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1. Introduction 

Lorentzian manifolds are smooth manifolds equipped with a Lorentzian metric, which generalizes the notion of 

distance and angle from Euclidean spaces to spaces with a non-degenerate, indefinite quadratic form. These 

manifolds often arise in the study of general relativity, where spacetime is modeled as a Lorentzian manifold.  

This paper contains the term 𝑁-projective curvature tensor , which was first introduced by G.P. Pokhariyal and 

R.S. Mishra [3]. This curvature tensor has further been studied by R. H. Ojha[4] and many other researchers [5, 

6, 7, 8, 9, 1, 2]. For more details, we refer to [21, 22, 23, 24, 25, 26, 27, 28, 29] and the references therein. 

The type (0,3) 𝑁-projective curvature tensor 𝑁∗ is given by 

𝑁∗(𝑈, 𝑉)𝑊 = 𝑅(𝑈, 𝑉)𝑊 −
1

2(𝑛−1)
[𝑆(𝑉, 𝑊)𝑈 − 𝑆(𝑈, 𝑊)𝑉 + 𝑔(𝑉, 𝑊)𝑄𝑈 − 𝑔(𝑈, 𝑊)𝑄𝑉]             (1.1) 

 for all vector fields 𝑈, 𝑉 and 𝑊 ∈ 𝜒(  𝑀).  

The symbol 𝑅(𝑈, 𝑉)𝑊 refers to the Riemannian curvature tensor of type (0, 3) and S denotes the Ricci tensor, 

i.e, 𝑆(𝐿, 𝑀) = 𝑔(𝑄𝐿, 𝑀), where 𝑄 being the Ricci operator of type (1,1). The type (0,4) 𝑁-projective curvature 

tensor field 𝑁∗ is given by 

 ′𝑁∗(𝑈, 𝑉, 𝑊, 𝐿) = ′𝑅(𝑈, 𝑉, 𝑊, 𝐿) −
1

2(𝑛−1)
[𝑆(𝑉, 𝑊)𝑔(𝑈, 𝐿) − 𝑆(𝑈, 𝑊)𝑔(𝑉, 𝐿) + 𝑔(𝑉, 𝑊)𝑆(𝑈, 𝐿) −

𝑔(𝑈, 𝑊)𝑆(𝑉, 𝐿)]                                                                                                                                                 (1.2) 

 where, ′𝑁∗(𝑈, 𝑉, 𝑊, 𝐿) = 𝑔(𝑁∗(𝑈, 𝑉)𝑊, 𝐿) and ′𝑅(𝑈, 𝑉, 𝑊, 𝐿) = 𝑔(𝑅(𝑈, 𝑉)𝑊, 𝐿) 

for arbitrary vector fields 𝑈, 𝑉, 𝑊, 𝐿 ∈ 𝜒(𝑀). C.A. Mantica and Y.J. Suh [11] considered a new symmetric 

tensor 𝑍 of type (0,2), given by 
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                                                                   𝑍(𝑈, 𝑉) = 𝑆(𝑈, 𝑉) + 𝜔𝑔(𝑈, 𝑉)                                                      (1.3) 

with 𝜔 as an arbitrary scalar function. This tensor 𝑍 has been used by [12, 13] to obtain a new tensor field out of 

a given tensor field. We use it to generalise the 𝑁∗-projective curvature tensor. Using equation (3) in the 

equation (2), we get 

  ′𝑁∗(𝑈, 𝑉, 𝑊, 𝐿) = ′𝑅(𝑈, 𝑉, 𝑊, 𝐿) −
1

2(𝑛−1)
[𝑍(𝑉, 𝑊)𝑔(𝑈, 𝐿) − 𝑍(𝑈, 𝑊)𝑔(𝑉, 𝐿) + 𝑔(𝑉, 𝑊)𝑍(𝑈, 𝐿) − 

                            𝑔(𝑈, 𝑊)𝑍(𝑉, 𝐿)  −
𝜔

(𝑛−1)
[𝑔(𝑈, 𝑊)𝑍(𝑉, 𝐿) − 𝑔(𝑉, 𝑊)𝑍(𝑈, 𝐿))]                                          (1.4) 

If we denote the first five terms on the right hand side of the above equation by ′𝑁∗∗(𝑈, 𝑉, 𝑊, 𝐿), i.e.,  

′𝑁∗∗(𝑈, 𝑉, 𝑊, 𝐿) = ′𝑅(𝑈, 𝑉, 𝑊, 𝐿) −
1

2(𝑛−1)
[𝑍(𝑉, 𝑊)𝑔(𝑈, 𝐿) −  𝑍(𝑈, 𝑊)𝑔(𝑉, 𝐿) + 𝑔(𝑉, 𝑊)𝑍(𝑈, 𝐿) −

                                                    𝑔(𝑈, 𝑊)𝑍(𝑉, 𝐿)]                                                                                                   (1.5) 

then the equation (4) can be rewritten as  

′𝑁∗∗(𝑈, 𝑉, 𝑊, 𝐿) = ′𝑁∗(𝑈, 𝑉, 𝑊, 𝐿) +
𝜔

(𝑛−1)
[𝑔(𝑈, 𝑊)𝑍(𝑉, 𝐿) − 𝑔(𝑉, 𝑊)𝑍(𝑈, 𝐿))]                           (1.6) 

The new tensor field ′𝑁∗∗ defined by the equation (1.6) is termed as generalized 𝑁-projective curvature tensor. 

The concept of Zamkovoy cannonical connection or in short Zamkovoy connection was first introduced by S. 

Zamkovoy [10] on a para-contact manifold. After this introduction many authors have developed and studied 

Zamkovoy connection on many different manifolds such as generalized pseudo-Ricci symmetric Sasakian 

manifolds [14], almost pseudo-symmetric Sasakian manifolds [15], para-Kenmotsu manifold [16], Sasakian 

manifolds [17] and LP-Sasakian manifolds [18].  

