hence           

                                                            (𝐷 + 𝐹)𝑖,1
−1 ≤

1

𝑆̄1
<

1

ℎ2𝜉
                                                                               (19a) 

                                                        (𝐷 + 𝐹)𝑖,𝑛−1
−1 ≤

1

𝑆̄𝑛−1
<

1

ℎ2𝜉
                                                                             (19b) 

Furthermore,                 ∑ (𝐷 + 𝐹)𝑖,𝑘
−1𝑛−2

𝑘=2 ≤
1

𝑚𝑖𝑛
2≤𝑘≤𝑛−2

𝑆̄𝑘
  <   

1

ℎ2𝜉
 , 𝑖 = 2,3, . . . , 𝑛 − 2 .                                                    (19c) 

Utilizing Eq. (18) with the help of Eqs. (19a) - (19c), we get 

                                                                            ‖𝐸‖ ≤ 𝑂(ℎ2).                                                                                             (20) 

Hence, the method given in Eq. (13) is second order convergent for 𝛼 =
1

12
, 𝛽 =

5

6
, 𝛾 = − 2. 

6. Numerical Illustrations 
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The model problems of the types Eqs. (1) – (2) are taken into consideration (ref. [6]) to validate the applicability 

of the method. Here ∅(𝑠) = 𝑐1𝑒
𝑚1𝒮 + 𝑐2𝑒

𝑚2𝒮 +
𝑓

𝐶
 is the exact solution of the problem where 𝐶 = 𝑏 + 𝑐 + 𝑑,   

𝑐1 =
−𝑓+∅𝐶+𝑒𝑚2(𝑓−𝜙𝐶)

(𝑒𝑚1−𝑒𝑚2)𝐶
, 𝑐2 =

[𝑓−∅𝐶+𝑒𝑚1(−𝑓+𝜙𝐶)]

(𝑒𝑚1−𝑒𝑚2)𝐶
, 𝑚1 =

[−(𝑝−𝑞𝛿+𝜔𝜂)+√(𝑝−𝑞𝛿+𝜔𝜂)2−4𝜀𝐶]

2𝜀
 and   

𝑚2 =
[−(𝑝−𝑞𝛿+𝜔𝜂)−√(𝑝−𝑞𝛿+𝜔𝜂)2−4𝜀𝐶]

2𝜀
 . 

Illustration 1.  𝜀∅″(𝒮) + ∅′ + 2∅(𝒮 − 𝛿) − 3𝒮 = 0  with  ∅(𝒮) = 1, − 𝛿 ≤ 𝒮 ≤ 0, ∅(𝒮) = 1,  1 ≤ 𝒮 ≤ 1 + 𝜂 

Illustration 2.  𝜀∅″(𝒮) + ∅′ − 3∅ + 2∅(𝒮 + 𝜂) = 0  with  ∅(𝒮) = 1,−𝛿 ≤ 𝒮 ≤ 0, ∅(𝒮) = 1, 1 ≤ 𝒮 ≤ 1 + 𝜂 

Illustration 3.  𝜀∅″(𝒮) + ∅′ − 2∅(𝒮 − 𝛿) − 5∅ + ∅(𝒮 + 𝜂) = 0 with  ∅(𝒮) = 1,−𝛿 ≤ 𝒮 ≤ 0, ∅(𝒮) = 1, 1 ≤

𝒮 ≤ 1 + 𝜂  

Illustration 4. 𝜀∅″(𝒮) − ∅′ − 2∅(𝒮 − 𝛿) + ∅ = 0 with  ∅(𝒮) = 1,  − 𝛿 ≤ 𝒮 ≤ 0,∅(𝒮) = −1,  1 ≤ 𝒮 ≤ 1 + 𝜂  

Illustration 5.  𝜀∅″(𝒮) − ∅′ + ∅ − 2∅(𝒮 + 𝜂) = 0   with  ∅(𝒮) = 1,−𝛿 ≤ 𝒮 ≤ 0, ∅(𝒮) = −1, 1 ≤ 𝒮 ≤ 1 + 𝜂 

Illustration 6.   𝜀 ∅″(𝒮) − 𝑦′ − 2∅(𝒮 − 𝛿) + ∅ − 2∅(𝒮 + 𝜂) = 0 with  ∅(𝑠) = 1,−𝛿 ≤ 𝒮 ≤ 0, ∅(𝒮) = −1,  1 ≤

𝒮 ≤ 1 + 𝜂. 

 

7. Discussions and conclusion 

A numerical technique employing a mixed nonpolynomial spline is proposed in the article for solving the SPDDE. 

