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Abstract:-  COVID-19 is a contagious disease responsible for millions of deaths annually and represents a 

significant global public health challenge. Despite ongoing vaccination efforts, the current COVID-19 situation 

remains worrisome. This study examines a COVID-19 model incorporating a double-dose vaccination strategy to 

manage the outbreak in India. We conducted a fundamental qualitative analysis of this mathematical model, 

investigating conditions for positive invariance and boundedness with appropriate initial conditions. We estimated 

the basic reproduction number (
0R ) for disease transmission and identified two equilibrium points: the disease-

free equilibrium and the disease-endemic equilibrium. Using the Routh-Hurwitz criteria, we assessed the stability 

of these equilibria. The disease can be eradicated if 
0 1R  ; otherwise, it persists in the population. To 

complement the qualitative analysis, we performed numerical simulations using MATLAB and estimated model 

parameters. Sensitivity analysis was conducted to explore the relationship between model parameters and mild 

and critical cases. The simulations demonstrated that a complete vaccination program significantly reduces mild 

and critical cases and could potentially eradicate the virus from the community. The insights from our analysis 

may assist public health professionals in implementing the most effective strategies to control the virus outbreak 

in India. 

Keywords: India, COVID-19 model, Stability and Sensitivity analysis; Vaccination. 

1. Introduction  

People around the world are continuously facing significant public health challenges due to the spread of the 

SARS-CoV-2 virus. Various variants of SARS-CoV-2 have emerged due to its mutation rate and severity. 

According to the World Health Organization (WHO), as of November 4, 2021, there were approximately 

248,467,363 reported cases and 5,027,183 deaths from COVID-19, with 7,027,377,238 vaccine doses 

administered [1, 2]. Most countries have now implemented second-dose vaccinations and are considering booster 

doses in the near future. Consequently, studying new infections and virus transmission after vaccination is crucial. 

Mathematical models are essential for exploring disease transmission dynamics, enabling policymakers to 

evaluate future health risks. Since the mid-20th century, the transmission dynamics of infectious disease outbreaks 

have been analyzed using deterministic and stochastic epidemiology models. These models represent real-world 

scenarios and predict the severity of infectious diseases through mathematical concepts. This research is motivated 

by the ongoing vaccination efforts to curb the transmission of the novel coronavirus among humans. We have 

developed a COVID-19 mathematical model to simulate the transmission and progression of the virus following 

one or two doses of vaccination [3]. The transmission dynamics of epidemiological infectious diseases are 

universal. Numerous researchers have analyzed the transmission dynamics of the coronavirus and proposed 

various models [4]. They have studied and expanded the Susceptible–Exposed–Infected–Removed (SEIR) 

mathematical model by incorporating significant compartments to accurately represent real-world scenarios. 
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Muller and Muller (2021) presented a modified SEIR model to understand the transmission dynamics of the 

coronavirus on a college campus. They suggested that contact tracing could be an effective strategy to prevent the 

disease. Awareness programs and appropriate Hospitalization or isolation of infected individuals is a primary 

measure to effectively mitigate the COVID-19 pandemic [5]. Kemp et al. (2021) [6] utilized a modified SEIR 

model to analyze the interplay between vaccinations and social measures, exploring the infection and 

hospitalization rates. This model identifies the vaccination rates required to achieve herd immunity in 2021, 

factoring in social interactions . Treesatayapun (2022) [7] enhanced the SEIR model by considering quarantined 

populations and distinguishing between effectively and ineffectively vaccinated individuals, estimating the 

optimal vaccination strategy through performance analysis . De León et al. (2020) [8] introduced the SEIARD 

model to study COVID-19 transmission dynamics. Rafiq et al. (2022) [9] developed a new numerical scheme for 

a more realistic and accurate outcome of a complex bi-modal nonlinear model. Acheampong et al. (2022) [10] 

created a modified SEIR model to delineate SARS-CoV-2 transmission dynamics in Ghana and assess the basic 

reproduction number. Liu et al. (2021) [11] proposed a Bayesian SEIR model to explain transmission dynamics 

across nine regions of England. Gonzalez-Parra et al. (2021) [12] examined two COVID-19 variants, proposing a 

mathematical model applicable to new variants. Kassa et al. (2020) [13] discussed mitigation strategies and 

conducted sensitivity analysis. Sharov (2020) [14] and Tong et al. (2021) [15] demonstrated the effectiveness of 

lockdowns using the SIR model and its extensions. Pai et al. (2020) [16] evaluated the impact of India's lockdown 

on COVID-19 transmission dynamics. Huang et al. (2021) [17] showed that a combined strategy of vaccination 

and physical distancing is more effective than stay-at-home orders. Sahin and Sahin (2020) [18] compared three 

models—the grey model (GM), nonlinear grey Bernoulli model (NGBM), and fractional nonlinear grey Bernoulli 

model (FANGBM)—to accurately predict COVID-19 case numbers.  

Shayak et al. (2021) [19] presented a multi-wave solution based on high and low basic reproduction numbers. 

