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Abstract:- The problem of distributed filtering is designed for discrete time varying system considering sensor 

network with certain topological structure. Generally, the topology of sensor network is sparse in nature and the 

information are quite difficult to collect. In this paper, the sensor network is considered as discrete time varying 

system and the distributed recursive filtering problem is addressed. Stochastic nonlinearities are introduced into 

the system with gaussian inputs. Communication burden can be reduced by introducing Maximum Error First 

protocol (MEF) and also it saves the communication resource. The optimal distributed filter is designed with 

minimum variance for the considered discrete time varying stochastic nonlinear system. An upper bound of the 

error covariance matrix is arrived in terms of solving the Riccati type difference equation. The filter gain is derived 

in virtue of minimizing the upper bound of filtering error covariance. To deal with the sparsity of the sensor 

network a new matrix simplification technique is used. Results are derived by considering some of the sample 

values of time varying matrixes and nonlinear functions are simulated for the proposal and outputs are plotted in 

graph. 

Keywords: Discrete Time varying Systems, Stochastic nonlinearities, Maximum Error Protocol and Gaussian 

Noise 

1. Introduction 

Recent advancement in the field of engineering and technology have made it easy to address the problem in 

developing and deploying complex communication network. Wired and wireless communication network collects 

and process large quantities and wide range of physical variable. The sensor and monitoring network have been 

incorporated in many filed such as, smart home; robotics; industrial monitoring; environmental and earth sensing 

[1-4]. Rapid development insensors plays a vital role in advancement of communication technology. They are 

used to measure/detect the physical variables such as pressure, temperature, and motion etc., also sensors are 

having the capability to communicate. Also, they are the important component in the field of Internet of Things 

(IoT) for developing future world products. Numerous sensors can be connected in a topology to form a sensor 

network [2-6]. Sensor networks can be wired or wireless;In common, wired sensor networks are using ethernet 

cables or fiber optic cable (OFC) for communication. Whereas wireless sensor network (WSN) uses 

communication technologies like Bluetooth, Radio Frequency, Infrared, General Pocket Radio Service (GPRS), 

Near Frequency Communication (NFC) and Wi-Fi to connect the sensors. 

2. Problem Formulation 

For addressing the problem let consider the discrete time-varying system as follows: 

𝑥𝑛+1 = 𝐴𝑛𝑥𝑛 + 𝛾𝑛𝑓(𝑥𝑛 , 𝑛) + 𝐵𝑛𝜔𝑛 + ℎ(𝑥𝑛−𝜏) (1) 

𝑦𝑖,𝑛 = 𝐶𝑖,𝑛𝑥𝑛 + 𝑉𝑖,𝑛 (2) 
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Let, 

𝐺 = (𝑉, 𝐸, 𝐻), a fixed discrete graph 

𝑉 = {1,2, … , 𝑛} a set of nodes 

𝐸 ∈ 𝑉 × 𝑉, the set of edges 

𝐻 = [ℎ𝑖𝑗] the weighted adjacency matrix and each weighted element satisfies the property  ℎ𝑖𝑗 > 0, ∀𝑖𝑗∈ 𝐸 

𝑁𝑖 ≜ {𝑗 ∈ 𝑉 (𝑖, 𝑗) ∈ 𝐸⁄ } represents the neighbors of the node I plus the node itself 

𝑥𝑛 ∈ 𝑅
𝑁𝑥  represents the state vector 

𝑦𝑖,𝑛 ∈ 𝑅
𝑁𝑦 represents the measurement output 

𝜔𝑛 ∈ 𝑅
𝑁𝜔 represents the process noise 

𝑉𝑖,𝑛 ∈ 𝑅
𝑁𝑦 represents the measurement noise 

𝐴𝑛, 𝐵𝑛 𝑎𝑛𝑑 𝐶𝑖,𝑛 are known time varying matrices with appropriate dimensions 

𝑓(𝑥𝑛 , 𝑛) ∈ 𝑅
𝑁𝑥 is the nonlinear function 

𝐸[𝜔𝑛] = 0,   𝐸[𝑉𝑖,𝑛] = 0,      𝐸[𝑊𝑛𝑊𝑗
𝑇] = 𝛿𝑛𝛿𝑛𝑗 

𝐸[𝑉𝑖,𝑛 , 𝑉𝑖,𝑗
𝑇] = 𝑄𝑖𝑛𝛿𝑛𝑗 ,     𝐸[𝜔𝑛, 𝑉𝑖,𝑗

𝑇] = 𝑅𝑖𝑛𝛿𝑛𝑗 

Where 𝑄𝑖𝑛, 𝑅𝑖𝑛 and 𝛿𝑛 are known positive definite matrices with appropriate dimensions 

