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Abstract: Current data indicate that, on a large enough scale, the cosmos is homogenous and isotropic. This does 

not preclude the possibility that some anisotropy was present early in the evolution of the universe and was 

subsequently attenuated. In view of this idea, interest in the homogeneous but anisotropic Bianchi models has 

been raised. Second, modified gravity has attracted a lot of attention recently due to the challenges the 

traditional ɅCDM model faces in general relativity. As a result, this research examined the Bianchi type-I 

cosmological model in f(R,T)-modified gravity. Based on certain cosmographic concepts, a particular form of 

the deceleration parameter was postulated, leading to a model that demonstrated a transition from early 

deceleration to late-time acceleration.  
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Introduction: 

According to recent theoretical and experimental research, the expansion of our universe is speeding at the 

moment, and "dark energy," an unidentified type of matter, is mostly responsible for this acceleration. Positive 

energy density combined with negative pressure is one of this dark energy's most intriguing features. According 

to data from Plank and the Wilkinson Microwave Anisotropy Probe (WMAP), the universe is made up of 

around 5% baryonic matter, 26.5% dark matter, and 68.5% dark energy. There are two possible ways in which 

dark energy manifests. The first is by the use of so-called exotic matter, that is, either with respect to the 

cosmological constant or by applying the equation of state parameter (EOS) ω = p/ρ, where ρ is the energy 

density and p is the pressure.  

The cosmological constant Ʌ which Albert Einstein used in his field equations to produce a static cosmos is 

today considered a good dark energy representation to explain the universe's increasing expansion. Nonetheless, 

it is currently surrounded by cosmological riddles like the cosmic coincidence and fine tuning issues. In the past 

several years, numerous modified theories of gravity, such as f(R), f(T), f(G), and f(R, T) gravity, have been 

investigated in an effort to explain the mechanism of the late-time acceleration, dark matter, and dark energy. 

These theories were proposed to account for dark energy and other cosmological anomalies. Among them, f(R) 

gravity is noteworthy since it has been thoroughly studied by a number of writers. An arbitrary function of R 

takes the role of R in the Einstein-Hilbert action in f(R) gravity. A further suggestion for explaining late-time 

acceleration is the recently created f(T) gravity. This theory represents a generalised form of tele-parallel 

gravity, where the Levi Civita link is replaced with the Weitzenbock connection. This theory's ability to explain 

the acceleration of current events without mentioning dark energy is what makes it so intriguing. Introduced by 

Harko et al., f(R, T) gravity is another modified theory that has garnered a lot of interest recently.  

An arbitrary function of the Ricci scalar R and the energy momentum tensor's trace T define the gravitational 

Lagrangian in this theory. It is observed that the dependence on T can be explained by an imperfect fluid or by 

quantum processes. Harko and his colleagues examined a few particular variants of the function f(R, T) in their 

work. This theory may be viewed as a more practical explanation for the universe's acceleration phase. We will 

now briefly highlight a few more authors who have studied different features of the Bianchi type-I model in f(R, 

T) gravity. Adhav discovered the locally rotationally symmetric (LRS) Bianchi type-I models. Exponent and 

power law solutions for the Bianchi type-I model with ideal fluid were examined by Sharif and Zubair. Shamir 

discovered models with a constant deceleration parameter. By selecting a nonlinear form for the deceleration 



Tuijin Jishu/Journal of Propulsion Technology 

ISSN: 1001-4055 

Vol. 45 No. 3 (2024)   

__________________________________________________________________________________ 

3368 

parameter, Bianchi types I and V bulk viscous solutions were derived by Ram and Kumari. Singh and Bishi 

looked at a model with a quadratic equation of state and a cosmological constant. By assuming a linearly 

variable deceleration value, Sahoo and Sivakumar discovered LRS models with a dynamic cosmological 

parameter.  

Sahoo and Reddy discovered bulk viscous LRS models by employing a certain time-dependent deceleration 

parameter. Yadav used a hybrid expansion law for the scale factor and discovered a transitioning solution. 

Sharma et al. talked about the LRS models' stability. By selecting two appropriate forms of the scale factor, 

Pradhan et al. were able to find solutions that showed a shift from early deceleration to late-time acceleration. 