A three-term relation is derived using the difference approach. A rapid analysis has been carried out on the 

convergence of the mechanism. The technique is supported by a range of computational demonstrations. The 

proposed approach has been tested and practically implemented to tackle various issues.  

For illustrations 1-6, the MAEs in the solutions are tabulated in Tables 1-6. In pursuance the contemplated strategy 

has provided precisely to acquire accurate results relative to the approach produced in [6] in Comparison with 

computed errors which were produced in [6]. The solutions of the illustrations for various values of  𝛿, 𝜂 are 

demonstrated at Figures 1-8. Based on the analysis of Figures 1-4, it has been observed that an increase in δ leads 

to a reduction in the width of the left end boundary layer. Conversely, an increase in η results in an enlargement 

of the boundary layer. Based on Figures 5-8, it has been observed that as the value of δ increases, the width of the 

right end boundary layer enlarged, while it found shrunk as η increases 

 

Table 1. MAE in Illustration 1 with 𝜺 = 𝟎. 𝟏 

_______________________________________________ 

𝑁 →    8             32                    128                   512 

_____________________________________________________ 

                                       𝛿 ↓                                 Proposed method 

0.00    2.8681(03)       1.9231(04)      1.2064(05)       7.5418(07) 

0.05    2.8400(03)       1.8703(04)      1.1730(05)       7.3326(07) 

0.09    2.7729(03)       1.8094(04)      1.1351(05)       7.0958(07) 

Results in [6] 

                                         0.00    9.9078(02)     3.7007(02)      9.5467(03)       2.1450(03) 

0.05    9.6596(02)     3.6405(02)      9.2466(03)       2.0299(03) 

0.09    9.2774(02)     3.5566(02)      8.9517(03)       1.9248(03) 
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_____________________________________________________ 

𝑻𝒂𝒃𝒍𝒆 𝟐.  𝑴𝑨𝑬 𝒊𝒏 𝑰𝒍𝒍𝒖𝒔𝒕𝒓𝒂𝒕𝒊𝒐𝒏 𝟐 𝒘𝒊𝒕𝒉 𝜺 = 𝟎. 𝟏 

_______________________________________________________ 

𝑁 →        8                          32             128                    512 

________________________________________________________ 

                                       𝜂 ↓                               Proposed method 

0.00   2.8681(03)     1.9231(04)     1.2064(05)       7.5418(07) 

0.05   2.9150(03)     1.9563(04)     1.2274(05)       7.6734(07) 

                                      0.09         2.9436(03)     1.9702(04)     1.2371(05)       7.7341(07) 

Results in [6] 

0.00   9.9078(02)     3.7007(02)     9.5467(03)      2.1450(03) 

0.05   9.9775(02)     3.7270(02)     9.7965(03)      2.2447(03) 

0.09   1.0031(01)     3.7238(02)     9.9628(03)      4.5869(03) 

___________________________________________________________ 

 

Table 3. MAE for Illustration 3 with 𝜺 = 𝟎. 𝟏 

_______________________________________________________ 

𝑁 →        8                          32             128                    512 

________________________________________________________ 

                                      𝛿 ↓   𝜂 = 0.05             Proposed method 

0.00   1.4743(02)       1.0010(03)         6.2934(05)        3.9348(06) 

0.05   1.5547(02)        1.0631(03)         6.6867(05)        4.1808(06) 

0.09   1.6086(02)       1.1077(03)         6.9761(05)        4.3619(06) 

                                           𝜂 ↓       𝛿 = 0.05 

0.00   1.5164(02)        1.0332(03)         6.4947(05)         4.0606(06) 

0.05   1.5547(02)        1.0631(03)         6.6867(05)         4.1808(06) 

0.09   1.5828(02)        1.0855(03)         6.8335(05)         4.2731(06) 

                                            𝛿 ↓ 𝜂 = 0.05               Results in [6] 

0.00   9.1902(02)     3.4534(02)         1.1643(02)        3.0046(03) 

0.05   1.0233(01)     3.8231(02)         1.2958(02)        3.3513(03) 

 0.09   1.1018(01)     4.1108(02)         1.4001(02)   3.6292(03) 

                                      𝜂 ↓  𝛿 = 0.05 

0.00   9.7200(02)      3.6404(02)          1.2294(02)   3.1778(03) 

0.05   1.0233(01)      3.8231(02)          1.2958(02)   3.3513(03) 

0.09   1.0632(01)      3.9658(02)          1.3483(02)   3.4905(03) 
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______________________________________________________ 