𝛾𝑛 is a random variable and satisfies Bernoulli distribution with 

𝑃(𝛾𝑛 = 1) = 𝛾𝑛̅ ,    𝑃(𝛾𝑛 = 0) = 1 − 𝛾𝑛̅ 

Where 𝛾𝑛̅ is a known constant and 𝛾𝑛̅ = [0,1] 

3. Maximum Error First Protocol (MEF) 

If the system allows more than one node information transmission, the system may happen collision inevitably. 

In this case, the MEF protocol is employed to choose next instants node. 

At each time instant n, the absolute error of sensor node I can be defined as follows 

𝑒𝑖,𝑛 = 𝑦𝑖,𝑛 − 𝑦𝑖,𝑛
∗,   𝑖 = 1,2, … 𝑛 

Where 𝑦𝑖,𝑛
∗represents the latest transmitted signal. Until the next update instant 𝑦𝑖,𝑛

∗ will be held. 

At time n, we choose the sensor node i at the next time by relying on the following formulae 

𝑙𝑛 = 𝑚𝑖𝑛 {arg max
1≤𝑖≤𝑁

|𝑒𝑖,𝑛|} 

Where 𝑙𝑛 ∈ {1,2, …𝑁} it means that the node i with the greatest absolute error chosen. 

Let 𝑦𝑛 = [𝑦1,𝑛
𝑇 , … 𝑦𝑁,𝑘

𝑇]
𝑇
represent the received signal by remote filter after the MEF protocol. Clearly 𝑦̅𝑛 =

[𝑦̅1,𝑛, … 𝑦̅𝑁,𝑛]
𝑇
, where 𝑦𝑛 ≠ 𝑦̅𝑛 at each sampling instant n, the relationship can be expressed as 

𝑦𝑖,𝑛 = {
𝑦̅1,𝑛 , 𝑖 =  𝑙𝑛
𝑦̅𝑖,𝑛−1 ,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

The update function cab be defined as  

∧ 𝑙𝑛 = 𝑑𝑖𝑎𝑔{𝛿(1 − 𝑙𝑛), … , 𝛿(𝑁 − 𝑙𝑛)} (3) 

We define 𝑦𝑖,𝑛 

𝑦𝑖,𝑛 = 𝛿(𝑖 − 𝑙𝑛)𝑦̅1,𝑛 + [1 − 𝛿(1 − 𝑙𝑛)]𝑦𝑖,𝑛−1 (4) 
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Assumption1: 

The nonlinear function 𝑓(𝑥𝑛 , 𝑛) is continuous and satisfies sector bounded conditions in the following 

[𝑓(𝑥𝑛 , 𝑛) − Γ1𝑥̅𝑛]
𝑇[𝑓(𝑥𝑛 , 𝑛) −  Γ2𝑥̅𝑛] ≤ 0 (5) 

Where Γ1 𝑎𝑛𝑑 Γ2are real-valued matrices with appropriate dimensions and Γ1 − Γ2 > 0 

Define 

𝑓(𝑥̅𝑛 , 𝑛) = [
𝑓̅(𝑥̅𝑛,𝑛)

0
], 𝐵𝑖,𝑛 = [

𝐵̅𝑛 0

0 𝛿(𝑖 − 𝑙𝑛)𝐼
] 

𝐴𝑖,𝑛 = [
𝐴̅𝑛 0

𝛿(𝑖 − 𝑙𝑛)𝐶𝑖̅,𝑛 1 − 𝛿(𝑖 − 𝑙𝑛)𝐼
] 

𝑋𝑖,𝑛 = [
𝑥𝑛
𝑦𝑖,𝑛−1

], 𝛾̃𝑛 = [
𝛾𝑛𝐼 0
0 0

], 𝜔̃𝑖,𝑛 = [
𝜔̅𝑛
𝑉̅𝑖,𝑛
] 

𝐶𝑖,𝑛 = [𝛿(𝑖 − 𝑙𝑛)𝐶𝑖̅,𝑛(1 − 𝛿(𝑖 − 𝑙𝑛))I] 