For an 𝑛-dimensional almost contact metric manifold M equipped with metric structure (𝜙, 𝜉, 𝜂, 𝑔) consisting of 

a (1,1) tensor field 𝜙 , a vector field 𝜉 , a 1-form 𝜂 and a Riemannian metric 𝑔, the relation between Zamkovoy 

connection ∇̆ and Levi-civita connection ∇ is given by 

 

                                 ∇̆𝑈𝑉 = ∇𝑈𝑉 + (∇𝑈𝜂)(𝑉)𝜉 − 𝜂(𝑉)∇𝑈𝜉 + 𝜂(𝑈)𝜙𝑉                                           (1.7) 

 for all 𝑈, 𝑉 ∈ 𝜒(𝑀). 

This paper delves into the study of the generalized 𝑁-projective curvature tensor of Lorentzian 𝛽-Kenmotsu 

Manifold with respect to the Zamkovoy connection, exploring various properties. The paper is divided into six 

parts:  

o Section 2 gives preliminaries on the Lorentzian 𝛽-Kenmotsu Manifold .  

o Section 3 describes about the generalized 𝑁-projective curvature tensor in Lorentzian 𝛽-Kenmotsu 

Manifold with the Zamkovoy connection.  

o Section 4 provides proof that the generalized 𝑁-projectively semi-symmetric Lorentzian 𝛽-Kenmotsu 

Manifold with Zamkovoy connection is an Einstein manifold.  

o Section 5 gives the result that generalized 𝑁-projectively Lorentzian 𝛽-Kenmotsu Manifold is either an 

Einstein manifold or 𝜔 = 𝛽2 (1−𝑛)

2
.  

o Finally, in the last section, we provide proof that Lorentzian 𝛽-Kenmotsu Manifold satisfying 

𝜙2((∇𝐿𝑁̆∗∗)(𝑈, 𝑉)𝑊) = 0 is an Einstein manifold.  
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2.  Preliminaries 

Let 𝑀 be a differentiable manifold of dimension 𝑛. We call 𝑀 as Lorentzian 𝛽-Kenmotsu manifold if it admits a 

(1, 1)-tensor field 𝜙, a contravariant vector field 𝜉, a covariant vector field 𝜂 and Lorentzian metric 𝑔 which 

satisfy[19] 

                                                                                   𝜂(𝜉) = −1,                                                    (2.1) 

                                                                                    𝜙𝜉 = 0,                                                                           (2.2) 

                                                                                   𝜂(𝜙𝑈) = 0,                                                                      (2.3) 

                                                                            𝜙2𝑈 = 𝑈 + 𝜂(𝑈)𝜉,                                                                 (2.4) 

                                                                                 𝑔(𝑈, 𝜉) = 𝜂(𝑈),                                                                 (2.5) 

                                                               𝑔(𝜙(𝑈), 𝜙(𝑉)) = 𝑔(𝑈, 𝑉) + 𝜂(𝑈)𝜂(𝑉),                                            (2.6) 

for all 𝑈, 𝑉 ∈ 𝜒(𝑀). 

Also, an Lorentzian 𝛽-Kenmotsu manifold 𝑀 is satisfying  

                                                            ∇𝑈𝜉 = −𝛽[𝑈 + 𝜂(𝑈)𝜉],                                                           (2.7) 

                                                                ∇𝑈𝜂(𝑉) = 𝛽[𝑔(𝑈, 𝑉) − 𝜂(𝑈)𝜂(𝑉)],                                                  (2.8) 

                                                               (∇𝑈𝜙)𝑉 = 𝛽[𝑔(𝜙𝑈, 𝑉) + 𝜂(𝑉)𝜙𝑈],                                                   (2.9) 

 

where '∇' denotes the operator of covariant differentiation with respect to the Lorentzian metric 𝑔. 

Further, on an Lorentzian 𝛽-Kenmotsu manifold 𝑀 the following relations hold [19]  

                                         𝜂(𝑅(𝑈, 𝑉)𝑊) = 𝛽2[𝑔(𝑈, 𝑊)𝜂(𝑉) − 𝑔(𝑉, 𝑊)𝜂(𝑈)],                              (2.10) 

                                                                   𝑅(𝜉, 𝑈)𝑉 = 𝛽2[𝜂(𝑉)𝑈 − 𝑔(𝑈, 𝑉)𝜉],                                            (2.11) 

                                                                    𝑅(𝑈, 𝑉)𝜉 = 𝛽2[𝜂(𝑈)𝑉 − 𝜂(𝑉)𝑈],                                               (2.12) 

                                                                      𝑆(𝑈, 𝜉) = −(𝑛 − 1)𝛽2𝜂(𝑈),                                                      (2.13) 

                                                                           𝑄𝜉 = −(𝑛 − 1)𝛽2𝜉,                                                             (2.14) 

                                                                          𝑆(𝜉, 𝜉) = (𝑛 − 1)𝛽2,                                                              (2.15) 

                                                                         𝑔(𝜉, 𝜉) = 𝜂(𝜉) = −1,                                                              (2.16) 

 

 

Definition  2.1 

Let 𝑀 be a Lorentzian 𝛽-Kenmotsu manifold. We call 𝑀 as generalized 𝜂-Einstein manifold if its Ricci tensor 𝑆 

is of the form [20] 

S(U,V )= 𝛼1𝑔(𝑈, 𝑉)+𝛼2𝜂(𝑈)𝜂(𝑉), 

where, 𝛼1 and 𝛼2 are smooth functions on 𝑀. 

For the case, when 𝛼3 = 0 and 𝛼2 = 𝛼3 = 0, then the manifold is said to be an 𝜂-Einstein and Einstein, 

respectively. 
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3.  Generalized 𝑵-Projective Curvature Tensor in Lorentzian 𝜷-Kenmotsu Manifold 

The focus of this section is on examining the 𝑁-Projective Curvature Tensor of Lorentzian 𝛽-Kenmotsu 

Manifold with respect to the Zamkovoy connection. We then generalize its properties by introducing the tensor 

𝑍. 