Some researchers incorporated the effect of vaccines into their models to better represent disease transmission 

dynamics using SIR and SEIR models with a two-phase vaccination process. These models assumed that 

individuals who received the first vaccine dose had partial protection and could still become susceptible, while 

those with the second dose had almost zero infection risk. Kuddus et al. (2021) [20] studied the impact of double-

dose vaccination rates on measles transmission, finding that the transmission rate from susceptible to exposed 

individuals significantly influenced measles prevalence. Mathematically, disease transmission decreases when the 

effective reproduction number is below 1. Edward et al. (2015) [21] used a mathematical model to study virus 

transmission dynamics control. Sen et al. (2021) [22]  proposed a new SEIR model to investigate double-dose 

vaccination feedback. Gomes et al. (2022) [23] discussed vaccination's role in achieving herd immunity. Annas 

et al. (2020) [24] developed a COVID-19 model considering vaccination and isolation factors. Moore et al. (2021) 

[25] used a deterministic model to evaluate vaccine efficacy, concluding that double-dose vaccination alone was 

insufficient to contain outbreaks. They estimated vaccines prevent 85% of infections under the most optimistic 

assumptions. Optimal vaccination deployment in the community is crucial to prevent disease transmission, 

reducing infection and death risks. Yang et al. (2021) [26] studied the impact of mitigation, suppression, and 

multiple rolling interventions to control COVID-19 in the UK and Europe, proposing rolling interventions as an 

optimal strategy to reduce infections, deaths, and balance healthcare demand. Sah et al. (2021) [27]  highlighted 

the impact of accelerated vaccine distribution on reducing the burden of various COVID-19 variants. Martínez-

Rodríguez et al. (2021) [28] investigated vaccination pace and efficacy on COVID-19 prevalence, 

hospitalizations, and deaths, identifying different burden scenarios. Fuady et al. (2021) demonstrated various 

vaccine delivery strategies, emphasizing the need for proper distribution to mitigate COVID-19's negative 

impacts. Rahman and Kuddus (2021) [29] developed an age-structured Susceptible-Latent-Mild-Critical-

Removed (SLMCR) model of COVID-19 transmission. Aguilar-Canto et al. (2022) [30] augmented a model with 

multiple vaccination strategies. Ramos et al. (2021) [31] explored the impact of COVID-19 variants and vaccines 

using a mathematical model. Arruda et al. (2021) [32] introduced a new epidemic model considering reinfection 

and multiple viral strains. Leonet et al. (2022) [33] demonstrated an epidemiological model accounting for 

different SARS-CoV-2 variants and the significance of vaccination. This study presents analytical and numerical 

simulations of a COVID-19 model to depict disease transmission dynamics [34, 35]. The next-generation matrix 
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(NGM) technique is used to estimate the basic reproduction number (
0R ) for the disease dynamics. We 

determined the existence and uniqueness of system properties and solutions for disease-free (DFE) and disease-

endemic equilibria (DEE). Sensitivity analysis identified the most effective parameters influencing COVID-19 

spread. The results guide policymakers on effective steps to mitigate the COVID-19 outbreak in India. The 

numerical results show that virus transmission significantly decreases when susceptible individuals are fully 

vaccinated and adhere to health guidelines. The remainder of this paper is structured as follows: Section 2 presents 

the mathematical formulation of the COVID-19 model. Section 3 discusses the model's existence, uniqueness, 

equilibrium points, stability, and basic reproduction number. Section 4 includes numerical simulations and 

sensitivity analysis with appropriate parameter values. Section 5 provides a discussion of the results and 

concluding remarks. 

2.  Mathematical Model 

In this section, we developed a compartmental model to describe COVID-19 transmission dynamics using a 

system of ordinary differential equations among various mutually exclusive compartments. Numerous 

mathematical models have been created to understand COVID-19 transmission dynamics, reflecting their 

widespread importance. Many of these models have been examined to outline the transmission patterns of 

infectious diseases. In our model, we divided the total population into nine mutually exclusive compartments: 

susceptible individuals, ( )X t , who are uninfected but at risk of infection; first dose vaccinated individuals, ( )Y t

, who still have a risk of infection; second dose vaccinated individuals, ( )Z t , who have completed both doses on 

time; and exposed individuals, ( )W t , who are those who have been Exposed individuals, ( )W t , are those 

affected by the disease but who have not yet developed respiratory illness; mild individuals, ( )A t , are 

asymptomatic; critical individuals, ( )B t , show clear COVID-19 symptoms; non-hospitalized individuals, ( )D t

, are not in serious health crisis; hospitalized individuals, ( )E t , are in critical health and respiratory crisis; and 

recovered individuals, ( )F t , have recovered from the disease. The recovery compartment includes those who 

are COVID-19 negative after treatment, home isolation, no longer in contact with others, or deceased. Figure 1 

illustrates the schematic diagram of our proposed COVID-19 model. 