Then we have the new forms of systems with MEF protocol 

𝑋𝑖,𝑛+1 = 𝐴𝑖,𝑛𝑋𝑖,𝑛 + 𝛾̃𝑛𝑓(𝑥̅𝑛 , 𝑛) + 𝐵𝑖,𝑛𝜔̃𝑖,𝑛 (6) 

𝑦̅𝑖,𝑛 = 𝐶𝑖,𝑛𝑋𝑖,𝑛 + 𝛿(𝑖 − 𝑙𝑛) + 𝑉̅𝑖,𝑛 (7) 

We design the distributed filter with MEF protocol 

𝑥̂𝑖,𝑛+1 𝑛⁄ = 𝐴𝑖,𝑛𝑥̂𝑖,𝑛 𝑛⁄ + 𝛾̃𝑛𝑓(𝑥̂𝑖,𝑛 𝑛⁄ , 𝑛) (8) 

𝑥̂𝑖,𝑛+1 𝑛+1⁄ = 𝑥̂𝑖,𝑛+1 𝑛⁄ +∑ ℎ𝑖𝑗,𝑛+1𝑗∈𝑁𝑖
𝐺𝑖𝑗,𝑛+1 × (𝑦𝑗,𝑛+1 − 𝐶𝑗,𝑛+1𝑥̂𝑗,𝑛+1 𝑛⁄ ) (9) 

Where 𝑥̂𝑖,𝑛+1 𝑛⁄  denotes the one-step prediction, 𝑥̂𝑖,𝑛+1 𝑛+1⁄  denotes the filter, and 𝐺𝑖𝑗,𝑛+1 denotes the filter gain. 

In the following, let the one-step prediction error and the filtering error be 

𝑒𝑖,𝑛+1 𝑛⁄ = 𝐴𝑖,𝑛𝑒𝑖,𝑛 𝑛⁄ + 𝛾̃𝑛̅ (𝑓(𝑥̅𝑛 , 𝑛) − 𝑓(𝑥̂𝑖,𝑛 𝑛⁄ , 𝑛)) + (𝛾̃𝑛 − 𝛾̃𝑛̅)𝑓(𝑥̅𝑛 , 𝑛) + 𝐵𝑖,𝑛𝜔̃𝑖,𝑛 