Adopting a similar format as in equation (1.1), we define the 𝑁-projective curvature tensor 𝑁̆ with respect to the 

Zamkovoy connection ∇̆ by the following relation  

        𝑁̆∗(𝑈, 𝑉)𝑊 = 𝑅̆(𝑈, 𝑉)𝑊 −
1

2(𝑛−1)
[𝑆̆(𝑉, 𝑊)𝑈 − 𝑆̆(𝑈, 𝑊)𝑉 + 𝑔(𝑉, 𝑊)𝑄̆𝑈 − 𝑔(𝑈, 𝑊)𝑄̆𝑉]                   (3.1) 

Upon taking the inner product of 𝑁̆∗(𝑈, 𝑉)𝑊 with the metric tensor 𝑔, we the type (0,4) tensor field ′𝑁̆∗ shown 

below  

′𝑁̆∗(𝑈, 𝑉, 𝑊, 𝑋) = ′𝑅̆(𝑈, 𝑉, 𝑊, 𝑋) −
1

2(𝑛 − 1)
[𝑆̆(𝑉, 𝑊)𝑔(𝑈, 𝑋) − 𝑆̆(𝑈, 𝑊)𝑔(𝑉, 𝑋) + 𝑔(𝑉, 𝑊)𝑆̆(𝑈, 𝑋) 

                                                                                        −𝑔(𝑈, 𝑊)𝑆̆(𝑉, 𝑋)]                                                      (3.2) 

where  

 ′𝑁̆∗(𝑈, 𝑉, 𝑊, 𝑋) = 𝑔(𝑁̆∗(𝑈, 𝑉, 𝑊), 𝑋) 

and  

 ′𝑅̆(𝑈, 𝑉, 𝑊, 𝑋) = 𝑔(𝑅̆(𝑈, 𝑉, 𝑊), 𝑋) 

where 𝑈, 𝑉, 𝑊 and 𝑋 are vector fields. Moreover, performing covariant differentiation of equation (3.1) with 

respect to 𝐿 results in  

    (∇𝐿𝑁̆∗)(𝑈, 𝑉, 𝑊) = (∇𝐿𝑅̆)(𝑈, 𝑉, 𝑊) −
1

2(𝑛−1)
[(∇𝐿𝑆̆)(𝑉, 𝑊)𝑈 − (∇𝐿𝑆̆)(𝑈, 𝑊)𝑉 +                      (3.3) 

𝑔(𝑉, 𝑊)(∇𝐿𝑄̆)𝑈 − 𝑔(𝑈, 𝑊)(∇𝐿𝑄̆)𝑉] 

The expression (3.1) is rewritten using relation (1.3) in the following manner  

          ′𝑁̆∗(𝑈, 𝑉, 𝑊, 𝑋) = ′𝑅̆(𝑈, 𝑉, 𝑊, 𝑋) −
1

2(𝑛−1)
[𝑍(𝑉, 𝑊)𝑔(𝑈, 𝑋) − 𝑍(𝑈, 𝑊)𝑔(𝑉, 𝑋) +               (3.4) 

                 𝑔(𝑉, 𝑊)𝑍(𝑈, 𝑋) − 𝑔(𝑈, 𝑊)𝑍(𝑉, 𝑋)] −
𝜔

(𝑛−1)
[𝑔(𝑈, 𝑊)𝑔(𝑉, 𝑋) − 𝑔(𝑈, 𝑋)𝑔(𝑉, 𝑊)] 

To construct a new tensor field from the expression provided above, we pick the first five terms on the right-

hand side and write  

          ′𝑁̆∗∗(𝑈, 𝑉, 𝑊, 𝑋) = ′𝑅̆(𝑈, 𝑉, 𝑊, 𝑋) −
1

2(𝑛−1)
[𝑍(𝑉, 𝑊)𝑔(𝑈, 𝑋) − 𝑍(𝑈, 𝑊)𝑔(𝑉, 𝑋)                  (3.5) 

+𝑔(𝑉, 𝑊)𝑍(𝑈, 𝑋) − 𝑔(𝑈, 𝑊)𝑍(𝑉, 𝑋)] 

We denote the tensor ′𝑁̆∗∗ , derived from the equation provided, as the generalized 𝑁-projective curvature tensor 

for Lorentzian 𝛽-Kenmotsu manifolds with respect to the Zamkovoy connection. 

Considering equation (3.5), equation (3.4) is rewritten as  

           ′𝑁̆∗∗(𝑈, 𝑉, 𝑊, 𝑋) = ′𝑁̆∗(𝑈, 𝑉, 𝑊, 𝑋) +
𝜔

(𝑛−1)
[𝑔(𝑈, 𝑊)𝑔(𝑉, 𝑋) − 𝑔(𝑈, 𝑋)𝑔(𝑉, 𝑊)]               (3.6) 

Clearly, by setting 𝜔 = 0, it follows from equation (3.6) that  

                                                 ′𝑁̆∗∗(𝑈, 𝑉, 𝑊, 𝑋) = ′𝑁̆∗(𝑈, 𝑉, 𝑊, 𝑋),                                                  (3.7) 
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Hence, when the scalar function 𝜔 becomes zero, it indicates that the two tensor fields, namely the 𝑁-projective 

and generalized 𝑁-projective curvature tensor fields, are identical. 

Remark 3.1 It is very easy to note that the 𝑁-projective curvature tensor field of a Lorentzian 𝛽-Kenmotsu 

manifold relative to the Zamkovoy connection ∇̆ satisfies the following properties:   

1. ′𝑁̆∗(𝑈, 𝑉, 𝑊, 𝑋) + ′𝑁̆∗(𝑉, 𝑈, 𝑊, 𝑋) = 0,  

2. ′𝑁̆∗(𝑈, 𝑉, 𝑊, 𝑋) + ′𝑁̆∗(𝑈, 𝑉, 𝑋, 𝑊) = 0  

3. ′𝑁̆∗(𝑈, 𝑉, 𝑊, 𝑋) = ′𝑁̆∗(𝑊, 𝑋, 𝑈, 𝑉)  

Theorem 3.1 Generalized N-projective curvature tensor 𝑁∗∗ of a Lorentzian 𝛽-Kenmotsu manifold relative to 

the Zamkovoy connection ∇̆ is satisfies the following properties:   

1. ′𝑁̆∗∗(𝑈, 𝑉, 𝑊, 𝑋) + ′𝑁̆∗∗(𝑉, 𝑈, 𝑊, 𝑋) = 0,  

2. ′𝑁̆∗∗(𝑈, 𝑉, 𝑊, 𝑋) + ′𝑁̆∗∗(𝑈, 𝑉, 𝑋, 𝑊) = 0  

3. ′𝑁̆∗∗(𝑈, 𝑉, 𝑊, 𝑋) = ′𝑁̆∗∗(𝑊, 𝑋, 𝑈, 𝑉) 

