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Abstract:- Mining large datasets and discovering meaningful hidden patterns is not a new area but a lot of 

improvement is essential to overcome the cost and operational overheads, this paper finds a solution by splitting 

the large dataset finding the individual partition support count (IPSC) and then the partitioned dataset are 

merged to find the merged partitioned support count (MPSC) to reduce the burden of time and memory related 

issues. To find the IPSC and MPSC simple bit vector approach is utilized. The proposed algorithm is compared 

with the other existing algorithms to gauge its performance with respect to speed and the memory consumption. 
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1. Introduction 

Retrieving a collection of items that frequently occur in the dataset and whose count is at least as high as the 

user-specified minimum support threshold value is known as mining frequent itemset. The support count, which 

should be higher than the user-provided threshold number, indicates how frequently objects are present in the 

transactional database. To extract the frequent itemset from the transactional database, a variety of methods and 

algorithms have been developed. In this field, the Apriori algorithm is a pioneering work that was developed by 

Srikanth Agarwal and his colleagues [1]. Based on the database being used, the new approach proved to be cost-

effective. Other researchers have improved, modified, customized, and altered the Apriori algorithm, which has 

been called the pioneering work in the field. The next popular algorithm is FP-Growth which scans the entire 

database only twice unlike apriori but the entire database should fit in the memory of the system and consumes a 

lot of memory. The aforementioned methods, while well-known, nonetheless have several drawbacks. For 

example, the FP-Growth algorithm necessitates a large amount of memory space in order to maintain the full 

database, while Apriori constantly searches the database and generates numerous candidates for it. In order to 

get around these obstacles, the suggested method divides the whole database into individual processors and 

processes each partition independently, reducing the number of candidates and memory usage. The results are 

then combined to identify recurring patterns. In order to produce frequent itemsets from very big datasets, 

Zaki'sparEclat [3] technique leverages the idea of parallel computing in conjunction with vertical data 

representation. An application of the Apriori method in parallel using map reduces is the Single Pass Counting 

SPC algorithm [4]. The algorithm functions effectively by addressing the shortcomings of the traditional Apriori 

algorithm. Here, the support count of the candidates is parallelized, and the entire process is divided into two 

stages. 
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Figure 1: Overall architecture of the proposed method 

The figure 1 showcased above is self-explanatory as the input raw data is fed initially, the data is bifurcated into 

upper half and lower half, then the individual partition support count for both upper and lower are found. Next 

the partitioned data is merged to find the merged partition support count. Here the unpromising items are pruned 

and the process continues until the entire meaningful frequent patterns are discovered. The sample dataset used 

to discover the meaningful frequent patterns are shown in the table 1 and this dataset is partitioned into two 

portions one from top to the middle and the other from the bottom to the middle. 

Table.1. Sample dataset 

Transaction ID Items 

1 M1, M2, M3, M5, M6, M15 

2 M1, M3, M7 

3 M5, M9 

4 M1, M3, M4, M5, M7 

5 M1, M3, M5, M7, M12 

6 M5, M10 

7 M1, M2, M3, M5, M6, M16 

8 M1, M3, M4 

9 M1, M3, M5, M7, M13 

10 M1, M3, M5, M7, M14 

The above shown dataset is bifurcated using the procedure Top Down Bottom Up as shown in the following 

table 2. 

Top Down partition – P1  Bottom Up partition – P2 

TID Items TID Items 

1 M1, M2, M3, M5, M6, M15 1 M1, M3, M5, M7, M14 

2 M1, M3, M7 2 M1, M3, M5, M7, M13 

3 M5, M9 3 M1, M3, M4 
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Table 2: Bifurcated sample dataset 

The pseudo code to bifurcate the dataset is shown below and the procedure Top Down Bottom Up is self-

explanatory. 

Procedure Top Down Bottom Up ( Input dataset D) 

INPUT: raw data D 

OUTPUT: Bifurcated data P1 and P2 

BEGIN: 

1. Load the input dataset D 

2. Find the total row count Rcount 

3. For index = 0 to Rcount-1 do 

4. Store in P1 = D[index] 

5. Store in P2 = D[Rcount – index] 

6. IF ( index = Rcount-index) 

7. EXIT  For loop 

8. Close IF 

9. Close FOR 

END Procedure 

 

The bifurcated data is assumed to be sorted and the distinct items present in the partitions P1 and P2 are found 

using the procedure Discover Distinct which is shown below along with the individual count of the items. 