𝑒𝑖,𝑛+1 𝑛+1⁄ = 𝑒𝑖,𝑛+1 𝑛⁄ − ∑ ℎ𝑖𝑗,𝑛+1
𝑗∈𝑁𝑖

𝐺𝑖𝑗,𝑛+1{𝐶𝑗,𝑛+1 × 𝑒𝑗,𝑛+1 𝑛⁄ + 𝛿(𝑗 − 𝑙𝑛+1)𝑉̅𝑗,𝑛+1} 

We introduce the following notations 

𝐸𝑖 ≜ 𝑑𝑖𝑎𝑔 {0,… , 0⏟  
𝑖−1

, I, 0, … , 0⏟  
𝑁−𝑖

} 

𝛾̅𝑛 ≜ 𝑑𝑖𝑎𝑔𝑁{𝛾̃𝑛̅}, 𝑋𝑛+1 ≜ 𝐶𝑜𝑙𝑁{𝑋𝑖,𝑛+1},𝛾𝑛 ≜ 𝑑𝑖𝑎𝑔𝑁{𝛾̃𝑛} 

𝐴𝑛 ≜ 𝑑𝑖𝑎𝑔𝑁{𝐴𝑖,𝑛},𝐵𝑛 ≜ 𝑑𝑖𝑎𝑔𝑁{𝐵𝑖,𝑛},𝐶𝑛 ≜ 𝑑𝑖𝑎𝑔𝑁{𝐶𝑖,𝑛} 

𝑓𝑛 ≜ 𝐶𝑜𝑙𝑁{𝑓(𝑥̅𝑛 , 𝑛)},𝑒𝑛+1 𝑛+1⁄ ≜ 𝐶𝑜𝑙𝑁{𝑒𝑖,𝑛+1 𝑛+1⁄ } 

𝑓𝑛 ≜ 𝐶𝑜𝑙𝑁{𝑓(𝑥̂𝑖,𝑛 𝑛⁄ , 𝑛)},𝑒𝑛+1 𝑛⁄ ≜ 𝐶𝑜𝑙𝑁{𝑒𝑖,𝑛+1 𝑛⁄ } 

𝐻𝑖 ≜ 𝑑𝑖𝑎𝑔{ℎ𝑖 , I, … , ℎ𝑖𝑁 , I},𝐺𝑛 ≜ {𝐺𝑖𝑗,𝑛}𝑁×𝑁 

𝜔𝑛 ≜ 𝐶𝑜𝑙𝑁{𝜔̃𝑖,𝑛},𝑉𝑛 ≜ {𝑉̅𝑖,𝑛},𝑦̅𝑛 ≜ 𝐶𝑜𝑙𝑁{𝑦̅𝑖,𝑛} 

From the above notations, the one-step prediction error and the filtering error can be rewritten 

𝑒𝑛+1 𝑛⁄ = 𝐴𝑛𝑒𝑛 𝑛⁄ + 𝛾̅𝑛(𝑓𝑛 − 𝑓𝑛) + (𝛾𝑛 − 𝛾̅𝑛)𝑓𝑛 + 𝐵𝑛𝜔𝑛 + ℎ(𝑥𝑛 − 𝜏) (10) 
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𝑒𝑛+1 𝑛+1⁄ = (𝐼 − ∑ 𝐸𝑖𝐺𝑛+1𝐻𝑖𝐶𝑛+1
𝑁
𝑖=1 )𝑒𝑛+1 𝑛⁄ − ∑ 𝐸𝑖𝐺𝑛+1𝐻𝑖[𝛺(𝑙𝑛+1)⨂I]

𝑛
𝑖=1 𝛾𝑛+1 (11)  

Lemma 1 

Given vector 𝐹, 𝑉1, 𝑉2 ∈ 𝑅
𝑛if(𝐹 − 𝑉1)

𝑇(𝐹 − 𝑉2) ≤ 0 

Holds, there exists a constant ⊝≤ (0,1) such that ‖𝐹‖2 ≤
⊝−⊝−1

2(1−⊝)
‖𝑉1‖

2 +
⊝−1

(1−⊝)
‖𝑉2‖

2 (12) 

Lemma 2 

Let 𝐴 = [𝛼𝑖𝑗]𝑚×𝑚 be real-valued matrix,  

𝐵 = {𝛽1, 𝛽2, … , 𝛽𝑚} be a diagonal random matrix, thus we have 

𝐸{𝐵𝐴𝐵𝑇} = [

𝐸{𝛽1
2}

𝐸{𝛽2𝛽1}
⋮

𝐸{𝛽𝑚𝛽1}

𝐸{𝛽1𝛽2}

𝐸{𝛽2
2}
⋮

𝐸{𝛽𝑚𝛽2}

…
…
⋮
⋯

𝐸{𝛽1𝛽𝑚}

𝐸{𝛽2𝛽𝑚}
⋮

𝐸{𝛽1𝛽2}

] 𝑜 (13) 

Where ‘o’ represents the Hadamard product 

Lemma 3 

Let 𝑈, 𝑉,𝑊 𝑎𝑛𝑑 𝑋 be compatible dimensions matrices thus the following equations hold 

𝜕𝑡𝑟(𝑉𝑋𝑇)

𝜕𝑋
= 𝑈 ,

𝜕𝑡𝑟(𝑋𝑈)

𝜕𝑋
= 𝑈𝑇  

𝜕𝑡𝑟(𝑈𝑋𝑉)

𝜕𝑋
= 𝑈𝑇𝑉𝑇 ,

𝜕𝑡𝑟(𝑈𝑋𝑇𝑉)

𝜕𝑋
= 𝑉𝑈  

𝜕𝑡𝑟(𝑈𝑋𝑉𝑋𝑇𝑊)

𝜕𝑋
= 𝑈𝑇𝑊𝑇𝑋𝑉𝑇 +𝑊𝑈𝑋𝑉 

Furthermore, for any symmetric matrix P, the following equation is true 

𝜕𝑡𝑟((𝑈𝑋𝑉)𝑃(𝑈𝑋𝑉)𝑇)

𝜕𝑋
= 2𝑈𝑇𝑈 𝑋 𝑉𝑃𝑉𝑇 

We introduce some notations as follows 

𝜓𝑛 ≜ {(𝛾𝑛 − 𝛾̅𝑛)(𝛾𝑛 − 𝛾̅𝑛)
𝑇} (14) 

