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Abstract:- Our project aims to create a pipelined-based approximate multiplier, integrating pipelining techniques 

into its design, inspired by successful approximations such as the high-accuracy approximate compressor. 

Recognizing the vital role of multipliers in applications needing extensive multiplication, their impact on power 

consumption is significant. An approximate multiplier proves to be a practical approach for minimizing critical 

path delay in situations where precision is less important. Balancing speed, space, power, and precision is essential 

for achieving swift computation. Utilizing an approximate multiplier allows for compromises between accuracy, 

energy efficiency, and area to improve performance. The seamless integration of Xilinx tools not only streamlines 

the design, simulation, and verification processes but also ensures that the multiplier adheres to the rigorous 

standards demanded by real-world applications, particularly within the realm of ALUs. The ALU performs a range 

of arithmetic operations (addition, subtraction, multiplication, division) and bitwise operations (AND, OR, XOR, 

etc.). It also includes a logic unit that handles logical operations and numerical tests, such as determining if a 

number is negative or if the output is zero. 

Keywords: Concept of approximate computing, pipelining. Approximate multipliers, high precision and 

reconfigurable approximate designs, VLSI application ALU, Digital Logic Design, Computer 

Arithmetic. 

 

1. Introduction 

The design of dynamically truncated approximate multipliers for Very Large-Scale Integration (VLSI) 

applications, it’s a critical aspect of modern DSP and computing systems. Multipliers are fundamental building 

blocks in many digital systems, including digital filters, FFT processors, and cryptographic algorithms, among 

others. The demand for high-performance multipliers in VLSI applications is driven by the need for efficient 

computation in areas such as wireless communications, multimedia processing, and data analytics, where power 

efficiency and speed are paramount. 

Traditional multipliers, especially those based on full parallel multiplication methods, face challenges in meeting 

the stringent requirements of modern VLSI applications due to their high computational intricacy and electrical 

usage. This has led to the exploration of alternative multiplier architectures that offer a balance between 

performance, power efficiency, and area. 

Approximate multipliers represent a class of solutions that aim to trade off exact arithmetic for improved 

performance or reduced resource utilization. These multipliers are designed to tolerate a certain degree 

of approximation error, which can be acceptable in many applications where the absolute accuracy of 

each multiplication is less critical than the overall system performance or power budget. 

Dynamically truncated approximate multipliers are a specific type of approximate multiplier architecture that 

selectively truncates the intermediate products' least significant bits, or LSBs during the multiplication process. 
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This technique can greatly cut down on the multiplier's processing complexity and power use making it more 

suitable for VLSI implementations. 

The design of dynamically truncated approximate multipliers involves several key considerations, including 

selecting truncation strategies, optimizing truncation points, and the management of approximation errors. These 

factors must be carefully balanced Make sure the multiplier satisfies the requirements application-specific 

requirements for accuracy, speed, and power efficiency. 

The development of high-performance dynamically truncated approximate multipliers for VLSI applications is 

therefore a multidisciplinary endeavor that combines principles from digital logic design, computer arithmetic, 

and VLSI. These multipliers have the potential to significantly increase the capabilities of the next digital systems 

through creative design methods and meticulous optimization. 

2. Objectives 

The objective of designing of high-performance dynamically truncated approximate multiplier for VLSI 

applications, a high accuracy approximate 4-2 compressor that can be used to construct an approximate multiplier 

is proposed. The proposed approximate multiplier dynamically truncates partial products to adjust the accuracy 

and a simple error compensation circuit is used to reduce the error distance. The proposed adjustable approximate 

multiplier shows a decrease in both delay and average power consumption when compared to the Wallace tree 

multiplier. In comparison to other approximate multipliers, our proposed multiplier demonstrates the minimal 

mean error distance and the most reduced average power consumption and finally, we are going to implement an 

8-bit ALU which performs some arithmetic and logical operations. In this Arithmetic Operation instead of a 

Multiplier block replacing with an Approximate Multiplier then we will synthesize and Simulate in Xilinx Vivado. 

3. Methods 

EXISTING METHOD 

Multipliers stand as essential components in computational systems, with a multitude of design strategies available 

for their creation. Among these, the Wallace tree method emerges as particularly effective, utilizing full-adder 

and half-adder circuits across three stages to facilitate parallel multiplication operations. This technique breaks 

down the multiplication process into three key phases: 

1. Initial multiplication, where Every bit of the multiplicand is multiplied by each bit of the multiplier, 

generating n^2 partial products. 

2. Reduction of partial products through successive layers of full-adder (FA) and half-adder (HA) blocks 

until only two sets remain. 