The total population size, N(t), is assumed to be constant and well-mixed: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )N t X t Y t Z t W t A t B t D t E t F t= + + + + + + + +                     ....(1)   

To maintain a constant population size, all deceased individuals are considered as newborns and are replaced in 

the susceptible compartment. Natural deaths occur in all compartments at a constant per-capita rate   and critical 

health-related deaths occur at a constant per-capita rate  . Individuals who receive the first dose of the vaccine 

move from the susceptible compartment ( )X  to the vaccinated compartment ( )Y  at a constant rate  . Among 

the first dose vaccinated population, some revert to the susceptible state at a rate  , while the remaining progress 

to the second dose vaccinated state ( )Z  at a rate  . Fully vaccinated individuals move to the recovery state 

( )F  from the ( )Z  state at a constant rate  . In our model, we assume that the net inflow of the uninfected 

population to the susceptible state is at a rate of N . The susceptible population decreases as individuals become 

infected through contact with the coronavirus at a rate ( )A B + , where   represents the transmission rate of 

the virus. The infected individuals then move to the exposed state ( )W . The exposed compartment contains 

individuals who may develop mild or critical health conditions. Some exposed individuals transfer to the mild  

compartment ( )A  at a rate 1 , while others progress to the critical compartment at a rate 2 . Mild individuals 

may move to the critical compartment at a rate   due to declining health immunity within a few days, or to the 

non-hospital compartment at a rate  . The population in the critical compartment ( )B  transitions to either the 
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non-hospital or hospital compartments based on health conditions, at rate  and  , respectively. The recovery 

rates from the mild ( )A , non-hospital ( )D , and hospital ( )E   compartments are  ,  , and  , respectively.  

                 

 

Fig.1.  Schematic flow diagram of the disease transmission model. 

According to the proposed model, the transmission dynamics of the disease are characterized using the following 

dynamic variables. The model is outlined by a system of nonlinear ordinary differential equations. 

( ) ,
dX

N X A B X Y X
dt

    = − + − + −                           ......(2)   

,
dY

X Y Y Y
dt

   = − − −                                                        ( )...... 3   

,
dZ

Y Z Z
dt

  = − −                                                                   ......(4)   

1 2( ) ,
dW

X A B W W W
dt

   = + − − −                                  ......(5)       

1 ,
dA

W A A A A
dt

    = − − − −                                             ......(6)   
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2 ,
dB

W A B B B B
dt

     = + − − − −                                   ......(7)   

,
dD

B A D D
dt

   = + − −                                                        ......(8)   

,
dE

B E E
dt

  = − −                                                                  ......(9)   

,
dF

A D E Z F
dt

    = + + + −                                           ......(10)   

With the positive initial conditions: 

(0) 0, (0) 0, (0) 0, (0) 0, (0) 0, (0) 0, (0) 0, (0) 0X Y Z W A B D E         and (0) 0R  .   ……(11) 

3. Quantitative analysis of the model     

In this section, we examined the invariant region, the non-negativity of the solution, the existence of equilibria 

including disease-free and disease-endemic equilibrium points, the basic reproduction number, stability analysis, 

and sensitivity analysis. 

 

Positive invariance 

We analyzed the existence of the solution for the system (2) - (10) with the initial conditions (11) and investigated 

the non-negativity condition of the dynamic variable for all 
0,t 

9

R + . To establish non-negativity, we present 

the following theorem. 

Theorem 3.1 If the solutions of all dynamic variables ( )( ), ( ), ( ), ( ). ( ), ( ), ( ), ( ), ( )X t Y t Z t W t A t B t D t E t F t  

in the system (2)-(10) with initial conditions (11) satisfy 

( ) 0, ( ) 0, ( ) 0, ( ) 0, ( ) 0, ( ) 0, ( ) 0, ( ) 0S t Y t Z t W t A t B t D t E t        , and ( ) 0F t  for all 

0t  , then the system (2)-(10) is positively invariant and attracting within 
9

R +
.  

Proof. We select Equation (2) from the proposed model, which can be expressed as follows: 

              ( )
dX

N X A B X Y X
dt

    = − + − + −   

              
dX

N Y X
dt

  = + −                                                                               ......(12)   

Where, ( )A B   = + + +   

By integrating the given equation (12), we obtain the following expression. 

( )0

0 0

( ) exp ( ) exp ( )

t t

X t X u du N Y u du   
   

= − + + −   
   
    

         

0 0

exp ( )

t s

v dv ds
 

=  
 
                                                                           ......(13)    

Hence the prove.  