Bulk viscous LRS models were studied by Yadav et al. by selecting a hybrid form for the scale factor. In this 

study, we assumed a certain form for the deceleration parameter as a function of the Hubble parameter and 

analyzed the Bianchi type-I cosmological model.  

Modified f(R,T) T h e o r y  o f  Gravity: 

The action of f (R,T) gravity is given by: 

                                            𝑆 = ∫ √𝑔 (
−1

16𝜋𝐺
𝑓(𝑅, 𝑇) + 𝐿𝑚) 𝑑4𝑥                                                 (1) 

where g is the determinant of the metric tensor gij; f (R, T) is an arbitrary function of the Ricci scalar R and the 

trace T of the energy-momentum tensor Tij i.e.,   T = gij Tij   ; and Lm is the matter Lagrangian density. It is 

important to note that the f (R, T) theory of gravity is an expansion of the f (R) theory and a modification of 

general relativity. Similar to f (R) gravity models, the field equations are generated by varying the combined 

action of the field and matter and equating this variation to zero. Now, using gravitational units (8πG = 1, c = 1) 

and varying the action S in (1) with respect to the metric tensor gij, we obtain the field equations in f (R, T) 

gravity as: 

𝑓𝑅(𝑅, 𝑇)𝑅𝑖𝑗 −
1

2
𝑓(𝑅, 𝑇)𝑔𝑖𝑗 + (𝑔𝑖𝑗 − ∇𝑖∇𝑗)𝑓𝑅(𝑅, 𝑇) 

                                               = 8𝜋𝑇𝑖𝑗 − 𝑓𝑟(𝑅, 𝑇)𝑇𝑖𝑗 − 𝑓𝑟(𝑅, 𝑇)𝜃𝑖𝑗                                              (2)   

Where 𝑓𝑅(𝑅, 𝑇) =
𝜕𝑓(𝑅,𝑇)

𝜕𝑅
, 𝑓𝑅(𝑅, 𝑇) =

𝜕𝑓(𝑅,𝑇)

𝜕𝑇
, 𝑅𝑖𝑗  is the Ricci tensor and 𝑇𝑖𝑗  is the energy momentum tensor 

given by : 

                                                          𝑇𝑖𝑗 =
−2

√−𝑔

𝛿(√−𝑔𝐿𝑚

𝛿𝑔𝑖𝑗                                                                 (3) 

In equation (2) ∇𝑖∇𝑗  is the D’ Alembertian operator, where ∇𝑖 represents the covariant derivative and:  

                                           𝜃𝑖𝑗 = −2Tij + 𝑔𝑖𝑗𝐿𝑚 − 2𝑔𝜇𝑣 𝜕2𝐿𝑚

𝜕𝑔𝜇𝑣𝑔𝑖𝑗,                                                (4) 

Equation (2) produces an important relation upon contraction that links the energy-momentum tensor's trace T 

and the Ricci scalar R: 

                    𝑓𝑅(𝑅, 𝑇)𝑅 + 3𝑓𝑅(𝑅, 𝑇) − 2𝑓(𝑅, 𝑇) = (8𝜋 − 𝑓𝑅(𝑅, 𝑇)𝑇 − 𝑓𝑅(𝑅, 𝑇)𝜃,                     (5) 

where 𝜃 = 𝜃𝑗
𝑖  If we assume that the matter Lagrangian density Lm depends only on the metric tensor 

component 𝑔𝑖𝑗  rather than its derivatives, then Equation (3) is reduced to the form: 

                                                          Tij = 𝑔𝑖𝑗𝐿𝑚 − 2
𝜕𝐿𝑚

𝜕𝑔𝑖𝑗                                                            (6) 

The matter's energy-momentum tensor has the following shape for a perfect fluid distribution: 

                                                     Tij = (ρ + p)𝑢𝑖𝑢𝑗 − p𝑔𝑖𝑗 ,                                                        (7) 

where ρ and p are the energy density and pressure of the fluid, respectively. Here ui is the four-velocity 
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vector satisfying uiui = −1 and ui ∇jui = 0. Now, using the fact that Lm = −p, Equation (4) can be rewritten 

as: 

                                                            𝜃𝑖𝑗 = −2Tij − p𝑔𝑖𝑗                                                           (8) 

Due to this, the field Equation (2) has the following form: 