= 𝑑𝑖𝑎𝑔𝑁 {𝑑𝑖𝑎𝑔{𝛾̅⃗𝑛(1 − 𝛾̅⃗𝑛)I, 0, 𝛾̅⃗𝑛(1 − 𝛾̅⃗𝑛)I, 0}} 

𝑊̃𝑖,𝑛 ≜ 𝐸{𝜔̃𝑖,𝑛𝜔̃𝑖,𝑛
𝑇} =  [

𝑆𝑛 𝑅𝑖,𝑛

𝑅𝑖,𝑛
𝑇 𝑄𝑖,𝑛

] (15) 

𝑊𝑛 ≜ 𝐸{𝜔𝑛𝜔𝑛
𝑇} =  (𝑊̃𝑖,𝑛)𝑁×𝑁 (16) 

𝑉𝑛 ≜ 𝐸{𝑉𝑛𝑉𝑛
𝑇} =  𝑑𝑖𝑎𝑔𝑁{𝑄𝑖,𝑛} (17) 

Main Result 

In this section, our aim is to design the optimal filter gain 𝐺𝑖𝑗,𝑛+1. Firstly, the upper bound of the stat covariance 

is shown below 

Lemma 4 

The stat covariance matrix 𝑋𝑛+1 = 𝐸[𝑥𝑛+1𝑥𝑛𝑛
𝑇] satisfies the following inequality 

𝑋𝑛+1 ≤ 𝜙𝑛+1 (18) 
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Where, 

𝜌1 =
⊝+⊝−1

2(1 −⊝1)
, 𝜌2 =

⊝−1

(1 −⊝1)
 

𝜙𝑛+1 = (1 + 𝛾1)𝐴𝑛𝜙𝑛𝐴𝑛
𝑇 + 𝐵𝑛𝑆𝑛𝐵𝑛

𝑇 + (1 + 𝛾1
−1)𝛾̅𝜌1 × 𝑡𝑟{Γ1𝜙𝑛Γ1

𝑇}I + (1 + 𝛾1
−1)𝛾̅𝜌2𝑡𝑟{Γ2𝜙𝑛Γ2

𝑇}I (19) 

Now we can further obtain the upper bound of one-step prediction error covariance and filtering error covariance. 

Theorem 1: 

For systems (3) and (4), the one-step prediction error covariance 𝜌𝑛+1 𝑛⁄  and the filtering error covariance 

𝜌𝑛+1 𝑛+1⁄  satisfy the following formulae 

𝜌𝑛+1 𝑛⁄   ≤ Ω𝑛+1 𝑛⁄ , (20) 

                                                     𝜌𝑛+1 𝑛+1⁄ ≤ Ω𝑛+1 𝑛+1⁄                                           (21) 

Where 

Ω𝑛+1 𝑛⁄ = (1 +∈1+∈2)𝐴𝑛Ω𝑛 𝑛⁄ 𝐴𝑛
𝑇 + (1 +∈2

−1) × 𝐵𝑛𝑊𝑛𝐵𝑛
𝑇 + 𝑁𝜏1𝛾𝑛{𝜌1𝑡𝑟(Γ1𝜙𝑛Γ1

𝑇)I +

𝜌2𝑡𝑟(Γ2𝜙𝑛Γ2
𝑇)I}𝛾𝑛

𝑇 + 𝜏2𝛾𝑛F̂𝑛F̂𝑛
𝑇
𝛾𝑛
𝑇 +𝜓𝑛𝑜 {𝑁{𝜌1𝑡𝑟(Γ1𝜓𝑛Γ1

𝑇)I + 𝜌2𝑡𝑟(Γ2𝜓𝑛Γ2
𝑇)I}} (23) 

Ω𝑛+1 𝑛⁄ +1 = (I −∑𝐸𝑖

𝑁

𝑖=1

𝐺𝑛+1𝐻𝑖𝐶𝑛+1) 

Ω𝑛+1 𝑛⁄ (I −∑𝐸𝑖

𝑁

𝑖=1

𝐺𝑛+1𝐻𝑖𝐶𝑛+1)