 Proof: 

1) Interchanging the vector fields in first two slots in the equation (3.6) to obtain  

          ′𝑁̆∗∗(𝑉, 𝑈, 𝑊, 𝑋) = ′𝑁̆∗(𝑉, 𝑈, 𝑊, 𝑋) +
𝜔

(𝑛−1)
[𝑔(𝑉, 𝑊)𝑔(𝑈, 𝑋) − 𝑔(𝑉, 𝑋)𝑔(𝑈, 𝑊)]                (3.8) 

Next, we combine equations (3.6) and (3.8), applying property (I) from remark (3.1) to obtain  

 ′𝑁̆∗∗(𝑈, 𝑉, 𝑊, 𝑋) = −′𝑁̆∗∗(𝑉, 𝑈, 𝑊, 𝑋) 

Which provides evidence of the skew symmetry of the generalized 𝑁-projective curvature tensor ′𝑁̆∗∗ in the first 

two slots. 

2) We now exchange the vector fields in the last two slots of equation (3.6) to yield  

           ′𝑁̆∗∗(𝑈, 𝑉, 𝑋, 𝑊) = ′𝑁̆∗(𝑈, 𝑉, 𝑋, 𝑊) +
𝜔

(𝑛−1)
[𝑔(𝑈, 𝑋)𝑔(𝑉, 𝑊) − 𝑔(𝑈, 𝑊)𝑔(𝑉, 𝑋)]               (3.9) 

Next, we combine equations (3.6) and (3.9), applying property (II) from remark (3.1) to obtain  

 ′𝑁̆∗∗(𝑈, 𝑉, 𝑊, 𝑋) = −′𝑁̆∗∗(𝑈, 𝑉, 𝑋, 𝑊) 

This validates the skew symmetry of the tensor field ′𝑁̆∗∗ in the last two slots. 3) Proceeding further, we 

interchange 𝑈 with 𝑊 and 𝑉 with 𝐿 in equation (3.6) to obtain  

        ′𝑁̆∗∗(𝑊, 𝑋, 𝑈, 𝑉) = ′𝑁̆∗(𝑈, 𝑉, 𝑋, 𝑊) +
𝜔

(𝑛−1)
[𝑔(𝑈, 𝑋)𝑔(𝑉, 𝑊) − 𝑔(𝑈, 𝑊)𝑔(𝑉, 𝑋)]                (3.10) 

Considering property (III) from remark (3.1), the combination of equations (3.6) and (3.10) results in  

 ′𝑁̆∗(𝑈, 𝑉, 𝑊, 𝑋) = ′𝑁̆∗(𝑊, 𝑋, 𝑈, 𝑉) 

which verifies the symmetry of the tensor field ′𝑁̆∗ in the pair of slots. 

Theorem 3.2 The generalized N-projective curvature tensor field 𝑁̆∗∗ of Lorentzian 𝛽-Kenmotsu manifold 

relative to the Zamkovoy connection satisfies the Bianchi’s first identity 

𝑁̆∗∗(𝑈, 𝑉)𝑊 + 𝑁̆∗∗(𝑉, 𝑊)𝑈 + 𝑁̆∗∗(𝑊, 𝑈)𝑉 = 0. 

 Proof: 

From the equation (3.6), we have  

                     𝑁̆∗∗(𝑈, 𝑉)𝑊 = 𝑁̆∗(𝑈, 𝑉)𝑊 +
𝜔

(𝑛−1)
[𝑔(𝑈, 𝑊)𝑉 − 𝑔(𝑉, 𝑊)𝑈],                                   (3.11) 
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Rearranging 𝑈, 𝑉, and 𝑊 cyclically in the equation above, we formulate the following two equations  

                               𝑁̆∗∗(𝑉, 𝑊)𝑈 = 𝑁̆∗(𝑉, 𝑊)𝑈 +
𝜔

(𝑛−1)
[𝑔(𝑉, 𝑈)𝑊 − 𝑔(𝑊, 𝑈)𝑉]                          (3.12) 

and  

                              𝑁̆∗∗(𝑊, 𝑈)𝑉 = 𝑁̆∗(𝑊, 𝑈)𝑉 +
𝜔

(𝑛−1)
[𝑔(𝑊, 𝑉)𝑈 − 𝑔(𝑈, 𝑉)𝑊]                           (3.13) 

Summing up equations (3.11), (3.12), and (3.13), and utilizing the fact that  

                                              𝑁̆∗(𝑈, 𝑉)𝑊 + 𝑁̆∗(𝑉, 𝑊)𝑈 + 𝑁̆∗(𝑊, 𝑈)𝑉 = 0                                    (3.14) 

 we obtain  

                                             𝑁̆∗∗(𝑈, 𝑉)𝑊 + 𝑁̆∗∗(𝑉, 𝑊)𝑈 + 𝑁̆∗∗(𝑊, 𝑈)𝑉 = 0                                 (3.15) 

Hence, the theorem holds. 

Theorem 3.3 The generalized 𝑁-projective curvature tensor field 𝑁̆∗∗ of Lorentzian 𝛽-Kenmotsu manifold 

relative to the Zamkovoy connection satisfies the following identities:  

a)  𝑁̆∗∗(𝑈, 𝑉)𝑊 = [
3𝛽2

2
+

𝜔

(𝑛−1)
][𝑔(𝑈, 𝑊)𝑉 − 𝑔(𝑉, 𝑊)𝑈] +

1

2(𝑛−1)
[𝑆(𝑈, 𝑊)𝑉 − 𝑆(𝑉, 𝑊)𝑈] 

b)  𝑁̆∗∗(𝜉, 𝑉)𝑊 = −𝑁̆∗∗(𝑉, 𝜉)𝑊 = [
𝛽2

2
+

𝜔

(𝑛−1)
][𝜂(𝑊)𝑉 − 𝑔(𝑉, 𝑊)𝜉] +

1

2(𝑛−1)
[𝜂(𝑊)𝑄𝑉 − 𝑆(𝑉, 𝑊)𝑈𝜉] 

c) 𝑁̆∗∗(𝑈, 𝑉)𝜉 = [
𝛽2

2
+

𝜔

(𝑛−1)
][𝜂(𝑈)𝑉 − 𝜂(𝑉)𝑈] +

1

2(𝑛−1)
[𝜂(𝑈)𝑄𝑉 − 𝜂(𝑉)𝑄𝑈] 