𝑓𝑅(𝑅, 𝑇)𝑅𝑖𝑗 −
1

2
𝑓(𝑅, 𝑇)𝑔𝑖𝑗 + (𝑔𝑖𝑗 − ∇𝑖∇𝑗)𝑓𝑅(𝑅, 𝑇) 

                                               = 8𝜋𝑇𝑖𝑗 − 𝑓𝑟(𝑅, 𝑇)𝑇𝑖𝑗 − 𝑓𝑟(𝑅, 𝑇)𝜃𝑖𝑗                                              (9) 

Harko et al. [12] have considered three possible forms of the function f (R, T): 

                                               f(R, T) = { 

 R +  2𝑓1(T)

  𝑓1(𝑅) + 𝑓2(𝑇)

   𝑓1(𝑅) + 𝑓2(𝑇)𝑓3(𝑇)
                                               (10) 

In the present study, we shall concentrate on the first form of f (R, T)  i.e., f (R, T) = R + 2 f1(T)—and choose 

f1(T) = λT, where λ is an arbitrary constant. For this considers- ation and energy-momentum tensor (7), 

Equation (9) is reduced to the form: 

                                         𝑅𝑖𝑗 −
1

2
𝑅𝑔𝑖𝑗 = −(1 + 2𝜆)𝑇𝑖𝑗 + 𝜆(𝑇 + 2𝑝)𝑔𝑖𝑗                                  (11) 

Now, the cosmological term in Einstein's field equations can be expressed as: 

                                                          𝑅𝑖𝑗 −
1

2
𝑅𝑔𝑖𝑗 = −𝑇𝑖𝑗 + Ʌ𝑔𝑖𝑗                                               (12) 

By comparing Equations (11) and (12), and by taking the parameter λ to be small, we can make the 

identification Λ = Λ(T) = λ(T + 2p).  Therefore, in the 𝑓(𝑅, 𝑇) the- ory of gravity, the field equations with 

a variable cosmological parameter Λ(T) can be expressed as: 

                                                   𝑅𝑖𝑗 −
1

2
𝑅𝑔𝑖𝑗 = −(1 + 2𝜆)𝑇𝑖𝑗 + Ʌ𝑔𝑖𝑗                                       (13) 

In the case of a perfect fluid, the trace T of the energy-momentum tensor can be written as T = ρ − 3p. The 

cosmological parameter can be written as: 

                                                                 𝛬 =  𝜆(𝜌 −  𝑝)                                                       (14) 

It can clearly be seen from Equation (13), which follows from Equation (11), that the usual energy 

conservation law does not hold in general in the f (R, T) theory. Shabani and Zaiae have noted that, from a 

thermodynamic perspective, the non-conservation of energy suggests an irreversible process of matter 

production. It is anticipated that basic particle physics will be able to support this procedure. Energy transfer 

from the gravitational field to the formed matter particles is correlated with such particle formation. In a 

different work, the same writers examined the effects of energy conservation. They discovered that late-time 

stable accelerating solutions are not a general characteristic in f(R, T) gravity if energy conservation holds true. 

On the other hand, a wide class of stable solutions with a dynamic λ(T) and late-time acceleration can be found 

with energy non-conservation

Let's start by determining whether or not we have energy conservation in our situation. Equation (13) exhibits 

zero divergence on the LHS due to the Bianchi identities. This suggests that there can be no divergence on the 

RHS either. This indicates that the standard energy conservation law is applicable in a single scenario. This 

occurs when ∂ρ/∂t=∂p/∂t; otherwise, energy is generally not conserved, as this study demonstrates. 

Field Equations 

The following line element represents the gravitational field for a spatially homogenous and anisotropic Bianchi 

type-I space-time: 
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                                       ds2 = −dt2 + A2dx2 + B2dy2 + C2dz2.                                               (15) 

Where A, B, C are metric functions of the cosmic time t. For the Bianchi type-I space-time (14), the field 

Equation (13) in f (R,T) gravity yields the following dynamical equations: 

                                                      
𝐵̈

𝐵
+

𝐶̈

𝐶
+

𝐵̇

𝐵

𝐶̇

𝐶
= Ʌ − (1 + 2𝜆)𝑝                                                (16)  