 

Procedure Discover Distinct (Partitioned data P) 

INPUT: Partitioned data P 

OUTPUT: Distinct Item and its count 

BEGIN: 

1. Load the partitioned dataset P 

2. DistArr[ ][ ] = empty 

3.  transactional Row TR  P do 

4.  Item II  TR do 

5. IF ( II not in DistArr[ ] ) do 

6. II →DistArr[ ] 

7. Count II individually →DistArr 

8. Close IF 

9. Close For 

10. Close For 

11. Return DistArr 

END Procedure 

 

4 M1, M3, M4, M5, M7 4 M1, M2, M3, M5, M6, M16 

5 M1, M3, M5, M7, M12 5 M5, M10 
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The transactional rows' are iterated in a loop to acquire each row individually from the partitioned data. After 

determining the total number of items in the individual transactional row, each item is retrieved one at a time 

and checked against the distinct items DistArr[]. If the item is not found in DistArr[], it is placed there; if not, 

the item count is increased. During the first iteration in the loop, the transactional row 1 = {M1, M2, M3, M5, 

M6, M15} is fetched. Now the total number of items present in the row1 is computed and found to contain 6 

elements. 

The inner loop is executed 6 times to discover the distinct elements.The first item retrieved is M1 and compared 

with the empty DistArr[], since the item “M1” is not present in the DistArr[], the first distinct element found is 

“M1” and stored in DistArr[]. 

ITERATION 2: “M2” not available in DistArr[ ], store “M2” 

ITERATION 3: “M3” not available in DistArr[ ], store “M3”  

ITERATION 4: “M5” not available in DistArr[ ], store “M5”  

ITERATION 5: “M6” not available in DistArr[ ], store “M6”  

ITERATION 6: “M15” not available in DistArr[ ], store “M15”  

Inner loop closes 

Outer loop iteration 2 commences, 

Transactional row 2 in P1  = {M1, M3, M7} is initially fetched  

The item count of the row2 is found to be 3 and the inner loop iterates three times as shown  

ITERATION 1: “M1” available in DistArr[ ], increment count of M1 

ITERATION 2: “M3” available in DistArr[ ], increment count of M3 

ITERATION 3: “M7” not available in DistArr[ ], store “M7” 

Inner loop ends 

Similarly all the rows are fetched to discover the distinct elements and the resultant is shown in the table 3. 

Table 3: Distinct element found from two partitions P1 and P2 

PARTITION 1 PARTITION 2 

DISTINCT 

ELEMENT 
IPSC 

DISTINCT 

ELEMENT 
IPSC 

M1 4 M1 4 

M2 1 M2 1 

M3 4 M3 4 

M4 1 M4 1 

M5 4 M5 4 

M6 1 M6 1 

M7 2 M7 3 

M9 1 M10 1 

M12 1 M13 1 

M15 1 M14 1` 

 M16 1 
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Let us assume that the user defined support count is 4, the count which is less than 4 will be pruned and the final 

distinct element is shown in the following table 4. The elements M2, M4, M6, M9, M10, M11, M12, M13, M14, 

M15, M16 are pruned away and the remaining elements are shown in the table 4. 

Table 4: Final distinct element after pruning 

DISTINCT 

ELEMENT 
MPSC 

M1 8 

M3 8 

M5 8 

M7 5 

 

Property 1 

“If an element's minimum support count is less than the user-specified minimum Support threshold value, it is 

deemed to be an infrequent element.” 

The final dataset is shown in the table 5 after pruning the infrequent elements whose support count value is less 

than the user specified, 

Table 5:  

Top Down partition – P1 

  

Bottom Up partition – P2 

TID Items TID Items 

1 
M1, M3, 

M5 
1 

M1, M3, 

M5, M7 

2 
M1, M3, 

M7 
2 

M1, M3, 

M5, M7 

3 M5 3 M1, M3 

4 
M1, M3, 

M5, M7 
4 

M1, M3, 

M5 

5 
M1, M3, 

M5, M7 
5 M5 

 

Pruned sample dataset 

Creating a bit vector table that corresponds to the database that has been pruned is the next step in the technique. 

The element in dataset will be indicated as "1"  if it is present in the transactional row and "0" if it is not present. 

The distinct elements are confined into four elements {M1, M3, M5, M7} and these distinct values are marked 

for its present in a row with “1” and “0” if it is not present. The first element M1 is marked in partition P1 as 

shown in the following section, 

Table 6: Transactional Data Representation for Element M1 

 

 

 

 

Here the element M1 is not present in the row 3 if partition P1 and it is represented by “0” whereas all other 

rows contains “1” as it is present.  