3. Final addition of the two resulting n-bit numbers using an n-bit adder. 

The reduction phase operates under specific rules: groups of three identical bits enter an FA, producing two bits 

of differing values; pairs of identical bits are processed by an HA; and individual bits advance to the next layer 

unaltered. 

An innovative design for a reversible 4x4 parallel multiplier, inspired by the Wallace tree, has been proposed. 

This design efficiently handles the multiplication of two 4-bit numbers, producing 16 partial products that are 

systematically reduced and added using FAs, HAs, and ultimately, a 4-bit carry ripple adder. The efficiency of a 

multiplier is closely tied to the speed at which partial products are generated and summed, highlighting the 

importance of minimizing the number of partial products and employing efficient addition mechanisms. 

The reduction phase operates under specific rules: groups of three identical bits enter an FA, producing two bits 

of differing values; pairs of identical bits are processed by an HA; and individual bits advance to the next layer 

unaltered. An innovative design for a reversible 4x4 parallel multiplier, inspired by the Wallace tree, has been 

proposed. This design efficiently handles the multiplication of two 4-bit numbers, producing 16 partial products 

that are systematically reduced and added using FAs, HAs, and ultimately, a 4-bit carry ripple adder. The 

efficiency of a multiplier is closely tied to the speed at which partial products are generated and summed, 

highlighting the importance of minimizing the number of partial products and employing efficient. 
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The distinction between half-adders, capable of adding only two numbers, and full-adders, designed for adding 

three 1-bit binary numbers including a carry bit, underscores the complexity of multiplier design. The hardware 

requirements for array multipliers, in terms of the number of full adders (FA) and the final adder length (FAL), 

vary depending on the multiplier size, as illustrated in the referenced figure. 

 

Fig 1: FULL ADDER 

When two outputs are produced from three inputs, the adder is called a full adder. Three inputs are carried as 

follows: A, B, and C are the initial two inputs. SUM denotes the regular output, while CARRY denotes the carry 

output. 

 

TABLE 1: Truth table of Full adder 

In the table mentioned earlier: 

- 'A' and 'B' denote the input variables, symbolizing the two crucial bits intended for addition. 

- 'Cin' signifies the carry input, which is the carry bit obtained from the preceding lower significant position. 

- 'Sum' and 'Carry' are the output variables, indicating the resulting values post addition. 

- The table encompasses eight rows beneath the input variables, illustrating every conceivable combination of 0s 

and 1s for these variables. 

An array multiplier presents an optimized configuration for a combinational multiplier. It enables the 

multiplication of two binary numbers through a single micro-operation, leveraging a combinational circuit to 

generate the product bits simultaneously. This method is particularly swift for multiplying numbers, as the sole 

delay factor is the propagation time of signals through the gates constituting the multiplication array. Considering 

two binary numbers, A and B, with m and n bits respectively, an array multiplier employs a series of AND gates 

to produce summands in parallel. Specifically, an n x n multiplier necessitates n(n-2) full adders, n half-adders, 

and n^2 AND gates. Furthermore, the maximum delay in an array multiplier scenario is calculated as (2n+1) times 

the delay of a single gate (td). 
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Fig 2: ARRAY MULTIPLIER 

Binary multiplication for positive numbers can be achieved using a two-dimensional combinational logic array, 

as demonstrated by a 4x4 array multiplier. This setup utilizes full adders and AND gates to determine whether 

multiplicand bits are added to partial products based on multiplier bit values. Each row computes the sum of the 

multiplicand and incoming partial product, generating an outgoing partial product if the multiplier bit equals 1. 

The worst-case signal delay occurs from the upper right corner to the bottom left corner of the array. Despite its 

efficiency, the array multiplier faces challenges with speed and power consumption, leading to the development 

of various low-power design techniques aimed at reducing dynamic power consumption. 

PROPOSED METHOD 

 

Fig 3: WALLACE MULTIPLIER 
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The Wallace tree module combines four partial products to produce two intermediate values for the final sum, 

potentially increasing area and capacitance requirements. Partially Guarded Computation (PGC) segments 

arithmetic units like adders and multipliers into two sections, deactivating the unused portion to reduce power 

usage. Reversible circuits maintain an equal number of inputs and outputs, allowing for a unique mapping between 

them—meaning outputs can be determined from inputs and vice versa. These circuits are assessed based on several 

factors, including the quantity of gates, constant inputs, unnecessary outputs (garbage outputs), Quantum Cost 

(QC), latency, and hardware intricacy. The gates count refers to the total number of reversible gates needed for 

the circuit. Constant inputs are fixed at either 0 or 1. Garbage outputs are those not used in subsequent calculations. 