                                                      
𝐴̈

𝐴
+

𝐶̈

𝐶
+

𝐴̇

𝐴

𝐶̇

𝐶
=  Ʌ − (1 + 2𝜆)𝑝                                               (17)    

                                                      
𝐴̈

𝐴
+

𝐵̈

𝐵
+

𝐴̇

𝐴

𝐵̇

𝐵
= Ʌ − (1 + 2𝜆)𝑝                                                (18) 

                                                     
𝐴̇

𝐴

𝐵̇

𝐵
+

𝐵̇

𝐵

𝐶̇

𝐶
+

𝐴̇

𝐴

𝐶̇

𝐶
=  Ʌ − (1 + 2𝜆)𝑝                                           (19) 

where the ordinary derivative with respect to cosmic time t is represented by an over dot. The matter content is 

assumed to follow the standard equation of state: 

                                                       𝑝 =  𝜔𝜌,            − 1 ≤  𝜔 ≤  1.                                                   (20) 

For the Bianchi type-I space-time, the spatial volume (V) and average scale factor (a) are given by, respectively: 

                                                                           V=ABC,                                              (21) 

                                                       𝑎 = (𝐴𝐵𝐶)
1

3 = 𝑉
1

3                                                  (22) 

An average Hubble parameter (H) for the Bianchi type-I is defined by: 

                                                            𝐻 =
1

3
(𝐻1 + 𝐻2 + 𝐻3)                                                   (23) 

Where 𝐻1 =  
𝐴̇

𝐴
, 𝐻2 =

𝐵̇

𝐵
 and 𝐻3 =

𝐶̇

𝐶
 are the directional Hubble parameters in the directions 

of x, y and z axis respectively. 

Equations (22) and (23) can also be written in the form: 

                                                           𝐻 =
𝑎̇

𝑎
=

1

3
(

𝐴̇

𝐴
+

𝐵̇

𝐵
+

𝐶̇

𝐶
)                                                    (24) 

The expansion scalar(𝜃), shear scalar(𝜎), and anisotropy parameter 𝐴𝑚 are defined as, respectively: 

                                                                 θ = 3H =  3
ȧ

a
                                                            (25) 

                                                       𝜎2 =
1

2
(∑ 𝐻𝑖

2 −
1

3
𝜃23

𝑖=1 ),                                                    (26) 

                                                                   𝐴𝑚 =
2𝜎2

3𝐻2                                                                 (27) 

From eq. (16)-(18) we can obtain the following equations 

                                                            
𝐴̈

𝐴
−

𝐵̈

𝐵
+

𝐶̈

𝐶
(

𝐴̈

𝐴
+

𝐵̈

𝐵
) = 0                                                    (28) 

                                                            
𝐵̈

𝐵
−

𝐶̈

𝐶
+ 

𝐴̈

𝐴
(

𝐵̈

𝐵
−

𝐶̈

𝐶
) = 0,                                                  (29) 

                                                            
𝐴̈

𝐴
−

𝐶̈

𝐶
+

𝐵̈

𝐵
(

𝐴̈

𝐴
−

𝐶̈

𝐶
) = 0,                                                   (30) 

Then the equations: 

                                                      
𝐴

𝐵
= 𝑐1𝑒𝑥𝑝 (𝑑1 ∫

𝑑𝑡

𝑎3),                                               (31) 

                                                      
𝐵

𝐶
= 𝑐2𝑒𝑥𝑝 (𝑑2 ∫

𝑑𝑡

𝑎3),                                               (32) 
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𝐴

𝐶
= 𝑐3𝑒𝑥𝑝 (𝑑3 ∫

𝑑𝑡

𝑎3),                                               (33) 

Where 𝑐1, 𝑐2, 𝑐3 and 𝑑1, 𝑑2, 𝑑3 are the constant of integration. 