 

Element 

Transactional Row 

1 2 3 4 5 

M1 1 1 0 1 1 
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Figure 2: Bit vector table creation for P1 and P2 

Next the elements are formed using some properties and definitions shown below, 

Property 2 

“An element or itemset might be infrequent in one partition but after merge that element or itemset might be 

frequent.”[7] 

{(M1, M2), IPSC} ≠ {(M1, M2), MPSC} 

Property 3 

“It is possible for an infrequent candidate in one partition to be a frequent candidate in another, and vice versa 

for frequent candidates in different partitions.”[8] 

Procedure CanFORM(Partioned data P, DistinctElement E) 

INPUT: data P, Distinct element E 

OUTPUT: Itemsets 

BEGIN 

Load the partitioned data P  

Load the Distinct element E 

 Element i  P do 

 Item  Di  E do 

    IF [Di not present in Pi AND Di > Pi] then 

         Append Pi and Di →RES 

         Close IF 

  Close For 

Close For 

Return RES 

END 
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This process is carried out in each and every level and then merged to get the overall itemset with MPSC value. 

The procedure shown above is used to form the itemsets with 2 element, 3 element and n elements. The first 

partition P1 is fed as an input which comprises of the following elements 

{M1, M3, M5, M7} 

• First iteration: Item M1 is fetched, and concatenated with the other elements to form {M1, M3}, {M1, M5}, 

{M1, M7} 

• Second iteration: Item M3 is fetched and concatenated with other elements to form {M3, M5}, {M3, M5} 

• Third iteration: Item M5 is fetched and concatenated with other elements to form {M5, M7} 

The IPSC is found using the bit table values formed in the individual partition shown in the figure 4. 

M1   = 1 1 0 1 1  

M3    = 1 1 0 1 1 & 

M1, M3 = 1 1 0 1 1  →  IPSC = 4 

M1   = 1 1 0 1 1  

M5    = 1 0 1 1 1 &k 

M1, M5 = 1 0 0 1 1 →  IPSC = 3 

M1   = 1 1 0 1 1  

M7  = 0 1 0 1 1 & 

M1, M7 = 0 1 0 1 1 →  IPSC = 3 

 M3   = 1 1 0 1 1 

 M5   = 1 0 1 1 1 & 

 M3, M5 = 1 0 0 1 1 →IPSC = 3 

M3   = 1 1 0 1 1 

 M7   = 0 1 0 1 1 & 

 M3, M7 = 0 1 0 1 1 →IPSC = 3 

M5   = 1 0 1 1 1 

 M7   = 0 1 0 1 1 & 

 M5, M7 = 0 0 0 1 1 →IPSC = 2 

Table 7: Individual partition support count values found 

Partition P1 IPSC Partition P1 IPSC 

M1 M3 4 M1 M3 4 

M1 M5 3 M1 M5 3 

M1 M7 3 M1 M7 2 

M3 M5 3 M3 M5 3 

M3 M7 3 M3 M7 2 

M5 M7 2 M5 M7 2 
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Table 8: Merged partition support count values found 

MERGED MPSC BINARY 

M1 M3 8 1101101111 

M1 M5 6 1001101011 

M1 M7 5 0101100011 

M3 M5 6 1001101011 

M3 M7 5 0101100011 

M5 M7 4 0001100011 

 

The three element candidate is found using simple AND operation as shown in the following operation, 

M1, M3  = 1101101111 

M5  = 1011111011& 

M1 M3 M5 = 1011101011→ IPSC = 7 

M1, M5  = 1001101011 

M7  = 0101100011& 

M1 M5 M7 = 1001101011→ IPSC = 4 

M3, M5  = 1001101011 

M7  =  0101100011& 

M3 M5 M7 = 1001101011→ IPSC = 4 

M1 M3 M5 = 1011101011 

M7  = 0101100011& 

M1 M3 M5 M7 = 0001100011 → IPSC = 4 

The frequent pattern output formed with the user defined minimum support count value are found and they are 

{M1, M3, M5, M7, M1M3, M1M5, M1M7, M3M5, M3M7, M5M7, M1M3M5M7} 

 

ALGORITHM SWAA( INPUT Data Ð, MinSup M) 

INPUT: RAW data Ð 

OUTPUT: Frequent Itemset 

BEGIN: 

1. Load the input data Ð 

2. PP=TopDownBottomUp(D) 

3. DiscoverDistinct(PP) 

4. Can= CanForm(D, Distinct) 

5. Calculate IPSC 

6. Merge data from different partition 

7. Calculate MPSC 

8. If (MPSC >= M) 

9. Store the candidate→RES 

10. End IF 

11. Return RES 
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END  

 

2. Experimantal Evaluation 

The SPMF tool, which is based on the Java programming language, is used for coding, and large synthetic 

datasets [2] as well as benchmarked real datasets are utilized in tests to assess the performance of the proposed 

technique. For this experiment, six nodes are employed, and each system setup consists of an Intel Core I7 CPU, 

8GB RAM, and a 1TB SDD drive. The benchmarked dataset used is shown in the table 8 