Quantum Cost measures the total primitive quantum gates required for the circuit. Delay is calculated as the 

greatest number of gates along the critical path from input to output. 

PROPOSED METHOD 

In this initiative, we're integrating the pipeline concept into an approximate multiplier to boost performance and 

accelerate computational tasks. Our proposal includes an approximation method featuring dynamic truncation of 

partial products, followed by an error compensation circuit. This adaptable truncation technique facilitates 

dynamic input truncation, enabling the construction of a versatile multiplier. This contrasts with traditional precise 

Wallace tree implementations and our novel approach to a dynamically adjustable approximate multiplier process. 

 

Fig 4.1 (a),(b),(c)  OF APPROXIMATE MULTIPLIER AND EXACT WALLACE MULTIPLIER 

FLOW, PROPOSED PIPELINED MULTIPLICATION FLOW 

Figure 4.1(a) depicts the conventional multiplication method that guarantees precise results. The process begins 

with generating accurate partial products using 2-input AND gates, followed by compression with precise 

compressors. The final stage involves summing these compressed partial products using accurate adders to 

produce the result. In contrast, Figure 4.1(b) shows the non-pipelined approach for the proposed approximate 

multipliers. The main differences between conventional multiplication and the proposed method lie in the 

generation and compression of partial products. During the generation phase, dynamic input truncation modifies 

the partial products, as depicted in Figure 4.1(c), showcasing a pipelined base approximate multiplier. 

Pipelining Concept: Pipelining involves executing instructions sequentially through a pipeline, which organizes 

the storage and execution of instructions. This approach increases concurrency in systems that lack feedback 

loops. By overlapping multiple instructions during execution, pipelining divides the process into stages that form 

a pipeline structure. Instructions enter at one end and exit at the other, improving overall instruction throughput. 

Each stage of the pipeline includes an input register followed by a combinational circuit, which holds data and 

performs operations. The output from one stage’s combinational circuit is fed into the input register of the 

subsequent stage. Pipelining can reduce the critical path by strategically placing latches, thus enabling faster 

system operation. Essentially, it transforms a topology without feedback loops into one that is suitable for high-
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speed applications, overcoming the speed limitations of the original design. Although pipelining reduces the 

critical path, it introduces additional latches and delays, known as system latency. 

Approximate 4-2 Compressor: We present a high-accuracy, low-power approximate 4-2 compressor, as 

illustrated in Figure 4.2. Since a full-adder functions as a 3:2 compressor, we advance to an approximate 4:2 

compressor to improve upon the full adder. The design involves four inputs (X1 ∼ X4) generating W1 ∼ W4 

according to Equations (1)-(4). Recognizing that an incorrectly computed carry bit incurs twice the error distance 

of an incorrect sum bit, the proposed compressor ensures the carry bit is generated with precision. The equations 

for generating the carry bit are detailed in (5)-(7). The carry bit is set to 1 under three conditions, primarily when 

X1 and X2 are both 1. 

 

Fig 4.2 GATE-LEVEL IMPLEMENTATION OF PROPOSED 4-2 COMPRESSOR 

Another is X3 and X4 are both 1. The third is either of X1 or X2 is 1 and either of X3 or X4 is 1. (5) Checks the 

first two situations, and (6) checks the third situation. (7) Produces the final carry bit. 

W1 = X1 &X2                                            (1) 

W2 = X1 |X2                                              (2) 

W3 = X3&X4                                             (3) 

W4 = X3|X4                                               (4) 

W5 = W1|W3                                             (5) 

W6 = W2&W4                                           (6) 

CARRY = W5&W6                                   (7) 

The formula for generating the sum bit is presented in Equation (8). In a conventional 4-2 compressor, the sum 

bit is generated using four XOR gates within two full adders. In contrast, our proposed compressor produces the 

sum bit by feeding W2 and W4 into a 2-input XOR gate, utilizing signals used for the carry bit generation. This 

method reduces circuit area and static power consumption by sharing common signals. However, we found that 

relying solely on W2 and W4 in a 2-input XOR gate results in a significant error distance. This issue arises because 

W2 and W4 are derived from OR gates, causing errors when both X1 and X2 are 1 or both X3 and X4 are 1, which 

leads to an incorrect sum bit of 1 instead of 0. To improve accuracy, we include W5, a signal that detects these 

conditions, in the XOR gate. For example, if both X1 and X2 are 1, both W2 and W5 will be 1, and the sum bit 

will be '0 XOR W4', effectively becoming W4. In this scenario, only X3 and X4 need consideration. Nonetheless, 

when all four inputs are 1, the sum bit incorrectly results in 1, contributing to an error distance of 1. 