The deceleration parameter (𝑞) is defined as: 

                                                              𝑞 = −
𝑎𝑎̈

𝑎̇2                                                          (34) 

From equation (13)-(16) can be expressed in terms of 𝐻, 𝑞 and 𝜎 as:  

                                               3𝐻2 − 𝜎2 = Ʌ + (1 + 2𝜆)𝜌,                                          (35) 

                                        𝐻2(2𝑞 − 1) − 𝜎2 = (1 + 2𝜆)𝜌 − Ʌ                                     (36) 

Equations (14) and (16)–(20), which are obtained from the field Equation (13), represent six equations in the six 

unknown quantities—i.e., A, B, C, ρ, p, and Λ, respectively. Hence, one can try to solve for the system 

directly. But this is really challenging. Furthermore, we are interested in finding appropriate cosmological 

solutions that show an early-to-late acceleration transition, consistent with current data. We assume for the 

purposes of this inquiry that the deceleration parameter q is expandable in relation to the Hubble parameter H. A 

multitude of assumptions can be employed in order to solve this system. We take into account the time-

dependent deceleration parameter q since observations show that the cosmos is undergoing a phase transition 

from the previous decelerating expansion to the current accelerating one. 

The deceleration parameter is a geometric quantity that, depending on its sign, characterises the universe's 

acceleration or slowdown. Within this framework, it is established that the universe expands at an accelerating 

rate if q < 0; it expands at a decelerating rate if q > 0; it expands at a constant rate if q = 0; and the accelerating 

expansion is known as super-exponential expansion if q < 1. 

Inspired by the aforementioned, we choose the deceleration parameter as a function of the Hubble parameter H, 

as suggested by Tiwari et al., to explain the behaviour of the universe:                                                                               

                                                                           𝑞 = 𝛼 −
𝛽

𝐻
.                                                              (37) 

Here, α and β are constants and β > 0. This form of the deceleration parameter yields the required transition 

from positive to negative as we desire. Equation (40) leads to the following solution for the scale factor: 

                                                            𝑎 = 𝑘1(𝑒𝛽𝑡 − 1)
1

1+𝛼,                                                     (38) 

Where 𝑘1 is a constant. 

The form of the generalized mean Hubble parameter H 

                                                          𝐻 =
1

3
(𝐻1 + 𝐻2 + 𝐻3)                                                    (39) 

Where 𝐻1 =  
𝐴̇

𝐴
, 𝐻2 =

𝐵̇

𝐵
 and 𝐻3 =

𝐶̇

𝐶
 are the directional Hubble parameters in the directions. 

The spatial volume 𝑉, Hubble parameter 𝐻, expression scalar 𝜃, shear scalar 𝜎2 , anisotropy parameter 𝐴𝑚 , and 

declaration parameter 𝑞 take the following forms, respectively: 

                                                                𝑉 = 𝑘1
3(𝑒𝛽𝑡 − 1)

1

1+𝛼,                                                  (40) 

                                                                 𝐻 =
𝛽𝑒𝛽𝑡

(1+𝛼)(𝑒𝛽𝑡−1)
,                                                       (41) 

                                                                 𝜃 =
3𝛽

(1+𝛼)(1−𝑒−𝛽𝑡)
,                                                      (42) 

                                                            𝜎2 =
𝑘1

2+𝑘2
2+𝑘1𝑘2

3𝑘1
6(𝑒𝛽𝑡−1)

6
1+𝛼

 ,                                                        (43)         
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                                                        𝐴𝑚 =
2(𝑘1

2+𝑘2
2+𝑘1𝑘2)(1+𝛼)2

9𝛽2𝑘1
6𝑒2𝛽𝑡(𝑒𝛽𝑡−1)

4−2𝛼
1+𝛼

                                                  (44)   

Equations (35)–(45) are determined essentially from (44), and are the kinematic quantities. The field Equation, on 

the other hand is basically used to determine the dynamical quantities, the energy density ρ, pressure p, and 

cosmological parameter Λ. 

From Equations (17)–(19), we obtain energy density ρ and pressure p: 

                                     𝜌 =
1

(1+𝜔)(1+2𝜆)
[

2𝛽2𝑒𝛽𝑡

(1+𝛼)(𝑒−𝛽𝑡−1)
2 −

2(𝑘1
2+𝑘2

2+𝑘1𝑘2)

3𝑘1
6(𝑒𝛽𝑡−1)

6
1+𝛼

],               (45)                                              

                                          𝑝 =
𝜔

(1+𝜔)(1+2𝜆)
[

2𝛽2𝑒𝛽𝑡

(1+𝛼)(𝑒−𝛽𝑡−1)
2 −

2(𝑘1
2+𝑘2

2+𝑘1𝑘2)

3𝑘1
6(𝑒𝛽𝑡−1)