Table 9: Dataset used 

 

The Experiments are carried out for the number of candidate generated during the process and the candidate 

produced are noted and compared with the state of the art existing algorithms as shown in the tables below, 

Table 10: Assessment of the number of candidates generated by experimentation on the Accident dataset 

CANDIDATE GENERATION ASSESSMENT 

DATASET NAME - ACCIDENT 

Algorithm 

Name 

User defined Minimum Support Values 

0.10 0.20 0.25 0.35 0.40 

BIGFIM 986187 532210 468127 220921 168657 

PARECLAT 798423 412392 376915 201125 167218 

SPC 575327 318175 259117 189890 162035 

SWAA 420947 278616 200196 177618 145838 

 

Table 11: Assessment of the number of candidates generated by experimentation on the CONNECT 

dataset 

 

 

 

 

 

 

 

 

 

CANDIDATE GENERATION ASSESSMENT 

DATASET NAME - CONNECT 

Algorithm 

Name 

User defined Minimum Support Values 

0.15 0.20 0.25 0.30 0.45 

BIGFIM 136127 112072 88878 68107 42137 

PARECLAT 121398 105981 82826 59021 38681 

SPC 99370 86596 72090 51536 38403 

SWAA 81146 78757 68709 45765 34267 
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Table 12: Assessment of the number of candidates generated by experimentation on the RETAIL dataset 

CANDIDATE GENERATION ASSESSMEMT 

DATASET NAME - RETAIL 

Algorithm  

Name 

User defined Minimum Support Values 

0.25 0.30 0.35 0.40 0.55 

BIGFIM 186325 172927 163675 89327 72618 

PARECLAT 212089 206916 172615 116673 75575 

SPC 186878 175113 166124 90912 74581 

SWAA 171595 160991 153067 83268 72147 

 

From the above tables it is quite obvious that the proposed SWAA algorithm out- performed the other three 

existing algorithms with respect to candidate generation and produced fewer candidates during the execution 

which reduces the runtime considerably. The runtime comparison for varying support value and for varying 

number of processors is shown in the following figures.  

 

Figure 3: Runtime comparison for varying support and number of processors used 

The above figure clearly indicates the effective and efficient performance of the proposed SWAA algorithm 

with respect to the speed of execution and out-performed the other algorithms by a good margin for varying user 

defined minimum support value as well as for varying number of nodes or processors. Similarly the memory 

usage is compared for the proposed SWAA with the existing algorithms and the results are showcased in the 

following figures and the result proved to be exemplary for the proposed SWAA algorithm.  

 

Figure 4: Memory usage comparison for varying support and number of processors used 
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3. Conclusion 

The proposed SWAA algorithm is showcased in this paper and the important flaws that are prevalent in the 

existing algorithms are eradicated and from the experimental result, it is proved that the proposed algorithm 

produced fewer numbers of candidates due to the efficient pruning mechanism and this thereby reduces the 

runtime, memory consumption and increases the speed of the execution. 

Refrences 

[1] R. Agarwal and R. Srikant.Mining Sequential Pattern. In Proc. 1995 Int. Conf. Data Engineering, pages 3-

10, 1995.  

[2] Quest Data Mining Project, available at http: www.almaden.ibm.com/ cs/quest/syndata.html., IBM Almaden 

Research Center, San Jose, CA 95120. 

[3] Mohammed J. Zaki. Spade: An efficient algorithm for mining frequent sequences. Machine Learning, 

42(12):31-60, January 2001 

[4] Ming-Yen Lin, Pei-Yu Lee, and Sue-Chen Hsueh. Apriori-based frequent itemset mining algorithms on 

mapreduce. In Proceedings of the Sixth International Conference on Ubiquitous Information Management 

and Communication, ICUIMC ’12, pages 76:1 -76:8, New York, NY, USA, 2012. 

[5] Sandy Moens, EminAksehirli, and Bart Goethals.Frequent itemset mining for big data. In 2013 IEEE 

International Conference on Big Data, pages 111-118. IEEE, 2013. 

[6] I. Ali, "Application of Mining Algorithm to find Frequent Patterns in a Text Corpus," International Journal 

of Software Engineering and its Applications, vol. 6, no. 3, pp. 127-134, 2012. 

[7] E. Ozkural, B. Ucar, and C. Aykanat. Parallel frequent item set mining with selective item replication. IEEE 

Trans. Parallel Distrib.Syst., pages 1632–1640, 2011. 

[8] P. G. SanjeevRao, "Implementing Improved Algorithm Over Apriori Data Mining Association Rules 

Algorithm," International Journal of Computer Science and Technology, vol. 3, pp. 489-493, 2012.   

 


