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1 Introduction 

The concept of Lorentzian paracontact, specifically Lorentzian para-Sasakian (LP-Sasakian) manifolds, was first 

presented by K. Matsumoto [7] in 1989. Subsequently, numerous geometers, including Matsumoto and Mihai [8], 

Mihai and Rosca [6], Mihai, Shaikh and De [5], Venkatesha, Pradeep Kumar, and Bagewadi [15], Venkatesha, 

and Bagewadi [16, 17], and obtained several outcomes from these manifolds. F. O¨zen Zengin studied the nature 

of LP - Sasakian manifolds admitting the M− projective curvature tensor and examined whether this manifold 

satisfies the condition W(X,Y ) · R = 0. Moreover, he proved that in the M− projectively flat LP - Sasakian 

manifolds, the conditions R(X,Y ) · R = 0 and R(X,Y ) · S = 0 are satisfied and then he introduced the concept of 

M− projectively flat space-time. A class of virtually paracontact metric manifolds, called para-Kenmotsu 

(abbreviated P-Kenmotsu) and special para-Kenmotsu (abbreviated SP-Kenmotsu) manifolds, was developed by 

Sinha and Sai Prasad [2] in 1995. These manifolds are comparable to P-Sasakian and SP-Sasakian manifolds. In 

2018, 

Abdul Haseeb and Rajendra Prasad conducted research on φ-semisymmetric LP - Kenmotsu manifolds with a 

quarter-symmetric non-metric connection admitting Ricci solitons [13]. They also defined a class of Lorentzian 

almost paracontact metric manifolds, called Lorentzian para-Kenmotsu (abbreviated LP-Kenmotsu) manifolds 

[1]. Pokhariyal [3] explored these tensor field’s properties on a Sasakian manifold in more detail. These notions 

were expanded to nearly para-contact structures by Matsumoto, Ianus, and Mihai in 1986. They also analyzed 

para-Sasakian manifolds that admitted these tensor fields [9], with De and Sarkar generalizing their results in 2009 

[14]. 

A. Friedmann and J. A. Schouten [11] introduced the concept of semisymmetric linear connection on a 

differentiable manifold in 1924. H. A. Hayden [13] first described and researched semi-symmetric metric 

connection in 1932. The semi-symmetric metric connection in a Riemannian manifold was the subject of a 

symmetric study initiated by K. Yano[23] in 1970, which was later explained upon by a number of authers 

including S. Ahmad and S. I. Hussain [26], M. M. Tripathi [21], C.Ozgur et al. [18] and many others. 

If ∇ is assumed to be a linear connection and M be an n-dimensional differentiable manifold then the curvature 

tensor R and torsion tensor T of ∇ are given by 

T(X,Y ) = ∇XY − ∇Y X − [X,Y ], 

R(X,Y )Z = ∇X∇Y Z − ∇Y ∇XZ − ∇[X,Y ]Z 

If Torsion tensor T vanishes i.e. if T = 0, then the connection ∇ is called to be symmetric else it is non-symmetric. 

The connection ∇ is said to be metric connection if there exist a Riemannian metric g in M such that ∇g = 0, 

otherwise it is non-metric. We know very well that the Levi-Civita connection is defined as; 
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A linear connection is Levi-Civita if it is symmetric as well as metric. 

If torsion tensor T of a linear connection ∇ is of the form 

T(X,Y ) = η(Y )X − η(X)Y, 

then ∇ is called semi-symmetric connection; where η is 1-form. 

The semi-symmetric metric connections are very crucial in the study of Riemannian manifolds. The semi-

symmetric metric connection is associated with a variety of physical issues. For instance, if a man moves over the 

surface of the earth always facing a specific location, such as, Jerusalem, Mekka, or the North pole, so this 

displacement is semi-symmetric and metric. 

The paper is structured as follows in response to the studies mentioned above. We provide a brief overview of 

LP-Kenmotsu manifold and its features. We locate the W8 flatness in LP- Kenmotsu manifold in section 3. The 

analysis of the φ − W8-semisymmetric condition in LP-Kenmotsu manifold with regard to the semi-symmetric 

metric connection is covered in section 4. We discover that the LP-Kenmotsu manifold satisfying the condition 

W8 · Q = 0 in section 5 and present some interesting findings. 