Positive invariance for all variables 

In this section, we establish positive invariance for all other variables. From equation (3) of the model, we derive 

the following. 
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dY

X Y Y Y
dt

   = − − −   

         ( )
dY

Y
dt

   − + +                                                                      ......(14)    

By solving the above equation (14), we obtain the expression   

0( ) exp ( ) 0Y t Y du  
 

 − + +  
 
                                                         ......(15)   

This shows that ( )Y t  is non-negative for all t , with 
0Y  being the initial value at 0t = . Similarly, we can infer 

that the solution trajectories for the other dynamic variables of the system remain positive for all 0t  , and they 

are:  

 

( )0

0

( ) exp 0

t

Z t Z du 
 

 − +  
 
                                                            ......(16)    

0 1 2

0

( ) exp ( ) 0

t

W t W du  
 

 − + +  
 
                                                  ......(17)   

0

0

( ) exp ( ) 0

t

A t A du   
 

 − + + +  
 
                                               ......(18)   

0

0

( ) exp ( ) 0

t

B t B du   
 

 − + + +  
 
                                              ......(19)   

0

0

( ) exp ( ) 0

t

D t D du 
 

 − +  
 
                                                         ......(20)   

0

0

( ) exp ( ) 0

t

E t E du 
 

 − +  
 
                                                        ......(21)   

0

0

( ) exp 0

t

F t F du
 

 −  
 
                                                                  ......(22)   

 

4. Boundedness of the System 

We analyzed the model equations (2) through (10) to identify the biologically feasible solution set. The following 

theorem guarantees that the system's solutions are bounded within the set under non-negative conditions. 

Theorem 4.1 The feasible solution set of the system, defined by equations (2) through (10) and subjected to the 

initial conditions (11) starting in 
9

R +
, is uniformly bounded in  , where 

( ) 9
, , , , , , , , :X Y Z W A B D E F X Y Z W A B D E F NR+

 =  + + + + + + + + =  represents the 

positively invariant region. 

 

Proof. By applying the non-negative initial conditions (11) to the system described by equations (2) through (10), 

we observe that each dynamic variable remains non-negative (as stated in Theorem 3.1). Summing up the 

equations (2) to (10), we derive the total population size ( )N t . In the absence of deaths due to COVID-19 or if 

there are no critical individuals i.e. 0C =  [22], we get the following result. 
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dN dX dY dZ dW dA dB dD dE dF

dt dt dt dt dt dt dt dt dt dt
= + + + + + + + +   

     ( )
dN

N X A B X Y X X Y Y Y Y Z Z
dt

           = − + − + − + − − − + − −      

                     
1 2 1 2( )X A B W W W W A A A A W A          + + − − − + − − − − + +  

                       B B B B B A D D B E E A D            − − − − + + − − + − − + +  

                             E Z F  + + −    

     
dN

N X Y Z W A B B D E F
dt

          = − − − − − − − − − −   

      0
dN

dt
=   

By integrating the above equation, we obtain. 

            ( )N t =Constant. 

Accordingly, given the constant population size, we find that all feasible solutions for each of the dynamic 

variables , , , , , , ,X Y Z W A B D E , and F  are bounded within the invariant region.  

 

5. Analysis of equilibria  

In this analysis, we identified two equilibrium points in the system: the disease-free equilibrium (DFE) and the 

disease-endemic equilibrium (DEE). The DFE is reached when the basic reproduction number is less than one 

(i.e.
0 1R  ), whereas the DEE is reached when the basic reproduction number is greater than one (i.e.

0 1R  ) 

[22]. 

5.1 Disease- free equilibrium (DFE) point ( )0   

In this section, we identify the disease-free equilibrium (DFE) point of the system described by equations (2)-

(10), where all disease compartments are set to zero. The model consists of nine compartments: five infected 

compartments ( , , , ,W A B D E ) and four uninfected compartments ( , , ,X Y Z F ). At the infection-free steady 

state, , , , ,W A B D E and F are all zero. Thus, the DFE point is given by: 

                               

0 0 0 0 0 0 0 0 0 0( , , , , , , , , )X Y Z W A B D E F =   

                          

( )

( )( ) ( )( ) ( )( )( )( )
, , ,0,0,0,0,0,0

N N N     

                   

 + +
=  
 + + + − + + + − + + + − + 

 

5.2  Disease-Endemic Equilibrium (DEE) point ( )*    

In this section, we determine the disease-endemic equilibrium point of the system described by equations (2)-(10), 

where the disease persists within the population. The endemic equilibrium point is found by setting each equation 

of the system to zero. It is assumed that all dynamic variables are non-zero at this point, i.e., 

0X Y Z W A B D E F         . Therefore, the endemic equilibrium point is: 

 

( )* * * * * * * * * *, , , , , , , ,X Y Z W A B D E F =   
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( )( )( )

( ) ( )( )
* 1 2

1 2

X
          

           

+ + + + + + + +
=

+ + + + + + + +
  

                    
( )( )( )

( ) ( ) ( )( )
* 1 2

1 2

Y
           

              

+ + + + + + + +
=

+ + + + + + + + + +
  

                   
( )( )( )

( )( ) ( ) ( )( )
* 1 2

1 2

Z
           

                

+ + + + + + + +
=

+ + + + + + + + + + +
  

                   
( )( )( )( )

( ) ( )( )
* 0

1 2

1R
W

         

           

+ − + + + + + +
=

+ + + + + + + +
  

                  
( )( )( )

( ) ( )( )
* 0 1

1 2

1R
A

      

           

+ − + + +
=

+ + + + + + + +
  

                 
( )( ) ( )( )
( ) ( )( )

0 2 1*

1 2

1R
B

       

           

