Tuijin Jishu/Journal of Propulsion Technology
ISSN: 1001-4055
Vol. 45 No. 3 (2024)

Split and Win Apportioning Algorithm —
Swaa to Discover Frequent Patterns in Large
Database

'R.Manivasagan, ?Dr.B.Senthilkumaran
1Research Scholar, Department of Computer science, Christhu Raj College, Affiliated to Bharathidasan
University, Tiruchirappalli - 12.
2Assistant Professor & Research Advisor, Department of Computer science, Christhu Raj College, Affiliated
to Bharathidasan University, Tiruchirappalli - 12.

Abstract:- Mining large datasets and discovering meaningful hidden patterns is not a new area but a lot of
improvement is essential to overcome the cost and operational overheads, this paper finds a solution by splitting
the large dataset finding the individual partition support count (IPSC) and then the partitioned dataset are
merged to find the merged partitioned support count (MPSC) to reduce the burden of time and memory related
issues. To find the IPSC and MPSC simple bit vector approach is utilized. The proposed algorithm is compared
with the other existing algorithms to gauge its performance with respect to speed and the memory consumption.

Keywords: Frequent Patterns, Large Datasets, Split and Win Apportioning Algorithm, Partition Support Count,
Bit Vector Approach

1. Introduction

Retrieving a collection of items that frequently occur in the dataset and whose count is at least as high as the
user-specified minimum support threshold value is known as mining frequent itemset. The support count, which
should be higher than the user-provided threshold number, indicates how frequently objects are present in the
transactional database. To extract the frequent itemset from the transactional database, a variety of methods and
algorithms have been developed. In this field, the Apriori algorithm is a pioneering work that was developed by
Srikanth Agarwal and his colleagues [1]. Based on the database being used, the new approach proved to be cost-
effective. Other researchers have improved, modified, customized, and altered the Apriori algorithm, which has
been called the pioneering work in the field. The next popular algorithm is FP-Growth which scans the entire
database only twice unlike apriori but the entire database should fit in the memory of the system and consumes a
lot of memory. The aforementioned methods, while well-known, nonetheless have several drawbacks. For
example, the FP-Growth algorithm necessitates a large amount of memory space in order to maintain the full
database, while Apriori constantly searches the database and generates numerous candidates for it. In order to
get around these obstacles, the suggested method divides the whole database into individual processors and
processes each partition independently, reducing the number of candidates and memory usage. The results are
then combined to identify recurring patterns. In order to produce frequent itemsets from very big datasets,
Zaki'sparEclat [3] technique leverages the idea of parallel computing in conjunction with vertical data
representation. An application of the Apriori method in parallel using map reduces is the Single Pass Counting
SPC algorithm [4]. The algorithm functions effectively by addressing the shortcomings of the traditional Apriori
algorithm. Here, the support count of the candidates is parallelized, and the entire process is divided into two
stages.

2641




Tuijin Jishu/Journal of Propulsion Technology

ISSN: 1001-4055
Vol. 45 No. 3 (2024)

IPSC
!
Upper half o
INPUT DATA R 5 Merged DB Ser
T OATA Merged 08
Lower half b
X -’u s
f
IPSC MPSC
17" LEVEL 2"° LEVEL

Figure 1: Overall architecture of the proposed method

N™ LEVEL

The figure 1 showcased above is self-explanatory as the input raw data is fed initially, the data is bifurcated into
upper half and lower half, then the individual partition support count for both upper and lower are found. Next
the partitioned data is merged to find the merged partition support count. Here the unpromising items are pruned
and the process continues until the entire meaningful frequent patterns are discovered. The sample dataset used
to discover the meaningful frequent patterns are shown in the table 1 and this dataset is partitioned into two
portions one from top to the middle and the other from the bottom to the middle.

Table.1. Sample dataset

Transaction ID

Items

M1, M2, M3, M5, M6, M15

M1, M3, M7

M5, M9

M1, M3, M4, M5, M7

M1, M3, M5, M7, M12

M5, M10

M1, M2, M3, M5, M6, M16

M1, M3, M4

O 00| N| o o B~ W N

M1, M3, M5, M7, M13

10

M1, M3, M5, M7, M14

The above shown dataset is bifurcated using the procedure Top Down Bottom Up as shown in the following

table 2.