2 Preliminaries 

An n− dimensional differentiable manifold M admitting a (1,1) tensor field φ, contravariant vector field ξ, a 1-

form η and the Lorentzian metric g(X,Y ) satisfying 

φ2X = X + η(X)ξ, (2.1) 

η(ξ) = −1, (2.2) 

g(ξ,ξ) = −1, (2.3) 

η(X) = g(X,ξ), (2.4) 

 g(φX,φY ) = g(X,Y ) + η(X)η(Y ), (2.5) 

for any vector fields X,Y on M, then it is called Lorentzian almost paracontact manifold. In the Lorentzian 

paracontact manifold, the following relation hold: 

 φξ = 0, η(φX) = 0. (2.6) 

Also, we have 

 Φ(X,Y ) = Φ(Y,X), (2.7) 

where Φ(X,Y ) = g(X,φY ). 

A Lorentzian almost paracontact manifold M is called Lorentzian parasasakian manifold if 

 (∇Xφ)(Y ) = g(X,Y )ξ + η(Y )φX + 2η(X)η(Y )ξ, (2.8) 

where ∇ is the Levi- Civita connection with respect to g and for any vector fields X,Y on M. 

If ξ is a killing vector field, the (para) contact structure is called K− (para) contact. In this case we have, 

 ∇Xξ = φX (2.9) 

Now, we define Lorentzian-para Kenmotsu manifold: 

Definition 2.1: A Lorentzian almost paracontact manifold M is called Lorentzian para-Kenmotsu manifold if 

 (∇Xφ)(Y ) = −g(φX,Y )ξ − η(Y )φX. (2.10) 

In the Lorentzian-para Kenmotsu manifold, we have 

 ∇Xξ = −X − η(X)ξ, (2.11) 
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 (∇Xη)(Y ) = −g(X,Y ) − η(X)η(Y ). (2.12) 

Additionally, the curvature tensor R, the Ricci tensor S and the Ricci operator Q in a Lorentzian para-Kenmotsu 

manifold M with respect to the 

Livi-Civita connection satisfies [8] 

R(X,Y )ξ = η(Y )X − η(X)Y, (2.13) 

R(ξ,X)Y = g(X,Y )ξ − η(Y )X, (2.14) 

R(ξ,X)ξ = X + η(X)ξ, (2.15) 

g(R(X,Y )Z,ξ) = η(R(X,Y )Z) (2.16) 

= g(Y,Z)η(X) − g(X,Z)η(Y )], (2.17) 

S(X,ξ) = −(n − 1)η(X), (2.18) 

Qξ = (n − 1)ξ, (2.19) 

(2.20) 

where g(QX,Y ) = S(X,Y ). For any vector fields X,Y and Z on M it yields S(φX,φY ) = S(X,Y ) + (n − 1)η(X)η(Y ). 

(2.21) 

Definition 2.2: A Lorentzian almost paracontact manifold M is said to be an η− Einstein manifold if its Ricci 

tensor S is of the form 

 S(X,Y ) = ag(X,Y ) + bη(X)η(Y ), (2.22) 

where a and b are scalar functions on M. 

A Lorentzian almost paracontact manifold M is said to be a generalized η− Einstein manifold if its Ricci tensor S 

is of the form 

 S(X,Y ) = ag(X,Y ) + bη(X)η(Y ) + cΦ(X,Y ), (2.23) 

where a,b and c are scalar functions on M and Φ(X,Y ) = g(φX,Y ). If c = 0, then the manifold reduces to an η− 

Einstein manifold. Also, it is an Einstein manifold if b and c both are 0. 