+ − + + + +
=

+ + + + + + + +
  

                
( )( ) ( ) ( )( )

( ) ( ) ( )( )
0 2 1 1*

1 2

1R
D

              

             

+ − + + + + + + + +
=

+ + + + + + + + +
  

                
( )( ) ( )( )

( ) ( ) ( )( )
0 2 1*

1 2

1R
E

        

             

+ − + + + +
=

+ + + + + + + + +
  

                

( )( ) ( )( ) ( ) ( )( ) ( ) ( )( )( )( )
( )( )( )( )( )

( )

( )( )( ) ( ) ( )( )

0 2 1 1

1 2

*

1 2

1R

F

                        

               

  

                 

+ − + + + + + + + + + + + + + +

+ + + + + + + + + +
+

+ +
=

+ + + + + + + + + + +
      

(23)   

Restating Eq. (23) indicates that if 
0 1R  , then the disease-endemic equilibrium point 

( )* * * * * * * * * *, , , , , , , ,X Y Z W A B D E F =  lies within the set  .   

6. Basic Reproduction Number ( )0R   

The basic reproduction number can be calculated as the spectral radius of the next generation matrix (NGM) at 

the disease-free equilibrium point [42]. The NGM can be derived from the product of two matrices, P  and 
1Q−

. The matrix P  represents the infection transmission rates in the W , A  and B  compartments, while the matrix 

Q  describes all other transitions between compartments. The matrices P  and Q  are defined as follows:  
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0 00

0 0 0

0 0 0

X X

P

  
 

=  
 
 

   and   

( )

( )

( )

1 2

1

2

0 0

0Q

  

    

     

− + + 
 

= − + + + 
 + + + 

  

 

The next generation matrix is  

                                                                                          
1( )L P Q−=  −    

         

( )( )

( ) ( )( )

( )( ) ( ) ( )( )

( )( )( )

1 1 20 0

1 2 1 2 1 2

1 2

0 0

0
0

0 0 0

0 0 0

X X

L

       

           
 

                 

          

 + + + + + +
 

+ + + + + + + + 
 

 − + + + + − + + − + + + + +   =   + + + + + + + +
 
 

  

( ) ( )( )  ( )( ) ( )  ( )( )

( )( )( )

0 0 0

1 1 2 1 2 1 2 1 2

1 2

0 0 0

0 0 0

X X X

L

                                

          

 + + + − + + + + + + + + + − + + − + + + + +
 
 
 
  =

+ + + + + + + +

 

( ) ( )( ) 
( )( )( )

( )( ) ( ) 
( )( )( )

( )( )

( )( )( )

0 0 0
1 1 2 1 2 1 2 1 2

1 2 1 2 1 2

0 0 0

0 0 0

X X X

L

                                

                                

 + + + − + + + + + + + + + − + + − + + + + +
 

+ + + + + + + + + + + + + + + + + + + + + + + + 
 

=  
 
 
 
 

 

The basic reproduction number ( )0R  of the disease is represented by the largest magnitude eigenvalue of the 

next generation matrix ( )L . To find this eigenvalue, we solve the characteristic equation | | 0L I− =  , where 

λ stands for all possible eigenvalues and I denotes the identity matrix. Thus, the basic reproduction number ( )0R

is determined as follows: 

                   
( ) ( )( ) 

( )( )( )

0

1 1 2

0

1 2

X
R

            

          

+ + + − + + + +
=

+ + + + + + + +
  

                   
( ) ( ) ( )( )

( )( )( )( )( )( )
1 2

0

1 2

N
R

              

                

+ + + + + + + + + +
=

+ + + − + + + + + + + +
  

 

7. Stability Analysis of the equilibrium point 

In this section, we conducted a stability analysis of both the disease-free equilibrium (DFE) and the disease-

endemic equilibrium (DEE). 

Theorem: (7.1) The disease-free equilibrium, ( )0 0 0 0, , ,0,0,0,0,0,0X Y Z = , of the system (2–10) is locally 

asymptotically stable when 0 1R   and unstable when 0 1R  . 
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Proof.   To assess the stability of the DFE, ( )0 0 0 0, , ,0,0,0,0,0,0X Y Z = , we compute the Jacobian matrix 

of the system (2) – (11), which is denoted as 

( )

( )

( )

( ) ( )

( )

( )

( )

( )

0 0

1 2

1

2

0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0

A B X X

A B X X

J

     

   

  

     

    

     

   

  

    

− + + + − − 
 

− + + 
 − +
 

− + − + + 
 = − + + +
 

− + + + 
 − +
 

− + 
 

− 

 

At the infection-free equilibrium point ( )0 , the Jacobian matrix has the following form. 

( )

( )

( )

( )

( )

( )

( )

( )

( )

0 0

0 0

1 2

0

1

2

0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0

X X

X X

J

    

   

  

    

    

     

   

  

    

 − + − −
 

− + + 
 − +
 

− + + 
  = − + + +
 

− + + + 
 − +
 
 − +
 

− 

 

 

Now, we need to demonstrate that all the eigenvalues of ( )0J   are negative. The 9th column contains only the 

diagonal element ( )− , indicating that ( )−  is one negative eigenvalue. The remaining eigenvalues can be 

found from the sub-matrix ( )0

1J  , which is obtained by removing the 9th row and 9th column from ( )0J  . 