Top Down partition — P1

Bottom Up partition — P2

TID Items

TID Items

1 M1, M2, M3, M5, M6, M15 1

M1, M3, M5, M7, M14

2 M1, M3, M7

2 M1, M3, M5, M7, M13

3 M5, M9

3 M1, M3, M4

2642



Tuijin Jishu/Journal of Propulsion Technology
ISSN: 1001-4055
Vol. 45 No. 3 (2024)

4 M1, M3, M4, M5, M7 4

M1, M2, M3, M5, M6, M16

5 M1, M3, M5, M7, M12 5

M5, M10

Table 2: Bifurcated sample dataset

The pseudo code to bifurcate the dataset is shown below and the procedure Top Down Bottom Up is self-

explanatory.

Procedure Top Down Bottom Up ( Input dataset D)

INPUT: raw data D
OUTPUT: Bifurcated data P1 and P2
BEGIN:

Load the input dataset D

Find the total row count Rcount
For index = 0 to Rcount-1 do
Store in P1 = D[index]

Store in P2 = D[Rcount — index]
IF (index = Rcount-index)
EXIT For loop

Close IF

Close FOR

©wNookwdRE

END Procedure

The bifurcated data is assumed to be sorted and the distinct items present in the partitions P1 and P2 are found

using the procedure Discover Distinct which is shown below along with the individual count of the items.

Procedure Discover Distinct (Partitioned data P)

INPUT: Partitioned data P
OUTPUT: Distinct Item and its count
BEGIN:

Load the partitioned dataset P
DistArr[ ][ ] = empty

V transactional Row TR e P do
YV Item Il €e TR do

IF (1l not in DistArr[]) do

Il >DistArr[]

Count Il individually > DistArr
Close IF

Close For

Close For

11. Return DistArr

©EeNeO DN RE

H
e

END Procedure

2643



Tuijin Jishu/Journal of Propulsion Technology
ISSN: 1001-4055
Vol. 45 No. 3 (2024)

The transactional rows' are iterated in a loop to acquire each row individually from the partitioned data. After
determining the total number of items in the individual transactional row, each item is retrieved one at a time
and checked against the distinct items DistArr[]. If the item is not found in DistArr[], it is placed there; if not,
the item count is increased. During the first iteration in the loop, the transactional row 1 = {M1, M2, M3, M5,
M6, M15} is fetched. Now the total number of items present in the rowl is computed and found to contain 6
elements.

The inner loop is executed 6 times to discover the distinct elements.The first item retrieved is M1 and compared
with the empty DistArr[], since the item “M1” is not present in the DistArr[], the first distinct element found is
“M1” and stored in DistArr[].

ITERATION 2: “M2” not available in DistArr] ], store “M2”

ITERATION 3: “M3” not available in DistArr[ ], store “M3”

ITERATION 4: “M5” not available in DistArr] ], store “M5”

ITERATION 5: “M6” not available in DistArr[ ], store “M6”

ITERATION 6: “M15” not available in DistArr] ], store “M15”

Inner loop closes

Outer loop iteration 2 commences,

Transactional row 2 in P1 ={M1, M3, M7} is initially fetched

The item count of the row2 is found to be 3 and the inner loop iterates three times as shown
ITERATION 1: “M1” available in DistArr[ ], increment count of M1

ITERATION 2: “M3” available in DistArr[ ], increment count of M3

ITERATION 3: “M7” not available in DistArr] ], store “M7”

Inner loop ends

Similarly all the rows are fetched to discover the distinct elements and the resultant is shown in the table 3.

Table 3: Distinct element found from two partitions P1 and P2

PARTITION 1 PARTITION 2
DISTINCT DISTINCT
ELEMENT IPSC ELEMENT IPsC
M1 4 M1 4
M2 1 M2 1
M3 4 M3 4
M4 1 M4 1
M5 4 M5 4
M6 1 M6 1
M7 2 M7 3
M9 1 M10 1
M12 1 M13 1
M15 1 M14 r
M16 1

2644



Tuijin Jishu/Journal of Propulsion Technology
ISSN: 1001-4055
Vol. 45 No. 3 (2024)

Let us assume that the user defined support count is 4, the count which is less than 4 will be pruned and the final
distinct element is shown in the following table 4. The elements M2, M4, M6, M9, M10, M11, M12, M13, M14,
M15, M16 are pruned away and the remaining elements are shown in the table 4.