Proof- 

a) By performing the inner product operation on equation (3.11) using 𝜉, we arrive at  

 𝜂(𝑁̆∗∗(𝑈, 𝑉)𝑊) = 𝜂(𝑁̆∗(𝑈, 𝑉)𝑊) +
𝜔

(𝑛−1)
[𝑔(𝑈, 𝑊)𝜂(𝑉) − 𝑔(𝑉, 𝑊)𝜂(𝑈)] 

 Now, Applying equations (2.6), (2.11), (2.21), (2.23), and (3.1) as described above leads to the desired 

outcome. 

b) Now, Substituting 𝜉 in place of 𝑈 within equation (3.11), the expression becomes  

 𝑁̆∗∗(𝜉, 𝑉)𝑊 = 𝑁̆∗(𝜉, 𝑉)𝑊 +
𝜔

(𝑛−1)
[𝑔(𝜉, 𝑊)𝑉 − 𝑔(𝑉, 𝑊)𝜉] 

 By incorporating equations (2.6), (2.21), (2.23), and (3.1) into the equation provided, we obtain the result. 

c) When 𝑊 is replaced by 𝜉 in equation (3.11), the resulting expression is  

 𝑁̆∗∗(𝑈, 𝑉)𝜉 = 𝑁̆∗(𝑈, 𝑉)𝜉 +
𝜔

(𝑛−1)
[𝑔(𝑈, 𝜉)𝑉 − 𝑔(𝑉, 𝜉)𝑈] 

 which, in view of the equations (2.6), (2.21), (2.22) and (3.1), proves the result.  

4. Generalized 𝑵-projectively Lorentzian 𝜷-Kenmotsu Manifold with Zamkovoy connection satisfying 

(𝑹(𝝃, 𝒀). 𝑵̆∗∗). (𝑼, 𝑽)𝑾 

Within this section, we examine Lorentzian 𝛽-Kenmotsu Manifolds that are generalized 𝑁-projectively semi-

symmetric, with respect to the Zamkovoy connection. 

Definition 4.1. A para-Kenmotsu manifold is called as semi-symmetric manifold [30] if its curvature tensor 

satisfies  

                                                           𝑅(𝑈, 𝑉). 𝑅 = 0,                                                                          (4.1) 

 where the curvature operator 𝑅(𝑈, 𝑉) is the derivation of the tensor algebra at each point of the manifold. 



Tuijin Jishu/Journal of Propulsion Technology 

ISSN: 1001-4055 

Vol. 45 No. 3 (2024) 

__________________________________________________________________________________ 

4332 

Analogous to the definition (4.1), we propose the following definition: 

Definition 4.2 A para-Kenmotsu manifold is generalized 𝑁-projectively semi-symmetric if it satisfies the 

condition of the form  

                                                               𝑅(𝑈, 𝑉). 𝑁̆∗∗ = 0,                                                                  (4.2) 

 where 𝑁̆∗∗ is generalized 𝑁-projective curvature tensor of para-Kenmotsu manifold relative to the Zamkovoy 

connection.  

Theorem 4.1 A generalized N-projectively semi-symmetric Lorentzian 𝛽-Kenmotsu manifold with respect to the 

Zamkovoy connection is an 𝜂-Einstein manifold.  

Proof: 

Consider  

 𝑅(𝑋, 𝑌). 𝑁̆∗∗ = 0 

We now assign 𝑋 as 𝜉 in the above expression to obtain  

 (𝑅(𝜉, 𝑌). 𝑁̆∗∗)(𝑈, 𝑉)𝑊 = 0 

for all 𝑋, 𝑌, 𝑈, 𝑉, 𝑊 ∈ 𝜒(𝑀), which gives   

𝑅(𝜉, 𝑌). (𝑁̆∗∗(𝑈, 𝑉). 𝑊) − 𝑁̆∗∗(𝑅(𝜉, 𝑌). 𝑈, 𝑉). 𝑊 − 𝑁̆∗∗(𝑈, 𝑅(𝜉, 𝑌). 𝑉). 𝑊 − 𝑁̆∗∗(𝑈, 𝑉). 𝑅(𝜉, 𝑌). 𝑊 = 0      (4.3) 

As a result of the relation (2.11), the above equation reduces to 

𝜂(𝑁̆∗∗(𝑈, 𝑉)𝑊)𝑌 − 𝑔(𝑌, 𝑁̆∗∗(𝑈, 𝑉)𝑊)𝜉 − 𝜂(𝑈)𝑁̆∗∗(𝑌, 𝑉)𝑊 − 𝜂(𝑉)𝑁̆∗∗(𝑈, 𝑌)𝑊 − 𝜂(𝑊)𝑁̆∗∗(𝑈, 𝑉)𝑌 

                                 +𝑔(𝑌, 𝑈)𝑁̆∗∗(𝜉, 𝑉)𝑊 + 𝑔(𝑌, 𝑉)𝑁̆∗∗(𝑈, 𝜉)𝑊 + 𝑔(𝑌, 𝑊)𝑁̆∗∗(𝑈, 𝑉)𝜉 = 0                       (4.4) 

We then perform the inner product of the above expression with the vector field 𝜉, applying equations (2.4), 

(3.6), (3.14), (3.15), and (3.16) to find  

′𝑁̆∗∗(𝑈, 𝑉, 𝑊, 𝑌) − [
3𝛽2

2
+

𝜔

(𝑛−1)
][𝑔(𝑈, 𝑌)𝜂(𝑉)𝜂(𝑊) − 𝑔(𝑉, 𝑌)𝜂(𝑈)𝜂(𝑊)]  

                −
1

2(𝑛−1)
[𝑆(𝑈, 𝑌)𝜂(𝑉)𝜂(𝑊) − 𝑆(𝑉, 𝑌)𝜂(𝑈)𝜂(𝑊)] +

𝜔

(𝑛−1)
][𝑔(𝑈, 𝑌)𝜂(𝑉)𝜂(𝑊) 