Sum = W5^ W2^W4                                     (8) 
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TABLE 2: Truth table of approximate 4:2 compressor 

For error detection, an additional AND gate is required to determine if both W1 and W3 are 1. This is because 

W1 uses an AND gate to check if both X1 and X2 are 1, and W3 uses an AND gate to verify if both X3 and X4 

are 1. The error detection circuit (EDC) is described by Equation (9). Consequently, To implement error 

compensation for the proposed 4-2 compressor, we can easily add an extra AND gate. The error compensation is 

defined as 

Error = X3 & X4            (9). 

 For an adjustable approximate multiplier in operation, we suggest a dynamic input truncation method that 

employs two 2-input AND gates, as illustrated in Figure 4.3. This method generates a partial product, defined by 

Equation (10), where A is the multiplicand and B is the multiplier. The Trunc signal determines whether the partial 

product PPD should be truncated; if Trunc is set to 1, the PPD is zeroed out. Specifically, Trunc signals help 

conserve power by reducing PPDs to zero during multiplication, effectively enabling or disabling hardware units 

in the relevant columns. 

          PPDij = (~Trunc & Bi )&Aj           (10) 

 

 

Fig 4.3. MODIFIED PARTIAL PRODUCT 

In an 8 × 8 multiplier, each bit of the multiplier is matched with eight bits of the multiplicand, enabling a reduction 

in hardware costs by utilizing shared gates along with an additional AND gate. For example, PPD00 is computed 

as ~Trunc0·B0·A0, and PPD01 as ~Trunc0·B0·A1. Here, ~Trunc0·B0 can be pre-computed to form a mask, 

requiring only three 2-input AND gates, as depicted in Figure 4.4. The handling of Trunc signals in the proposed 

approximate multiplier provides flexibility for dynamic adjustments. 
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Fig4.4 A GATE SHARING EXAMPLE TO REDUCE THE NUMBER OF GATES 

Figure 4.5 depicts an approximate multiplier utilizing the suggested methodology. Although the multiplier's input 

width is designed for 8 bits, this technique can be scaled to accommodate larger multipliers. The proposed 

approximate multiplier operates in three phases. In the first phase, each partial product is generated using two 2-

input AND gates, as shown in Figure 4.3. The gate-sharing approach illustrated in Figure 4.4 is then applied to 

further reduce hardware costs. The accuracy of the resulting partial product can be adjusted according to the Trunc 

signal, depending on the desired outcome. To enhance and optimize control efficiency and lower hardware costs, 

our proposed approximate multiplier Features a 4-bit Trunc signal, with each bit controlling multiple columns of 

partial products, referred to as a '3-4-4-4 partition.' Specifically, from the most significant bit (MSB) to the least 

significant bit (LSB), each bit governs columns 14th to 12th, 11th to 8th, 7th to 4th, and 3rd to 0th, which are 

indicated by khaki, sky blue, green, and black in Stage 2 of Figure 4.5. For example, if Trunc (3-0) is set to 01012, 

the columns 14th to 12th and 7th to 4th will be accurate, while the columns 11th to 8th and 3rd to 0th will be 

truncated. 

The second phase delineates the process of compressing the partial products. Following their generation, these 

products are categorized into two zones: the accurate zone encompassing columns 14th to 8th, and the approximate 

zone covering columns 7th to 0th. The division into accurate and approximate regions is based on a 

straightforward half-and-half allocation. Performing For example, a 30-70 split would lead to significant accuracy 

loss because of the heavy reliance on the approximate multiplier. On the other hand, a 70-30 split would reduce 

the advantages of approximate computing in terms of power savings. 

 

 

Fig 4.5 PROPOSED APPROXIMATE MULTIPLIER 
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Since partial products in the accurate region are more significant, we use precise 4-2 compressors to process these 

products. In the approximate region, we utilize our proposed approximate 4-2 compressors along with an error 

compensation circuit. In the third phase, outcomes are generated using OR gates in columns from the 3rd to the 

0th, without carry propagation, since errors in these columns, being close to the least significant bit (LSB), have 

a minimal effect on the final output. Errors identified In the second stage, an Error Detection Circuit (EDC), which 

includes a single AND gate, determines if a compensation bit is needed. For the remaining columns, partial 

products are compressed using a mix of our proposed approximate 4-2 compressors, accurate 4-2 compressors, 

full adders, and half adders. After the third stage, the final two rows of partial products are obtained and then 

summed with accurate adders to produce the final results. 