Table 4: Final distinct element after pruning

DISTINCT

ELEMENT MPSC
M1 8
M3 8
M5 8
M7 5

Property 1

“If an element's minimum support count is less than the user-specified minimum Support threshold value, it is
deemed to be an infrequent element.”

The final dataset is shown in the table 5 after pruning the infrequent elements whose support count value is less
than the user specified,

Table 5:
Top Down partition — P1 Bottom Up partition — P2
TID Items TID Items
1 M1, M3, 1 M1, M3,
M5 M5, M7
2 M1, M3, 2 M1, M3,
M7 M5, M7
3 M5 3 M1, M3
4 M1, M3, 4 M1, M3,
M5, M7 M5
M1, M3,
5 M5, M7 5 M5

Pruned sample dataset

Creating a bit vector table that corresponds to the database that has been pruned is the next step in the technique.
The element in dataset will be indicated as "1" if it is present in the transactional row and "0" if it is not present.

The distinct elements are confined into four elements {M1, M3, M5, M7} and these distinct values are marked
for its present in a row with “1” and “0” if it is not present. The first element M1 is marked in partition P1 as
shown in the following section,

Table 6: Transactional Data Representation for Element M1

Transactional Row

Element 1 2 3 4 5

M1 1 1 0 1 1

Here the element M1 is not present in the row 3 if partition P1 and it is represented by “0” whereas all other
rows contains “1” as it is present.

2645



Tuijin Jishu/Journal of Propulsion Technology
ISSN: 1001-4055
Vol. 45 No. 3 (2024)

P T1 ML, M3,
A :
R T2 L B ]\ Binary table
T
I 3 M5 —
T
|
0 T4 | M1, M3, M5,
N
TS5 M1, M3, M5,
p T1 M5
A :
R T2 ML M3 Binary table
T \ M1 (o [1 1 [1 [1
I M3 0 1 1 ]1 |1
Tram,m >l Tms 1 [1 o [1 |1
| —h—t—1
0 T4 | M1,M3, M5,
N
TS5 M1, M3, M5,

Figure 2: Bit vector table creation for P1 and P2
Next the elements are formed using some properties and definitions shown below,
Property 2

“An element or itemset might be infrequent in one partition but after merge that element or itemset might be
frequent. 7]

{M1, M2), IPSC} # {(M1, M2), MPSC}
Property 3

“It is possible for an infrequent candidate in one partition to be a frequent candidate in another, and vice versa
for frequent candidates in different partitions. ”’[8]

Procedure CanFORM (Partioned data P, DistinctElement E)

INPUT: data P, Distinct element E

OUTPUT: Itemsets

BEGIN

Load the partitioned data P

Load the Distinct element E

V Elementi € P do

V Item Di € Edo

IF [Di not present in Pi AND Di > Pi] then
Append Pi and Di >RES
Close IF
Close For

Close For

Return RES

END

2646



Tuijin Jishu/Journal of Propulsion Technology
ISSN: 1001-4055
Vol. 45 No. 3 (2024)

This process is carried out in each and every level and then merged to get the overall itemset with MPSC value.
The procedure shown above is used to form the itemsets with 2 element, 3 element and n elements. The first
partition P1 is fed as an input which comprises of the following elements

{M1, M3, M5, M7}

e First iteration: Item M1 is fetched, and concatenated with the other elements to form {M1, M3}, {M1, M5},
{M1, M7}

e Second iteration: Item M3 is fetched and concatenated with other elements to form {M3, M5}, {M3, M5}

e Third iteration: Item M5 is fetched and concatenated with other elements to form {M5, M7}

The IPSC is found using the bit table values formed in the individual partition shown in the figure 4.
M1 =11011
M3 =11011&
M1,M3=11011 > IPSC=4
M1 =11011
M5 =10111&k
M1,M5=10011-> IPSC=3
M1 =11011
M7 =01011&
M1,M7=01011-> IPSC=3
M3 =11011
M5 =10111&
M3,M5=10011->IPSC=3
M3 =11011
M7 =01011&
M3,M7=01011->IPSC=3
M5 =10111
M7 =01011&
M5, M7=00011->IPSC=2