                 −𝑔(𝑉, 𝑌)𝜂(𝑈)𝜂(𝑊)] +
𝛽2

2
[𝑔(𝑉, 𝑊)𝑔(𝑌, 𝑈) − 𝑔(𝑈, 𝑊)𝑔(𝑌, 𝑉)] 

     +
1

2(𝑛−1)
[𝑆(𝑉, 𝑊)𝑔(𝑌, 𝑈) − 𝑆(𝑈, 𝑊)𝑔(𝑌, 𝑉)] +

𝜔

(𝑛−1)
[𝑔(𝑉, 𝑊)𝑔(𝑌, 𝑈) − 𝑔(𝑈, 𝑊)𝑔(𝑌, 𝑉)] = 0            (4.5) 

With equations (2.22) and (3.2) taken into account, the equation above becomes  

′𝑅̆(𝑈, 𝑉, 𝑊, 𝑌) =
1

2(𝑛−1)
[𝑆̆(𝑉, 𝑊)𝑔(𝑈, 𝑌) − 𝑆̆(𝑈, 𝑊)𝑔(𝑉, 𝑌) + 𝑔(𝑉, 𝑊)𝑆̆(𝑈, 𝑌)                

          −𝑔(𝑈, 𝑊)𝑆̆(𝑉, 𝑌)] − [
3𝛽2

2
+

𝜔

(𝑛−1)
][𝑔(𝑈, 𝑌)𝜂(𝑉)𝜂(𝑊) − 𝑔(𝑉, 𝑌)𝜂(𝑈)𝜂(𝑊)]  

          −
1

2(𝑛−1)
[𝑆(𝑈, 𝑌)𝜂(𝑉)𝜂(𝑊) − 𝑆(𝑉, 𝑌)𝜂(𝑈)𝜂(𝑊)] +

𝜔

(𝑛−1)
][𝑔(𝑈, 𝑌)𝜂(𝑉)𝜂(𝑊) 

          −𝑔(𝑉, 𝑌)𝜂(𝑈)𝜂(𝑊)] +
𝛽2

2
[𝑔(𝑉, 𝑊)𝑔(𝑌, 𝑈) − 𝑔(𝑈, 𝑊)𝑔(𝑌, 𝑉)] 

      +
1

2(𝑛−1)
[𝑆(𝑉, 𝑊)𝑔(𝑌, 𝑈) − 𝑆(𝑈, 𝑊)𝑔(𝑌, 𝑉)] +

𝜔

(𝑛−1)
[𝑔(𝑉, 𝑊)𝑔(𝑌, 𝑈) − 𝑔(𝑈, 𝑊)𝑔(𝑌, 𝑉)] = 0           (4.6) 
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Considering 𝑒𝑖: 𝑖 = 1,2, . . . , 𝑛 as an orthonormal basis, we substitute 𝑈 = 𝑌 = 𝑒𝑖 into the equation above. By 

summing over i, we arrive at  

                                                        𝜔𝑔(𝑉, 𝑊) = (𝑛 − 1)𝜂(𝑉)𝜂(𝑊)                                                  (4.7) 

Now, putting 𝑊 = 𝜉 in above equation, we get  

 𝜔 = (1 − 𝑛) 

which justifies the theorem.  

5.   Lorentzian 𝜷-Kenmotsu Manifold with Zamkovoy connection satisfying 𝑵̆∗∗(𝑼, 𝑽). 𝑺 = 𝟎 

We proceed by considering a Lorentzian 𝛽-Kenmotsu Manifold which satisfies the following condition  

                                                               𝑁̆∗∗(𝑈, 𝑉). 𝑆 = 0                                                                    (5.1) 

for all vector fields 𝑈 and 𝑉 . 

where, 𝑁̆∗∗ is called the generalized 𝑁-projective curvature tensor field relative to the Zamkovoy connection.  

Theorem 5.1 A Lorentzian 𝛽-Kenmotsu manifold conceding Zamkovoy connection and satisfying the condition 

𝑁̆∗∗(𝑈, 𝑉). 𝑆 = 0 is either an Einstein manifold or 𝜔 = 𝛽2 (1−𝑛)

2
 on it.  

Proof: 

Suppose the Lorentzian 𝛽-Kenmotsu manifold satisfies the condition  

                                                  (𝑁̆∗∗(𝜉, 𝑋). 𝑆)(𝑈, 𝑉) = 0                                                                    (5.2) 

This implies  

                                   𝑆(𝑁̆∗∗(𝜉, 𝑋)𝑈, 𝑉) + 𝑆(𝑈, 𝑁̆∗∗(𝜉, 𝑋)𝑉) = 0                                                       (5.3) 

By utilizing the equations (2.14), (2.15) and (3.14) in the above equation, we get  

         𝐴[𝑆(𝑋, 𝑉)𝜂(𝑈) + 𝑆(𝑈, 𝑋)𝜂(𝑉)] + 𝐴(𝑛 − 1)𝛽2[𝑔(𝑋, 𝑉)𝜂(𝑈) + 𝑔(𝑋, 𝑈)𝜂(𝑉)] = 0                (5.4) 

where, 𝐴 = [
𝛽2

2
+

𝜔

(𝑛−1)
] 

Upon replacing 𝑈 by 𝜉 in the above equation and making use of equation (2.4), (2.6) and (2.14), we arrive at  

                                                𝐴[𝑆(𝑋, 𝑉) + (𝑛 − 1)𝛽2𝑔(𝑋, 𝑉)] = 0                                                  (5.5) 

This leads us to conclude that either  

 𝜔 = 𝛽2 (1−𝑛)

2
 

or  

 𝑆(𝑋, 𝑉) = −(𝑛 − 1)𝛽2𝑔(𝑋, 𝑉) 

This justifies the theorem.  

6.  A Lorentzian 𝜷-Kenmotsu Manifold with Zamkovoy connection satisfying 𝝓𝟐((𝛁𝑳𝑵̆∗∗)(𝑼, 𝑽)𝑾) = 𝟎  

Our focus in this section turns to locally 𝑁-projectively 𝜙-symmetric manifold , considering them in the context 

of the Zamkovoy connection. The notion of local 𝜙-symmetry for Sasakian manifolds was introduced by 

Takahashi [31].  