This results in. 

 

( )

( )

( )

( )

( )

( )

( )

( )

( )

0 0

0 0

1 20

1

1

2

0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0 0

X X

X X
J

    

   

  

    

    

     

   

  

 − + − −
 

− + + 
 − +
 

− + + 
 =

 − + + +
 

− + + + 
 − +
 
 − + 

 

 

Similarly, the 3rd, 7th, and 8th columns contain only the diagonal terms ( ) ( ),   − + − +   and ( ) − +  

respectively, which are the negative eigenvalues. The remaining eigenvalues can be determined from the reduced 

sub-matrix ( )0

2J  , which is formed by removing the 3rd, 7th, and 8th rows and their corresponding columns 

from 
0

1( )J  . 
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( )

( )

( )

( )

( )

( )

0 0

0 0 0

2 1 2

1

2

0

0 0 0

0 0

0 0 0

0 0

X X

J X X

    

   

    

    

     

 − + − −
 

− + + 
  = − + +
 

− + + + 
 − + + + 

  

 

This matrix can be expressed in block form as follows: 

 

( ) 1 20

2

3 4

J
  

 =  
  

, Where 
( )

( )1

  

   

− + 
 =  

− + + 

0 0

2

0
,

0 0 0

X X  − −
 =  

 
 

3

0 0

0 0

0 0

 
 

 =
 
  

  and  

( )

( )

( )

0 0

1 2

4 1

2

0

X X    

    

     

 − + +
 

 = + + + 
 + + + 

    

3

0 0

0 0

0 0

 
 

 =
 
  

 , then we obtain  ( ) ( )1 4det . det . 0I I  −   − =   

We can now apply the Routh-Hurwitz stability criterion directly and independently to matrices 
1  and 

4 . To 

do this, we need to show that the trace of each matrix is negative, and for the (2 × 2) matrix 
1 , its determinant 

is positive, while for the (3 × 3) matrix 
4 , its determinant is negative. Therefore, for the (2 × 2) matrix 1 , we 

have: 

 

             ( ) ( ) ( )1 0trace      = − + − + +     

and       ( ) ( )( ) ( ) ( )1det                = + + + − = + + + + + −     

         ( ) ( ) ( )1det . 0       = + + + +    

 

For ( )3 3  matrix 
4 , we get. 

Condition (1):  

( ) ( ) ( ) ( )4 1 2 0trace            = − + + − + + + − + + +    

Condition (2):  

Sum of minors of matrix 4 along diagonal  

( )( ) ( )( ) ( )( ) ( )0

1 2 1 2 1 2X                        = + + + + + + + + + + + + + + + + + + − +   

( )( )
( )( )

( ) ( )( )
( )( ) ( )( )0 1 2

1 2 1 2

1 2

1 0
R      

                     
          

 + + + +
= + + + + + − + + + + + + + + + + + + +  

 + + + + + + + + 

 

For 0 1R    

Condition (3):   

( ) ( ) ( )( ) ( )( )( )0

4 1 2 1 2det . X                       = + + + + + + + + − + + + + + + + +   
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( ) ( )( )

( )( )( )

0

1 2

1 2

1
X           

          

+ + + + + + + +
= −

+ + + + + + + +
  

                
0 1R= −   for any values of 

0 1R  . 

 Therefore, the disease-free equilibrium 
0  is locally asymptotically stable. if 

0 1R  . Conversely, if 
0 1R  , 

0  will be unstable, meaning that the characteristic equation will have at least one root with a positive real part. 

 

Theorem (7.2) The disease-endemic equilibrium point, 
* , of the system (2)-(10) is locally asymptotically stable 

when 
0 1R  . 

 

Proof.  We derive the Jacobian matrix of the system (2) – (10) at the equilibrium point 

( )* * * * * * * * * *, , , , , , , ,X Y Z W A B D E F =  which can be written as: 

( )

( )
( )

( )

( ) ( )

( )

( )

( )

( )

* * * *

* * * *

1 2
*

1

2

0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0

A B X X

A B X X

J

     

   

  

     

    

     

   

  

   

 − + − − − −
 

− + + 
 

− +
 
 − + − + +
 

 =  − + + +
 

− + + + 
 − +
 

− + 
 − 

 

 

 

The 9th column of ( )*J   includes the diagonal element − , indicating that −  is a negative eigenvalue. The 

remaining eigenvalues can be found from the sub-matrix ( )*

1J  , which is obtained by removing the 9th row and 

9th column from ( )*J  . This results in: 

( )

( )
( )

( )

( ) ( )

( )

( )

( )

( )

* * * *

* * * *
* 1 2

1

1

2

0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0

0 0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0 0

A B X X

A B X X
J

     

   

  

     

    

     

   

  

 − + − − − −
 

− + + 
 

− +
 
 + − + +

 =  
 − + + +
 

− + + + 
 − +
 

+  

 