Table 7: Individual partition support count values found

Partition P1 IPSC Partition P1 IPSC
M1 M3 4 M1 M3 4
M1 M5 3 M1 M5 3
M1 M7 3 M1 M7 2
M3 M5 3 M3 M5 3
M3 M7 3 M3 M7 2
M5 M7 2 M5 M7 2

2647



Tuijin Jishu/Journal of Propulsion Technology
ISSN: 1001-4055
Vol. 45 No. 3 (2024)

Table 8: Merged partition support count values found

MERGED MPSC BINARY
M1 M3 8 1101101111
M1 M5 6 1001101011
M1 M7 5 0101100011
M3 M5 6 1001101011
M3 M7 5 0101100011
M5 M7 4 0001100011

The three element candidate is found using simple AND operation as shown in the following operation,

M1, M3 =1101101111

M5 =1011111011&

M1 M3 M5 =1011101011-> IPSC =7
M1, M5 =1001101011

M7 =0101100011&

M1 M5 M7 =1001101011-> IPSC =4
M3, M5 =1001101011

M7 = 0101100011&

M3 M5 M7 =1001101011-> IPSC = 4
M1 M3 M5 =1011101011

M7 =0101100011&

M1 M3 M5 M7 = 0001100011 - IPSC = 4

The frequent pattern output formed with the user defined minimum support count value are found and they are
{M1, M3, M5, M7, M1IM3, M1M5, M1M7, M3M5, M3M7, M5M7, M1M3M5M7}

ALGORITHM SWAA( INPUT Data B, MinSup M)

INPUT: RAW data b
OUTPUT: Frequent Itemset
BEGIN:

Load the input data B
PP=TopDownBottomUp(D)
DiscoverDistinct(PP)

Can= CanForm(D, Distinct)
Calculate IPSC

Merge data from different partition
Calculate MPSC

If (MPSC >= M)

Store the candidate>RES
End IF

Return RES

NN RE

=
= o

2648



Tuijin Jishu/Journal of Propulsion Technology
ISSN: 1001-4055
Vol. 45 No. 3 (2024)

END

2. Experimantal Evaluation

The SPMF tool, which is based on the Java programming language, is used for coding, and large synthetic
datasets [2] as well as benchmarked real datasets are utilized in tests to assess the performance of the proposed
technique. For this experiment, six nodes are employed, and each system setup consists of an Intel Core 17 CPU,
8GB RAM, and a 1TB SDD drive. The benchmarked dataset used is shown in the table 8

Table 9: Dataset used

DATASET ITEMS AVERAGE | TRANSACTION
NAME LENGTH

Accidents 468 33.8 340,183

Connect 129 43 67.557

Retail 116469 | 105 88.128

The Experiments are carried out for the number of candidate generated during the process and the candidate
produced are noted and compared with the state of the art existing algorithms as shown in the tables below,

Table 10: Assessment of the number of candidates generated by experimentation on the Accident dataset

CANDIDATE GENERATION ASSESSMENT
DATASET NAME - ACCIDENT
Algorithm User defined Minimum Support Values

NEITE 0.10 0.20 0.25 0.35 0.40
BIGFIM 986187 532210 468127 220921 168657
PARECLAT 798423 412392 376915 201125 167218
SPC 575327 318175 259117 189890 162035
SWAA 420947 278616 200196 177618 145838

Table 11: Assessment of the number of candidates generated by experimentation on the CONNECT

dataset
CANDIDATE GENERATION ASSESSMENT
DATASET NAME - CONNECT
Algorithm User defined Minimum Support Values

Name 0.15 0.20 0.25 0.30 0.45
BIGFIM 136127 112072 88878 68107 42137
PARECLAT 121398 105981 82826 59021 38681
SPC 99370 86596 72090 51536 38403
SWAA 81146 78757 68709 45765 34267

2649



Tuijin Jishu/Journal of Propulsion Technology

ISSN: 1001-4055
Vol. 45 No. 3 (2024)