𝑻𝒂𝒃𝒍𝒆 𝟒.𝑴𝑨𝑬 𝒇𝒐𝒓 𝑰𝒍𝒍𝒖𝒔𝒕𝒓𝒂𝒕𝒊𝒐𝒏 𝟒 𝒇𝒐𝒓 𝒘𝒊𝒕𝒉 𝜺 = 𝟎. 𝟏 

___________________________________________________ 

𝑁 →        8                          32             128                    512 

________________________________________________________ 

                                         𝛿 ↓                              Proposed method 

0.00     9.0740(03)       5.2137(04)       3.2532(05)      2.0332(06) 

0.05     8.6107(03)       5.0104(04)       3.1181(05)       1.9483(06) 

0.09     8.1459(03)       4.7837(04)       2.9870(05)       1.8670(06) 

Results in [6] 

0.00     7.8474(02)        4.6789(02)     1.7279(02)      4.4308(03) 

0.05     9.2225(02)        3.8283(02)      1.4877(02)      3.8067(03) 

0.09     1.0509(01)        3.1492(02)      1.2993(02)      3.3193(03) 

_________________________________________________________ 

 

Table 5. MAE in Illustration 5 with 𝜺 = 𝟎. 𝟏 

__________________________________________________________ 

𝑁 →     8                        32                    128          512 

___________________________________________________________ 

                                          𝜂 ↓                             Proposed method 

0.00     9.0740(03)       5.2137(04)        3.2532(05)     2.0332(06) 

0.05     9.4199(03)       5.3953(04)        3.3648(05)     2.1027(06) 

0.09     9.6224(03)       5.5419(04)        3.4383(05)     2.1493(06) 

Results in [6] 

0.00    7.8474(02)         4.6789(02)        1.7279(02)      4.4308(03) 

0.05    6.8345(02)         5.5164(02)        1.9725(02)      5.0676(03) 

0.09    8.3282(02)         6.1682(02)        2.1696(02)      5.5845(03) 

_________________________________________________________ 

 

 

 

Table 6. MAE in Illustration 6 with 𝜀 = 0.1 

__________________________________________________________ 

𝑁 →     8                        32                    128          512 

___________________________________________________________ 
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                                       𝛿 ↓    𝜂 = 0.05            Proposed method 

0.00     1.8115(02)       1.0328(03)        6.4031(05)      4.0020(06) 

0.05     1.6810(02)       9.5187(04)       5.9260(05)      3.7026(06) 

0.09     1.5665(02)       8.8187(04)       5.5198(05)      3.4484(06) 

                                       𝜂 ↓   𝛿 = 0.05 

0.00     1.5365(02)        8.6624(04)       5.4148(05)      3.3829(06) 

0.05     1.6810(02)        9.5187(04)       5.9260(05)      3.7026(06) 

0.09     1.7866(02)        1.0172(03)       6.3105(05)      3.9437(06) 

                                       𝛿 ↓  𝜂 = 0.05              Results in [6] 

0.00     9.9300(02)     3.6850(02)         1.3316(02)       3.4288(03) 

0.05     9.9972(02)     3.2184(02)         1.1671(02)       2.9957(03) 

0.09     1.0044(01)     2.8503(02)        1.0389(02)       2.6637(03) 

                                            𝜂 ↓   𝛿 = 0.05 

0.00     1.0055(01)     2.7595(02)        1.0078(02)       2.5829(03) 

0.05     9.9972(02)     3.2184(02)        1.1671(02)       2.9957(03) 

0.09     9.9440(02)     3.5914(02)        1.2973(02)       3.3404(03) 

_______________________________________________________ 

 

                     

Fig. 1 Layer description in Illustration 1
 
with 𝜀 = 0.1        Fig. 2 Layer description in Illustration 2

 
with 𝜀 = 0.1 

                 

Fig. 3 Layer description in Illustration 3
 
with                          Fig. 4 Layer description in Illustration 3

 
with  

                        𝜀 = 0.1, 𝛿 = 0.5𝜀                                                                      𝜀 = 0.1, 𝜂 = 0.5𝜀 
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  Fig. 5 Layer description in Illustration 4 with 𝜀 = 0.1       Fig. 6 Layer description in Example 5 with 𝜀 = 0.1 

 

                

           Fig. 7 Layer description in Example 6 with                              Fig. 8 Layer description in Example 6 with 

                            𝜀 = 0.1, 𝛿 = 0.5𝜀                                                                               𝜀 = 0.1, 𝛿 = 0.5𝜀 
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