3 ξ − W8-flat in - Kenmotsu Manifold 

In this section, we study ξ − W8− flat in LP - Kenmotsu manifold: 

Definition 3.1: An LP- Kenmotsu manifold is said to be ξ − W8− flat if 

 W8(X,Y )ξ = 0, (3.1) 

for any vector fields X,Y on M. W8-curvature tensor [6] is defined as 

 , (3.2) 

where R and S are the curvature tensor and Ricci tensor of the manifold respectively. 

putting Z = ξ in (3.2), we get 

 . (3.3) 

By using (3.1) in (3.3), we get 

 . (3.4) 
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By virtue of (2.13), (2.18) in (3.4) and on simplification, we obtained 

. 

By taking inner product with ξ in (3.5) and on simplification, we have 

S(X,Y ) = (n − 1)η(Y )η(X). 

Hence from the above discussion, we state that the following theorem: 

Theorem 3.2: If an LP- Kenmotsu manifold satisfying ξ − W8−flat condition then the manifold is a special type 

of η-Einstein manifold. 

4 φ − W8- semisymmetric Condition in LP Kenmotsu Manifold 

In this section, we study φ − W8− semisymmetric condition in an Kenmotsu manifold: 

Definition 4.1 : An -Kenmotsu manifold is said to be φ − W8− semisymmetric if 

 W8(X,Y ) · φ = 0, (4.1) 

for every vector field X,Y on M. 

Now, (4.1) turns into 

. 

Putting X = ξ, we get 

. 

From equation (2.14), we get 

. 

Interchanging Z and φZ, we get 

. 

Taking inner product with ξ, we get 

S(Y,Z) = −(n − 1)g(Y,Z). 

Hence from the above discussion, we state the following theorem: 

Theorem 4.2 : If an -Kenmotsu manifold satisfying φ−W8− semisymmetric condition then manifold is an Einstein 

manifold. 



Tuijin Jishu/Journal of Propulsion Technology 

ISSN: 1001-4055 

Vol. 45 No. 3 (2024) 

_____________________________________________________________________________________________________ 

1550 

5 LP - Kenmotsu Manifolds satisfying W8 · Q =0 

In this section, we study LP-Kenmotsu Manifolds satisfying W8 · Q = 0. Then we have 

W8((X,Y )Q)Z − Q(W8(X,Y )Z) = 0. 

Putting Y= ξ in above, we get 

W8((X,ξ)Q)Z − Q(W8(X,ξ)Z) = 0. 

Using ], we get 

 

We have, 

R(ξ,X)Y = −η(Y )X + g(X,Y )ξ 

S(X,Y ) = −(n − 1)η(X) 

Solving (5.1), we get 

 

or, η(QZ)X − g(X,QZ)ξ − η(X)QZ + η(QZ)X− 

 η(Z)QX + g(X,Z)Qξ + η(X)QZ − η(Z)QX = 0. (5.2) 

Solving equation (5.2) and by by the vertue of (2.19), we have or, 2η(QZ)X − 2η(Z)QX − g(X,QZ)ξ + (n − 1)g(X,Z) 

= 0. 

 or, g(X,QZ)ξ = 2η(Z)QX − 2η(QZ)X − (n − 1)g(X,Z)ξ. 

Since, S(X,Y ) = g(QX,Y ), then we have 

 S(X,Y )ξ = 2η(Z)QX − 2η(QZ)X − (n − 1)g(X,Z)ξ. (5.3) 

Using QX = (n − 1)Xin(5.3), we have 

S(X,Z)ξ = −(n − 1)g(X,Z)ξ 

Taking inner product with ξ, we get 

S(X,Z) = (n − 1)g(X,Z). 

Hence from the above discussion, we state the following theorem: 

Theorem 5.1: An LP-Kenmotsu manifold satisfying W8 · Q = 0, is an 

Einstein manifold. 

6 Conclusions 

In this paper, we proposed that a W8 - flat LP - Kenmotsu manifold is a special type of η Einstein manifold. Next, 

we deal with φ−W8- semisymmetric condition in LP -Kenmotsu manifold and found it to be Einstein manifold. 

Again, we discussed the LP - Kenmotsu manifolds satisfying W8 · Q = 0 condition and it comes out to be an 

Einstein manifold. 
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