𝑇

+ (∑𝐸𝑖

𝑁

𝑖=1

𝐺𝑛+1𝐻𝑖) [Ω(𝑙𝑛+1)⨂𝐼]𝑉𝑛+1 

[Ω(𝑙𝑛+1)⨂𝐼]
𝑇(∑ 𝐸𝑖

𝑁
𝑖=1 𝐺𝑛+1𝐻𝑖)

𝑇 (24) 

With, 

𝜌1 ≜
⊝1+⊝1

−1

2(1 −⊝1)
, 𝜌2 =

⊝1
−1

(1 −⊝1)
,⊝∈ (0,1) 

𝜏1 ≜ (1 +∈1
−1)(1 +∈3) 

𝜏2 ≜ (1 +∈1
−1)(1 +∈3

−1) 

Where ∈1,∈2 and ∈3 are arbitrary positive scalar 

Proof: using P𝑛+1 𝑛⁄ = E[e𝑛+1 𝑛⁄ e𝑛+1 𝑛⁄
𝑇], we have  

P𝑛+1 𝑛⁄ ≤ (1 +∈1+∈2)𝐴𝑛P𝑛 𝑛⁄ 𝐴𝑛
𝑇 + (1 +∈1

−1)𝛾𝑛 

                                      E {(F𝑛 − F̂𝑛)(F𝑛 − F̂𝑛)
𝑇
} 𝛾𝑛

𝑇 + E{(𝛾𝑛 − 𝛾̅𝑛)F𝑛F𝑛
𝑇 × (𝛾𝑛 − 𝛾̅𝑛)

𝑇} + (1 +∈2
−1)𝐵𝑛𝑊𝑛𝐵𝑛

𝑇

                    (25) 

Applying the inequality (5) and lemma 1, we have  

𝛾̅𝑛E {(F𝑘 − F̂𝑘)(F𝑘 − F̂𝑘)
𝑇
} 𝛾̅𝑛

𝑇  ≤ 𝑁(1 +∈3
−1)𝛾̅𝑛{𝜌1𝑡𝑟(Γ1𝑋𝑛Γ1

𝑇)I + 𝜌2𝑡𝑟(Γ2𝑋𝑛Γ2
𝑇)I}𝛾𝑛̅

𝑇 + (1 +

∈3
−1)𝛾𝑛F̂𝑛F𝑛

𝑇𝛾𝑛
𝑇 (26) 

According inequality (5), lemma 1 and lemma 2, we have 

E{(𝛾𝑛 − 𝛾̅𝑛)F𝑛F𝑛
𝑇(𝛾𝑛 − 𝛾̅𝑛)

𝑇} = 𝜓𝑛𝑜E[F𝑛F𝑛
𝑇] < 𝜓𝑛𝑜{𝑁{𝜌1𝑡𝑟(Γ1𝑋𝑛Γ1

𝑇)I + 𝜌2𝑡𝑟(Γ2𝑋𝑛Γ2
𝑇)}I} (27) 

Based on (25), (26) and (27) we obtain the following formula 
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P𝑛+1 𝑛⁄ ≤ (1 +∈1+∈2)𝐴𝑛P𝑛 𝑛⁄ 𝐴𝑛
𝑇 + (1 +∈2

−1)𝐵𝑛𝑊𝑛𝐵𝑛
𝑇 + 𝑁𝜏1𝛾̅𝑛{𝜌1𝑡𝑟(Γ1𝑋𝑛Γ1

𝑇)I + 𝜌2𝑡𝑟(Γ2𝑋𝑛Γ2
𝑇)I} × 𝛾𝑛

𝑇

+ 𝜏2𝛾𝑛F̂𝑘F̂𝑘
𝑇
𝛾𝑛
𝑇 +𝜓𝑘𝑜 {𝑁{𝜌1𝑡𝑟(Γ1𝑋𝑛Γ1

𝑇)I + 𝜌2𝑡𝑟(Γ2𝑋𝑛Γ2
𝑇)I}} 

≤ Ω𝑛+1 𝑛⁄  

Similarly, the upper bound of the filter error covariance Ω𝑛+1 𝑛⁄ +1 is obtained  

We introduce some notations 

Μ𝑛+1 ≜ Ω𝑛+1 𝑛⁄ C𝑛+1
𝑇 , Μ𝑛+1 ≜ [Μ𝑛+1

(𝑖)
]
N×1

 

G𝑛+1
(𝑖)

≜ [𝐺𝑖𝑗,𝑛+1]1×N, G𝑛+1
(𝑖)