 

Similarly, the 3rd, 7th, and 8th columns exclusively contain the diagonal terms ( ) ( ),   − + − +  and 

( ) − + , respectively, which represent the negative eigenvalues. The remaining eigenvalues can be 

determined from the reduced sub-matrix, ( )*

2J   which is obtained by removing the 3rd, 7th, and 8th rows and 

their corresponding columns from ( )*

1J   
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( )

( ) ( )

( )

( ) ( )

( )

( )

* * * *

* * * * *
2 1 2

1

2

0

0 0 0

0

0 0 0

0 0

A B X X

J A B x X

     

   

     

    

     

 − + − + − −
 

− + + 
 

 = + − + + 
 

− + + +
 
 − + + + 

  

  

  ( )

( )

( )

* * * *

* * * * *
2

1

2

0

0 0 0

0

0 0 0

0 0

A B Q X X

C

J A B G X X

M

T

   



  



 

 − + − − −
 

− 
 

 = + − 
 

−
 
 − 

  

Where, ( )C   = + + , ( )1 2G   = + + , ( )M    = + + + , ( )T    = + + + and 

( )Q  = + . 

The characteristic equation of ( )*

2J   is described as follows:    

                                      ( )*

2| | 0J I − =        

  

( )

( )

* * * *

* * * *

1

2

0

0 0 0

00

0 0 0

0 0

A B Q X X

C

A B G X X

M

T

    

 

   

 

  

− + − − − −

− −

=+ − −

− −

− −

   

 

5 4 3 2

1 2 3 4 5 0B B B B B     + + + + + =                                                           ......(25)   

Where,  ( ) ,O  = +  ( )* *

1B A B C G M T Q= + + + + + +   

             

( )( ) ( )( ) ( )( ) ( ) ( )* * *

2 1 2B A B C G M T X M T C G G T O Q T Q M CG   = + + + + + + + + + + + + + + + +  

( )( ) ( ) ( )* * * 2 * * * * * *

3 1 2 2 1 2 12 ( )( ) ( ) ((( )( ) )B X A B A B C G T X M Q Q A B C G X T         = + + + + + + + + + + + + + +  

         

* * *

1 2(( ) ( ) ) ) ( )( ) ( )( ).A B G X C GMT C Q GM MT GT G M T OQ   + + + + + + + + + + + + +   

 

* * * 2 * * *

4 1 2 2 1 2 12(( ) ( ))( ) ( )( ( )) ( )(B C M T A B X C Q M T X A B CGM         = + + + + + + + + + + +   

             

* *

1 2) ( ) ( )( ).CMT CGT GMT GMT C Q X X GM MT GT OQ     + + + + + + + + + + +    

 



Tuijin Jishu/Journal of Propulsion Technology 

ISSN: 1001-4055 

Vol. 45 No. 3 (2024) 

__________________________________________________________________________________ 

2102 

* * * 2 * * *

5 2 1 2 12 ( ( ))( ) (( ( ) )( ) ( ).B C M T A B X M T X GMT OQ CGMT A B         = + + + + + + + + + +   

 

From equation (25), it is clear that 
1 2 3 4, , ,B B B B and 

5B  are all greater than zero if 
*A  and 

*B   are positive. 

According to equation (24), 
*A  and 

*B  are positive when 
0 1R  . Therefore, based on the Routh-Hurwitz 

stability criterion, the disease-endemic equilibrium point 
*  is locally asymptotically stable for 

0 1R  . 

 

8. Numerical simulation 

In this section, we conducted numerical simulations of our proposed model using the Ordinary Differential 

Equation (ODE) solvers in MATLAB to validate the analytical results. For demonstration purposes, we chose 

baseline parameter values (refer to Table 1) that align with COVID-19 infection and transmission. Consistent with 

the analytical results, we identified two equilibrium points: the disease-free equilibrium (
0 ) and the disease-

endemic equilibrium 
*  

 

Table 1 Description and estimated value of the model (2–10) parameters. 

 

          Parameters      Description Estimated Value 

 

 N               Total Population  163046161 

   Natural death rate 1

70
 per year 

   Progression rate fromY to X    0.095 

   First dose vaccination rate  0.64 

   Transmission rate 61.0 10−   

   Second dose vaccination rate 0.001 

   Recovery rate due to the second 

dose of vaccine 

0.8 

1   Progression rate from W to A    0.007 

2   Progression rate from W to B    53.05 10−   

   Progression rate from A to B    0.3 

   Disease death rate only for 

critical compartment 

0.125 

   Progression rate from A to D    0.99 

   Progression rate from A to F    0.02 

   Progression rate from B to D    0.13 

   Progression rate from B to E   0.87 

   Recovery rate from D  to F   1

42
  

   Recovery rate from E to F    1

21
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Fig.2.  Trajectory of Mild and Critical COVID-19 Cases. 

 

 
 

Fig.3.  The impact of the first dose of vaccine (δ) on mild cases (A). 
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Fig.4.  The impact of the second dose of vaccine (ζ) on the critical cases (B). 