6
1+𝛼

]                                  (46) 

The cosmological parameter Ʌ = 𝜆(𝜌 − 𝑝) is given by: 

                           Ʌ = 𝜆 [
2(1−𝜔)𝛽2𝑒𝛽𝑡

(1+𝜔)(1+𝛼)(1+2𝜆)(𝑒−𝛽𝑡−1)
2 −

(1+𝜔)

(1+𝜔)(1+2𝜆)

2(𝑘1
2+𝑘2

2+𝑘1𝑘2)

3𝑘1
6(𝑒𝛽𝑡−1)

6
1+𝛼

]                        (47) 

For our Bianchi model (14), we observe that the spatial volume V is zero and expansion scalar θ are infinite at  t 

= 0.  Thus, the universe starts evolving with zero volume and an infinite rate of expansion at t = 0. 

Equations (34)–(36) and (41) show that the scale factors also vanish at t = 0, hence the model has a “point 

type” singularity at the initial epoch. Initially, at t = 0 the Hubble parameter H and shear scalar σ2 are 

infinite. The energy density ρ, pressure p and cosmological constant Λ are also infinite. As t tends to 

infinity, V becomes infinitely large, whereas σ2 approaches zero. Later, the energy density ρ and pressure p 

converge to zero. The cosmological parameter Λ also approaches a constant later. The deceleration parameter 

q for the model is a constant α at 𝑡 =  0, and as t increases—i.e., when it is (1/𝛽) 𝑙𝑜𝑔(1 +  𝛼)— 𝑞 is zero, 

which shows that there will be a transition to acceleration. It is equal to 1 when 𝑡 tends to infinity, which 

shows that the model describes the accelerating phase of the universe. The anisotropy parameter Am gives a 

measure of the anisotropy of the model, and is given by Equation (44), which is large early on as t0 but 

decreases very rapidly.   

As a matter of interest, the solution for Λ = 0, which also means λ = 0 from Equation (14), can now be 

easily given. All the kinematic quantities are the same as before, viz., Equations (41)–(50). The density and 

pressure are given by: 

                                 𝜌 = 𝑝 =
1

(1+𝜔)
[

2𝛽2𝑒𝛽𝑡

(1+𝛼)(𝑒−𝛽𝑡−1)
2 −

2(𝑘1
2+𝑘2

2+𝑘1𝑘2)

3𝑘1
6(𝑒𝛽𝑡−1)

6
1+𝛼

]                           (48) 

LRS Bianchi Type –II cosmological model with constant declaration parameter. Which shows that this model is 

an accelerating model of the universe. From eq. (29), we conclude that, the model has an initial singularity 

at 𝑡 = 0  and expands with time. The line element with scale factors 𝐴(𝑡) and 𝐵(𝑡), given by equations (30) and 

(31) gives an exact stiff fluid solution of the universe . scale factors A(t) vanishes while the other one 𝐵(𝑡) 

diverges at large time. From the above results we can discuss the physical behaviour of the universe. From eq. 

(32), (35)-(38),we observe that, at initial epoch energy density(𝜌 ), the Hubble parameter (H), expansion scalar 

(𝜃), the share scalar (𝜎), the anisotropy parameter (∆) all diverges and vanishes at large value of time. since, 

that  
𝜎2 

 θ
 does not tends to zero at t → ∞, which indicates that this model of universe does not approaches 

isotropy at late times. positive constant value of declaration parameter shows that the model has a decelerating 

expansion (𝑞 > 0).  
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Conclusions: 

Within the context of f(R,T) gravity theory, we examined the homogeneous and anisotropic Bianchi Type-I & II 

model in this work. To precisely solve the field equations, take (R,T) =R+2f(T), where f(T) =λt. The article 

includes examination of important cosmological parameters for the two alternative theories, assuming a constant 

jerk value (j=1). Power law comes first, followed by exponential law. Model I applies to the first epoch and does 

not reach isotropy in later times in the cosmos. Decelerating expansion is indicated by a positive constant value 

of the declaration parameter (q>0). Additionally, model II corresponds to fast expansion and is valid for late 

times. We have examined and talked about the different kinematic and physical factors. Because the flat ɅCDM 

model has a jerk parameter (j=1), our work's models are predicated on it. 
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