≜ [𝐺𝑖𝑗,𝑛+1]1×N 

𝐺𝑛+1 ≜ [G𝑛+1
(𝑖) ]

N×1
, O𝑖 ≜ 𝑑𝑖𝑎𝑔𝑁 {√ℎ𝑖𝑗I} 

G𝑛+1
(𝑖)

≜ Μ𝑛+1
(𝑖)
O̅𝑖 (O̅𝑖

𝑇
𝑆𝑛+1O̅𝑖)

−1

O̅𝑖
𝑇
 

𝑆𝑛+1 ≜ C𝑛+1Ω𝑛+1 𝑛⁄ C𝑛+1
𝑇 + [Ω(𝑙𝑛+1)⨂I]𝑉𝑛+1 × [Ω(𝑙𝑛+1)⨂I]

𝑇       (28) 

Nothing that, 𝑗 ∉ ℕ𝑖(ℎ𝑖𝑗 = 0) will cause corresponding column matrix of O𝑖 to be zero matrix. Let O̅𝑖 represent 

the simplified matrix of O𝑖 and O̅𝑖 can gotten by removing zero column of matrix O𝑖 . Μ𝑛+1
(𝑖)

 is the 𝑖𝑡ℎ row sub-

matrix of Μ𝑛+1 and G𝑛+1
(𝑖)

 is the 𝑖𝑡ℎ row sub-matrix of 𝐺𝑛+1 

Theorem 2: 

Considering the system (6) and (7) and distributed filter (8) and (9), the upper bound of the filtering error 

covariance can be minimized by choosing filter gain as 

𝐺𝑖𝑗,𝑛+1 = {
0,                   𝑗 ∉ ℕ𝑖
𝐺̅𝑖𝑗,𝑛+1ℎ̅𝑖𝑗 ,     𝑗 ∉ ℕ𝑖

 (29) 

Proof 

According to (23) and taking the trace for the both sides, we obtain partial derivation 𝑡𝑟{Ω𝑛+1 𝑛⁄ +1} then taking 

the partial derivation of 𝑡𝑟{Ω𝑛+1 𝑛⁄ +1}with respect to 𝐺𝑛+1, we have 

⊛ {Ω𝑛+1 𝑛⁄ +1} =  −2 ∑ 𝐸𝑖
𝑁
𝑖=1 Ω𝑛+1 𝑛⁄ 𝐶𝑛+1

𝑇𝐻𝑖 + 2∑ 𝐸𝑖
𝑛
𝑖=1 𝐺𝑛+1𝐻𝑖𝐶𝑛+1 × Ω𝑛+1 𝑛⁄ 𝐶𝑛+1

𝑇𝐻𝑖 +

2∑ 𝐸𝑖
𝑛
𝑖=1 𝐺𝑛+1𝐻𝑖[Ω(𝑙𝑛+1)⨂I] × 𝑉𝑛+1 × [Ω(𝑙𝑛+1)⨂I]

𝑇𝐻𝑖  (30) 

Formula is a sufficient condition to ensure that formula equals to zero  

G𝑛+1
(𝑖)
𝐻𝑖𝑆𝑛+1𝐻𝑖 = Μ𝑛+1

(𝑖)
𝐻𝑖 , 𝑖 = 1,2, … , 𝑁 (31) 

Nothing 𝐻𝑖 = O̅𝑖O̅𝑖
𝑇
(𝑖 = 1,2, … , 𝑁), we have  

G𝑛+1
(𝑖)
O̅𝑖O̅𝑖

𝑇
𝑆𝑛+1O̅𝑖O̅𝑖

𝑇
= Μ𝑛+1

(𝑖)
O̅𝑖O̅𝑖

𝑇
 (32) 

From (32), one has 

G𝑛+1
(𝑖)
O̅𝑖O̅𝑖

𝑇
𝑆𝑛+1O̅𝑖 = Μ𝑛+1

(𝑖)
O̅𝑖 , 𝑖 = 1,2, … , 𝑁 (33) 

G𝑛+1
(𝑖)
O̅𝑖 = Μ𝑛+1

(𝑖)
O̅𝑖 (O̅𝑖

𝑇
𝑆𝑛+1O̅𝑖)

−1

 (34) 

Using (28) and (32), we arrive at  

G̅𝑛+1
(𝑖)

= G𝑛+1
(𝑖)
𝐻𝑖  (35) 
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Thus, the filter gain 𝐺𝑖𝑗,𝑛+1 can be obtained the proof of theorem 2 is finished. 