 

 

 

Fig.5.  The impact of co-infection on (χ), on the Mild cases (A). 

In this section, we conducted numerical simulations of our proposed model using MATLAB's Ordinary 

Differential Equation (ODE) solvers to support our analytical results. For illustration, we chose baseline parameter 

values (refer to Table 1) that align with COVID-19 infection and transmission characteristics. Consistent with our 

analytical findings, we identified two equilibrium points: the disease-free equilibrium (
0 ) and the disease-
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endemic equilibrium 
*. From a numerical perspective, the local stability of both equilibrium points was 

investigated using standard dynamical systems analysis methods. The numerical results of the transmission 

dynamics for these equilibrium points are shown in Figs. 2. In Fig. 2, we used various initial conditions for all 

state variables to depict the system trajectories at the disease-free and disease-endemic equilibrium. We found 

that if the basic reproduction number (
0 1R  ) remains below one, the disease-free equilibrium is locally 

asymptotically stable, indicating that the disease will fade out from the community. Conversely, illustrates the 

stability of the disease-endemic equilibrium (
0 1R  ), showing system trajectories in the A  VS B  plane 

originating from different initial conditions, where the virus persists in the community. Figs. 3 illustrate the impact 

of the first dose vaccine ( ) on mild cases ( A ) and critical cases ( B ). These figures indicate that increasing the 

first dose vaccination rate significantly reduces both mild and critical infection cases. The first dose vaccination 

rate ( ) negatively correlates with the spread of the disease. From a public health perspective, the first dose 

vaccine prepares the immune system to combat COVID-19 infection in non-infected individuals, reducing the 

likelihood of infection despite the presence of the infection rate ( ).  Figs. 4 depict the effect of the second dose 

vaccine ( ) on mild cases ( A ) and critical cases ( )B , respectively. These figures demonstrate that both vaccine 

doses are crucial in reducing outbreak risk. When the second dose vaccination rate (  ) increases from 0.1234 to 

0.1009, both mild and critical cases decrease significantly. Moreover, at 0.0699 = , the number of mild and 

critical cases declines rapidly, as shown in Figs. 4. We recommend that the second dose vaccine is essential for 

maximum protection against COVID-19, as it continuously stimulates the immune system to produce a large 

number of antibodies. COVID-19 patients may also have co-infections and can transition from mild ( A ) to critical 

( )B  cases. Mild individuals experiencing a sudden serious illness are admitted to the hospital and considered 

critical cases. The co-infection rate (  ) negatively correlates with mild cases ( A ) and positively correlates with 

critical cases ( B ). Fig. 5 shows that mild cases decrease due to co-infection with other diseases, leading to a 

transition to the critical compartment. As the co-infection rate (  ) positively impacts critical cases, an increase 

in co-infection leads to an increase in critical cases, as shown in Fig. 5 

 

9. Discussion and conclusion 

In the face of rising global COVID-19 cases and ongoing human-to-human transmission, effective vaccination 

and strategic resource allocation are crucial for public health. Our study introduces a modified SEIR model to 

analyze COVID-19 transmission dynamics, using both analytical and numerical simulations to identify two 

equilibrium points: disease-free and disease-endemic. We calculated the basic reproduction number (
0R ) and 

found that both equilibrium points are locally asymptotically stable. When 
0R  is less than one, the disease is 

likely to diminish, while an 0R  greater than one suggests persistence. 

The model includes a double-dose vaccination program, reflecting Bangladesh’s efforts that began on February 

7, 2021. The initial vaccination rate ( ) is vital in preventing outbreaks, as the first dose mitigates severe 

conditions. Experts recommend completing both doses to enhance antibody production and stimulate memory 

cells for long-term immunity. 

Our analysis shows a positive correlation between 0R  and the transmission rate (β), reinfection rate ( ), and 

progression rates from exposed to mild ( 1 ) and critical ( 2 ) cases. Sensitivity analysis highlighted β as the 

primary factor in disease spread. Thus, reducing the transmission rate is essential, with vaccination being the most 

effective strategy, potentially reducing transmission by up to 86.1%. 

Adherence to health precautions like wearing masks, maintaining safe distances, and frequent hand washing 

remains crucial. Our numerical simulations indicate that both vaccination doses significantly reduce mild and 
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critical cases. Consequently, an optimal vaccination program, combined with home isolation for infected 

individuals, can protect the majority of Bangladesh’s population from the virus. 

In summary, our study underscores the critical role of vaccination in managing COVID-19 and controlling 

transmission. Both first and second-dose vaccinations are essential in reducing cases, highlighting the need for a 

comprehensive vaccination strategy and adherence to health guidelines. Our modified SEIR model demonstrates 

the stability of disease-free and endemic points, with sensitivity analysis identifying the transmission rate as 

crucial in disease spread. Vaccination can reduce transmission by up to 86.1%. These insights are vital for 

managing the current pandemic and preparing for future outbreaks, emphasizing ongoing vaccination efforts in 

India and providing a framework for future public health strategies. 
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