Table 12: Assessment of the number of candidates generated by experimentation on the RETAIL dataset

CANDIDATE GENERATION ASSESSMEMT
DATASET NAME - RETAIL
Algorithm User defined Minimum Support Values

Name 0.25 0.30 0.35 0.40 0.55
BIGFIM 186325 172927 163675 89327 72618
PARECLAT 212089 206916 172615 116673 75575
SPC 186878 175113 166124 90912 74581
SWAA 171595 160991 153067 83268 72147

From the above tables it is quite obvious that the proposed SWAA algorithm out- performed the other three
existing algorithms with respect to candidate generation and produced fewer candidates during the execution
which reduces the runtime considerably. The runtime comparison for varying support value and for varying
number of processors is shown in the following figures.

EEEEEEEEEE

RUNTIME - Accident database

*  bigFiM
= - parEclat
a---- SPC

o= SWAA

Exccution time (sec)

EE TR
o §888388488°¢%

RUNTIME - Connect database

- BigFim
- -parclat
——— spc

————SWAA

Exscution ime [see)

RUNTIME - Accident database

- bigFIM
=- - parEclat

<o SPC

SWAA

RUNTIME - Connect database

- bigFIM
—— parEciat]
- sPc

e SWAA

Figure 3: Runtime comparison for varying support and number of processors used

The above figure clearly indicates the effective and efficient performance of the proposed SWAA algorithm
with respect to the speed of execution and out-performed the other algorithms by a good margin for varying user
defined minimum support value as well as for varying number of nodes or processors. Similarly the memory
usage is compared for the proposed SWAA with the existing algorithms and the results are showcased in the

following figures and the result proved to be exemplary for the proposed SWAA algorithm.

TR e S
o 8 8 8 8 8 8
/

MEMORY USAGE - Accident database

a0
- =£:J £
S >

MEMORY USAGE - Connect database

. bgrim ‘
- spC

MEMORY USAGE - Accident database

:

= - parEciat

MEMORY USAGE - Connect database

Number of processors

Figure 4: Memory usage comparison for varying support and number of processors used

2650



Tuijin Jishu/Journal of Propulsion Technology
ISSN: 1001-4055
Vol. 45 No. 3 (2024)

3. Conclusion

The proposed SWAA algorithm is showcased in this paper and the important flaws that are prevalent in the
existing algorithms are eradicated and from the experimental result, it is proved that the proposed algorithm
produced fewer numbers of candidates due to the efficient pruning mechanism and this thereby reduces the
runtime, memory consumption and increases the speed of the execution.

Refrences

[1] R. Agarwal and R. Srikant.Mining Sequential Pattern. In Proc. 1995 Int. Conf. Data Engineering, pages 3-
10, 1995.

[2] Quest Data Mining Project, available at http: www.almaden.ibm.com/ cs/quest/syndata.html., IBM Almaden
Research Center, San Jose, CA 95120.

[3] Mohammed J. Zaki. Spade: An efficient algorithm for mining frequent sequences. Machine Learning,
42(12):31-60, January 2001

[4] Ming-Yen Lin, Pei-Yu Lee, and Sue-Chen Hsueh. Apriori-based frequent itemset mining algorithms on
mapreduce. In Proceedings of the Sixth International Conference on Ubiquitous Information Management
and Communication, ICUIMC *12, pages 76:1 -76:8, New York, NY, USA, 2012.

[5] Sandy Moens, EminAksehirli, and Bart Goethals.Frequent itemset mining for big data. In 2013 IEEE
International Conference on Big Data, pages 111-118. IEEE, 2013.

[6] I. Ali, "Application of Mining Algorithm to find Frequent Patterns in a Text Corpus," International Journal
of Software Engineering and its Applications, vol. 6, no. 3, pp. 127-134, 2012.

[7] E. Ozkural, B. Ucar, and C. Aykanat. Parallel frequent item set mining with selective item replication. IEEE
Trans. Parallel Distrib.Syst., pages 1632—-1640, 2011.

[8] P. G. SanjeevRao, "Implementing Improved Algorithm Over Apriori Data Mining Association Rules
Algorithm,"” International Journal of Computer Science and Technology, vol. 3, pp. 489-493, 2012.

2651