4. Example 

 

In this section, an example is considered for illustration to show the result of the proposed filter model. According 

to time varying system (1), considering the following system function: 

𝐴𝑘 = [
−0.36 + 0.01 sin(𝑘) −0.21 + 0.02𝑒−5𝑘

0.02 cos(𝑘) −0.275
] 

𝐵𝑘 = [
0.15
0.25

],   𝐷𝑘 = 0.02 

The stochastic nonlinear function 𝑓(𝑥𝑘 , 𝜂𝑘) can be selected as follows 

𝑓(𝑥𝑘 , 𝜂𝑘) = [
0.2
0.3
] (0.3 sign(𝑥𝑘

1)𝑥𝑘
1𝜂𝑘
1 + 0.4 sign(𝑥𝑘

2)𝑥𝑘
2𝜂𝑘
2) 

Which satisfies the condition (3) and (4) with 𝑟 = 1 and 

∑ = [
0.03 0.05
0.06 0.08

]1
𝑘 ,  ∏ = [

0.08 0.00
0.00 0.15

]1
𝑘  

Where 𝑥𝑘 = [𝑥𝑘
1 𝑥𝑘

2]𝑇 

The deterministic nonlinear function 𝑔(𝑥𝑘) and ℎ(𝑥𝑘) are chosen as 

ℎ(𝑥𝑘) = 0.8 sin(𝑥𝑘
2) 

𝑔(𝑥𝑘) = 0.8 cos(𝑥𝑘
1) 

And satisfy the condition (2) with 𝑎1 = 0.8 and 𝑎2 = 0. 

 
Fig. 1 Actual (True) state and estimated state 

 

In the simulations, let the time delay step 𝜏 = 1. The initial conditions are set as 𝑥0 = 𝑥−1 = [0.085 0.9]𝑇, 

𝑥̇0|0 = 𝑥̇−1|−1 = [0.086 0.91]𝑇 and 𝑋̇0|0 = 𝑋−𝑇|−𝑇 = ⋯ = 0.01𝑑𝑖𝑎𝑔{1,1}. 

Other parameters are chosen as 

𝑃1,𝑘 = 0.1, 𝑃2,𝑘 = 0.14,  

𝑄1,𝑘 = 0.1, 𝑄2,𝑘 = 0.1, 

𝛿1 = 𝛿2 = 0.001, 𝜖𝑖 = 0.35 (𝑖 = 1, 2, … , 5. ).  

The attack signal and its upper bound are set as 𝜉𝑘 = 0.1 sin(𝑘) and 𝜉̅ = 0.11. The expectation of the random 

variable 𝜓𝑘 is set as 𝜓̅ = 0.85. Set the parameter of the measurement and process noises𝑀𝑘 = 𝑁𝑘 = 1. Even 

though, let 𝑀𝑆𝐸𝑖  denotes the mean square error for the estimation of ith (i=1,2) state with 
1

𝑆
∑ (𝑥𝑘

𝑖 − 𝑥̇𝑘|𝑘
𝑖 )

2𝑆
𝑘=1 , 

where S represents the number of the samples. 
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Fig. 3 MSEi (i=1,2 with upper bounds) 

 

The simulation results are shown in fig 1 and fig 2, its observed in fig. 1 that estimated state and the true state. 

The estimated state can track the originate state closely. Fig. 2, mean square error is plotted and found that its 

always under the upper bound limit. These results proofs that proposed filter scheme is verified and found 

estimation is valid. 

 

5. Conclusion 

This paper deals the problem of distributed filter model for a sensor network which is equivalent discrete time 

varying system with certain topological structure. System modelled with delays, stochastic nonlinearities and 

gaussian noises. Upper bound error covariance matrix is arrived by solving the Riccati type difference equation, 

filter gain is derived in virtue of minimizing the upper bound of filtering error covariance. Sparsity of the sensor 

network handled with new matrix simplification technique. Results are derived by considering and illustrative 

example, with sample values of time varying matrixes and nonlinear functions.The effectiveness of the modelled 

filter scheme is validated by comparing in a plot with original/true values and the estimated values. Mean square 

error is plotted and found that its always under the upper bound limit. 
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