APPLICATION: 

Developing an 8-bit ALU that encompasses a wide array of operations, such as addition, subtraction, approximate 

multiplication, and various logical functions, signifies a considerable advancement in digital computing 

technology. 

 

Fig 5: 8-BIT ALU 

This unified module not only enhances the ALU's versatility and efficiency in processing binary data within digital 

systems but also integrates functionalities that extend beyond traditional arithmetic operations. Specifically, the 

inclusion of approximate multiplication allows the ALU to perform complex calculations with reasonable 

accuracy, proving particularly advantageous in uses, such signal processing, where exact multiplication is not 

essential or machine learning algorithms. Moreover, the ALU's design incorporates logical operations such as 

AND, OR, XOR, negation, incrementation, and decrementation, significantly expanding its utility. These 

operations, foundational to Boolean algebra, are extensively applied in digital circuit design, data manipulation, 

and control flow operations, underscoring the ALU's broad applicability. 

The ALU's adaptability is further demonstrated by its ability to select specific operations based on control signals, 

allowing users to customize its functionality to meet a variety of computational demands. This flexibility is crucial 

across numerous computing scenarios, from arithmetic calculations to bitwise manipulations and data 

transformations, highlighting the ALU's role in enhancing processing speed and efficiency through parallel 

operation capability. 

In summary, this project underscores the significance of designing and integrating discrete components to create 

a functional ALU capable of efficiently handling a wide range of computational tasks, emphasizing the importance 

of such advancements in advancing digital computing technology. 

 

 

 

4. Results 
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Fig 6: RTL SCHEMATIC OF PROPOSED APPROXIMATE MULTIPLIER 

 

 

Fig 7: TECHNOLOGY SCHEMATIC OF PROPOSED APPROXIMATE MULTIPLIER 

 

Fig 8: SIMULATION OF PROPOSED APPROXIMATE MULTIPLIER 
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Fig 9: RTL SCHEMATIC OF 8-BIT ALU 

 

Fig 10: TECHNOLOGY SCHEMATIC OF 8 BIT ALU 

 

FIG11: SIMULATION WAVEFORM OF 8-BIT ALU 
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COMPARISON TABLE:    

Artix 7 AREA 

(LUT) 

POWER 

(mw) 

DELAY 

(ns) 

Zynq 7000 AREA 

(LUT) 

POWER 

(mw) 

DELAY 

(ns) 

APPROX_MUL 86   175 8.563 APPROX_MUL 86  86   1039 

Proposed_APP_MUL  86 176 5.540 Proposed_ APP_MUL  86  86 1039 

ALU_ 

APPROX_MUL 

142 153 5.548 ALU_ 

APPROX_MUL 

142 142 558 

ALU_ 

Prop_APPROX_MUL 

142 156 5.540 ALU_ 

Prop_APPROX_MUL 

142 142 716 

 

TABLE 3: ARTIX7 and ZYNQ7000 boards results 

Designing high-performance dynamically truncated approximation multipliers for VLSI applications involves a 

trade-off between power consumption and delay. Optimizing for one parameter typically means sacrificing 

another, and this trade-off is inherent in the design process of digital circuits. The goal is to find a balance that 

meets the specific requirements of the application, such as achieving a desired level of performance with minimal 

power consumption. 

Insights from the Source: 

Delay Reduction with Minimal Power Increase: The research outlined in the thesis demonstrates that it is possible 

to reduce delay by up to 43% with only a 1% to 8% increase in power using optimized algorithms and cell libraries. 

This indicates that careful design and optimization can mitigate the trade-off between power and delay to some 

extent 

5. Discussion 

In this work, the proposed multiplier employs dynamic truncation of partial products to adjust accuracy levels and 

incorporates a simple error compensation circuit to reduce errors. Compared to the Wallace tree multiplier, the 

adjustable approximate multiplier in our proposal demonstrates decreased delay and lower average power usage. 

When contrasted with other approximate multipliers, our design stands out for its smaller mean error distance and 

lesser average power consumption. Additionally, we intend to develop an 8-bit Arithmetic Logic Unit (ALU) that 

performs a variety of arithmetic and logical operations. This involves integrating the Multiplier component with 

the Approximate Multiplier, followed by synthesis and simulation processes in Xilinx Vivado. We apply the 

principles of pipelining to alleviate delay issues while managing power consumption, all while preserving area 

efficiency. 
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