Definition 6.1. A Riemannian manifold is known to be locally 𝜙-symmetric if  

                                                          𝜙2((∇𝐿𝑅̆)(𝑈, 𝑉)𝑊) = 0                                                            (6.1) 
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for vector fields 𝑈, 𝑉 and 𝑊 and 𝐿 orthogonal to 𝜉. 

Analogous to the conditions (6.1), we consider a Lorentzian 𝛽-Kenmotsu manifold satisfying  

                                                 𝜙2((∇𝐿𝑁̆∗∗)(𝑈, 𝑉)𝑊) = 0                                                                  (6.2) 

for arbitary vector fields 𝑈, 𝑉, 𝑊, 𝐿 and call it as a 𝑁-projectively 𝜙-symmetric manifold. 

Theorem 6.1 A Lorentzian 𝛽-Kenmotsu manifold conceding Zamkovoy connection satifying 

𝜙2((∇𝐿𝑁̆∗∗)(𝑈, 𝑉)𝑊) = 0 is an Einstein manifold.  

Proof: 

Taking covariant derivative of equation (3.11) with respect to 𝐿 gives us  

                  (∇𝐿𝑁̆∗∗)(𝑈, 𝑉)𝑊 = (∇𝐿𝑁̆∗)(𝑈, 𝑉)𝑊 +
𝑑𝑟(𝜔)

(𝑛−1)
[𝑔(𝑈, 𝑊)𝑉 − 𝑔(𝑉, 𝑊)𝑈]                          (6.3) 

Now, substituting equation (3.3) in the above equation, we arrive at  

                     (∇𝐿𝑁̆∗∗)(𝑈, 𝑉)𝑊 = (∇𝐿𝑅̆)(𝑈, 𝑉)𝑊 +
𝑑𝑟(𝜔)

(𝑛−1)
[𝑔(𝑈, 𝑊)𝑉 − 𝑔(𝑉, 𝑊)𝑈]                           

                                                                    −
1

(2𝑛−1)
[(∇𝐿𝑆̆)(𝑉, 𝑊)𝑈 − (∇𝐿𝑆̆)(𝑈, 𝑊)𝑉] 

                                                                    +[𝑔(𝑉, 𝑊)(∇𝐿𝑄̆)𝑈 − 𝑔(𝑈, 𝑊)(∇𝐿𝑄̆)𝑉]                                        (6.4) 

As we know,  

                                                             𝜙2((∇𝐿𝑁̆∗∗)(𝑈, 𝑉, 𝑊)) = 0                                                    (6.5) 

Using equation (2.1) in above equation (6.5), we get  

                                                      (∇𝐿𝑁̆∗∗)(𝑈, 𝑉)𝑊 = 𝜂((∇𝐿𝑁̆∗∗)(𝑈, 𝑉)𝑊)𝜉                                    (6.6) 

Now, use of the equation (6.4) in the above equation (6.6), provides  

(∇𝐿𝑅̆)(𝑈, 𝑉)𝑊 +
𝑑𝑟(𝜔)

(𝑛−1)
[𝑔(𝑈, 𝑊)𝑉 − 𝑔(𝑉, 𝑊)𝑈]−

1

(2𝑛−1)
[(∇𝐿𝑆̆)(𝑉, 𝑊)𝑈 − (∇𝐿𝑆̆)(𝑈, 𝑊)𝑉] 

 +[𝑔(𝑉, 𝑊)(∇𝐿𝑄̆)𝑈 − 𝑔(𝑈, 𝑊)(∇𝐿𝑄̆)𝑉] = 𝜂((∇𝐿𝑅̆)(𝑈, 𝑉)𝑊)𝜉 +
𝑑𝑟(𝜔)

(𝑛−1)
[𝑔(𝑈, 𝑊)𝜂(𝑉) − 𝑔(𝑉, 𝑊)𝜂(𝑈)]𝜉 

 −
1

(2𝑛−1)
[(∇𝐿𝑆̆)(𝑉, 𝑊)𝜂(𝑈) − (∇𝐿𝑆̆)(𝑈, 𝑊)𝜂(𝑉)]𝜉 + [𝑔(𝑉, 𝑊)𝜂((∇𝐿𝑄̆)𝑈) − 𝑔(𝑈, 𝑊)𝜂((∇𝐿𝑄̆)𝑉)]𝜉 

 Taking inner product of the above equation with the vector field 𝑋, we get  

                                        𝑔((∇𝐿𝑅̆)(𝑈, 𝑉)𝑊, 𝑋) +
𝑑𝑟(𝜔)

(𝑛−1)
[𝑔(𝑈, 𝑊)𝑔(𝑉, 𝑋) − 𝑔(𝑉, 𝑊)𝑔(𝑈, 𝑋)]                       (6.7) 

                                             −
1

(2𝑛−1)
[(∇𝐿𝑆̆)(𝑉, 𝑊)𝑔(𝑈, 𝑋) − (∇𝐿𝑆̆)(𝑈, 𝑊)𝑔(𝑉, 𝑋)] 

+[𝑔(𝑉, 𝑊)𝑔((∇𝐿𝑄̆)𝑈, 𝑋) − 𝑔(𝑈, 𝑊)𝑔((∇𝐿𝑄̆)𝑉, 𝑋)] 

                                              = 𝜂((∇𝐿𝑅̆)(𝑈, 𝑉)𝑊)𝜂(𝑋) +
𝑑𝑟(𝜔)

(𝑛−1)
[𝑔(𝑈, 𝑊)𝜂(𝑉) − 𝑔(𝑉, 𝑊)𝜂(𝑈)]𝜂(𝑋) 

                                               −
1

(2𝑛−1)
[(∇𝐿𝑆̆)(𝑉, 𝑊)𝜂(𝑈) − (∇𝐿𝑆̆)(𝑈, 𝑊)𝜂(𝑉)]𝜂(𝑋) 

                                               +[𝑔(𝑉, 𝑊)𝜂((∇𝐿𝑄̆)𝑈) − 𝑔(𝑈, 𝑊)𝜂((∇𝐿𝑄̆)𝑉)]𝜂(𝑋) 

 



Tuijin Jishu/Journal of Propulsion Technology 

ISSN: 1001-4055 

Vol. 45 No. 3 (2024) 

__________________________________________________________________________________ 

4335 

Upon replacing 𝑈 and 𝑋 by 𝑒𝑖 in the equation above and summing over i from 1 to n, we obtain  

−𝑑𝑟𝜔𝑔(𝑉, 𝑊) −
1

2
(∇𝐿𝑆̆)(𝑉, 𝑊) −

1

(2𝑛−1)
[𝑔(∇𝐿𝑄̆)𝑒𝑖, 𝑒𝑖)𝑔(𝑉, 𝑊) −                                                  (6.8) 

                              𝑔((∇𝐿𝑄̆)𝑌, 𝑒𝑖)𝑔(𝑒𝑖 , 𝑊)] = −𝜂((∇𝐿𝑅̆)(𝑒𝑖 , 𝑉, 𝑊))𝜂(𝑒𝑖) −
𝑑𝑟𝜔

(𝑛−1)
[𝜂(𝑊)𝜂(𝑉) 

                                         +𝑔(𝑉, 𝑊)] −
1

2(𝑛−1)
[(∇𝐿𝑆̆)(𝑉, 𝑊) + (∇𝐿𝑆̆)(𝑒𝑖 , 𝑊)𝜂(𝑊)𝜂(𝑒𝑖) 

−𝑔(𝑉, 𝑊)𝜂((∇𝐿𝑄̆)𝑒𝑖)𝜂(𝑒𝑖) + 𝜂((∇𝐿𝑄̆)𝑌)𝜂(𝑊) 

If we take 𝑊 =𝜉 in the preceding equation, we have  

                           𝜂(𝑉)𝑑𝑟𝜔 +
(𝑛−2)

2(𝑛−1)
(∇𝐿𝑆̆)(𝑉, 𝜉) +

1

2(𝑛−1)
[𝑑𝑟(𝐿̆)𝜂(𝑉)]                                            (6.9) 

                                                  −𝜂((∇𝐿𝑅̆)(𝑒𝑖, 𝑉, 𝜉))𝜂(𝑒𝑖) +
1

2(𝑛−1)
[(∇𝐿𝑆̆)(𝑒𝑖 , 𝜉)𝜂(𝑒𝑖) 

                                                                     +𝜂(𝑉)𝜂((∇𝐿𝑄̆)𝑒𝑖)𝜂(𝑒𝑖) = 0 

We know,  

                                𝜂((∇𝐿𝑅̆)(𝑒𝑖 , 𝑉)𝜉)𝜂(𝑒𝑖) = 𝑔((∇𝐿𝑅̆)(𝑒𝑖 , 𝑉)𝜉, 𝜉)𝑔(𝑒𝑖 , 𝜉)                                     (6.10) 

Also,  

                  𝑔((∇𝐿𝑅̆)(𝑒𝑖 , 𝑉)𝜉, 𝜉) = 𝑔(∇𝐿𝑅̆(𝑒𝑖, 𝑉)𝜉, 𝜉) − 𝑔(𝑅̆(∇𝐿𝑒𝑖 , 𝑉)𝜉, 𝜉)                                      (6.11) 

                                                               −𝑔(𝑅̆(𝑒𝑖 , ∇𝐿𝑉)𝜉, 𝜉) − 𝑔(𝑅̆(𝑒𝑖 , 𝑉)∇𝐿𝜉, 𝜉) 

Since 𝑒𝑖 is an orthonormal basis. So,∇𝐿𝑒𝑖=0. 

Thus, from equation (2.11), we get  

                                               𝑔(𝑅̆(𝑒𝑖 , ∇𝐿𝑉)𝜉, 𝜉) = 0                                                                         (6.12) 

Again, As we know that  

                                            𝑔(𝑅̆(𝑒𝑖 , 𝑉)𝜉, 𝜉) + 𝑔(𝑅̆(𝜉, 𝜉)𝑉, 𝑒𝑖) = 0                                                  (6.13) 

Therefore, we have  

                                      𝑔(∇𝐿𝑅̆(𝑒𝑖 , 𝑉)𝜉, 𝜉) + 𝑔(𝑅̆(𝑒𝑖 , 𝑉)𝜉, ∇𝐿𝜉) = 0                                                (6.14) 

Making use of above equation (6.14)  in the equation (6.11), we obtain  

                                                𝑔((∇𝐿𝑅̆)(𝑒𝑖 , 𝑉)𝜉, 𝜉) = 0                                                                    (6.15) 

Also, we know that,  

                                       𝜂((∇𝐿𝑄̆)𝑒𝑖)𝜂(𝑒𝑖) = 𝑔(((∇𝐿𝑄̆)𝑒𝑖), 𝜉)𝑔(𝑒𝑖 , 𝜉)                                              (6.16) 

Using the equations (2.8) and (2.14) in above equation, we get  

                                                    𝜂((∇𝐿𝑄̆)𝑒𝑖)𝜂(𝑒𝑖) = 0                                                                     (6.17) 

Considering equations (6.12) and (6.13), equation (6.10) results in  

                                   (∇𝐿𝑆̆)(𝑉, 𝜉) = −
1

2(𝑛−2)
𝑑𝑟𝐿̆𝜂(𝑉) −

(𝑛−1)

(𝑛−2)
𝑑𝑟𝜔                                                (6.18) 

We now substitute 𝑉 with 𝜉 in the above expression and apply equations (2.9) and (2.15), resulting in  
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                                                       𝑑𝑟(𝜔) = −
𝑑𝑟L̆

2(𝑛−1)
                                                                        (6.19) 

which shows that r is constant.  

Since,  

                                    (∇𝐿𝑆̆)(𝑉, 𝜉) = ∇𝐿𝑆̆(𝑉, 𝜉) − 𝑆̆(∇𝐿𝑉, 𝜉) − 𝑆(𝑉, ∇𝐿𝜉)                                      (6.20) 

Applying equations (2.8), (2.9), and (2.14) to the expression above, we deduce that  

                                                     (∇𝐿𝑆̆)(𝑉, 𝜉) = 𝛽𝑆̆(𝑉, 𝐿)                                                                (6.21) 

therefore, from equations (6.14), (6.15) and (6.16), we obtain  

                                            𝑆(𝑉, 𝐿) = −𝛽2(𝑛 − 1)𝑔(𝑉, 𝐿).                                                              (6.22) 

This proves the theorem.  
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