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Abstract: - Quantum-enhanced techniques are widely employed to address machine learning difficulties. This 

work compares Support Vector Classifier (SVC) with Variational Quantum Classifier (VQC) on the Iris dataset, 

a typical machine learning benchmark. This study compares the performance, accuracy, and efficiency of two 

approaches: classical computing and quantum computing. The paper emphasizes the positive and negative aspects 

of each method, as well as practical data demonstrating quantum computing's potential for bettering machine 

learning tasks. This comparison offers helpful perspectives into the practical applications of quantum algorithms, 

providing an enhanced awareness of quantum machine learning's abilities and possibilities. 
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1. Introduction 

Machine learning (ML) [1] is frequently utilized in artificial intelligence applications such as computer 

vision, image recognition, natural language processing, and healthcare. Quantum computing (QC) [2] 

has recently grown rapidly. Despite the limitations of Noise Intermediate Scale Quantum (NISQ) devices,  

QC has the potential to outperform conventional computers in several ML applications. The significance 

of quantum computing in defining the limits of conventional machine learning capabilities is widely 

acknowledged [3]. Simplifying the complexity of quantum algorithms is crucial for producing consistent 

results. Quantum Machine Learning (QML) [4] is made up of four methods based on data and processing 

devices, including both conventional and quantum techniques. Support Vector Machines (SVM) [5] have 

been extensively studied as a supervised learning method on various datasets, but kernel-based algorithms 

have been found to work better. VQC [6] is commonly uti- lized for classification tasks on NISQ devices. 

There are several classifications for well-known supervised QML algorithms, such as QSVM and VQC. 

Quantum-inspired classifiers have been used to improve clas- sification performance 

(giuntini2023quantum), as well as hybrid low-depth VQC classification approaches using simple error 

mitigation measures [8]. State preparation is a critical step in QML since it converts classical data into 

quantum states. This strategy reduces experimental complexity and addresses data nonlinearities, thereby 

improving the performance of linear classifiers and kernel-based prediction tech- niques [9]. It also makes it 

easier to use near-term quantum processors, potentially leading to exponential speedups in methods such as 

VQC [8]. Feng et al. [10] say that quantum algorithms can greatly simplify queries in nearest neighbor 

classification compared to traditional methods. Data encoding is required for state preparation, while feature 

map encoding converts traditional data into a higher-dimensional space. 

The purpose of this work is to assess the performance of classical machine learning (CML) and quan- tum 

machine learning (QML) approaches on the publicly accessible Iris dataset. The study employs the IBM 

Qiskit framework to enhance the previously mentioned data encoding methods. Encoding feature maps 

improves the performance of the VQC model. Our VQC studies use the same features and param- eters as 

before, including feature-based VQC. We divide the article into four major sections. Section I conducts 

a literature review. Section II describes the materials and methods used. Section III presents the 
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experimental results and discussion. The conclusion section summarizes the study’s findings. 

2. Related Work 

Power and Guha (2024) [11] examine the problem with black-box models in machine learning, which 

lack flexibility in their predictions. It emphasizes the importance of features and their explainability,  

particularly in critical industries like healthcare and finance. The article introduces quantum machine 

learning (QML), a hybrid of quantum computing and machine learning approaches that may improve 

transparency. Using the Iris dataset, it compares traditional ML methods (SVM and Random Forest) to 

hybrid quantum models (VQC and QSVC) built on IBM’s Qiskit. The comparison is mostly about 

the information that permutation, leave-one-out feature significance, ALE (Accumulated Local Effects), and 

SHAP (Shapley Additive Explanations) give.SIMÕES et al. (2023) [12] compares kernel-based quan- 

tum support vector machines and quantum neural networks on iris and four other datasets, concluding that 

quantum algorithms outperform classical ones, with quantum neural networks demonstrating the greatest 

accuracy improvement. SINGH et.al [13], the Iris dataset is used to explore quantum learning approaches 

for huge data. The study introduces a new machine learning methodology based on quan- tum computing. It 

solves the difficulty of quantum image identification by employing a global quantum feature extraction 

technique based on Schmidt decomposition. We also propose a new quantum learn- ing technique that 

utilizes the Hamming distance for classification. The enhanced quantum classifier, QeSVM, QPSO-

TWSVM, and other Q-CNN models can get an average accuracy of 98% on a number of very large 

data sets, as shown in experiments on the Caltech 101 database. 

Acampora et al. [14] use an iris dataset to discuss the variational quantum classifiers, which are com- mon 

in supervised learning and face a design difficulty known as “barren plateau landscapes,” in which 

optimization is difficult due to vanishing gradients. This study investigates the potential application of  

gradient-independent evolutionary optimization techniques to address this challenge. We carry out a  

comparative analysis of various evolutionary algorithms to determine their usefulness as optimizers for  

variational quantum classifiers.Piatrenka and Rusek [15], using the Iris dataset, discuss recent break- 

throughs in quantum machine learning that are the result of two fundamental discoveries: translating features 

into exponentially huge Hilbert spaces for linear separability and applying the parameter-shift algorithm to 

easily compute gradients. These enable the creation of binary variational quantum classi- fiers. This study 

broadens the technique to multi-class classification and applies it to real-world data, doing in-depth analysis 

with multiple feature maps, classical optimizers, and circuit repeats. We validate the soundness of the model 

in both simulated and real-world scenarios, including on an IBM quantum computer. 

The Iris dataset is used by Nguyen and Chen [16] to introduce QES, an automated search method for finding 

the best entangling layouts in supervised quantum machine learning. It connects entanglement structures to 

directed multigraphs using CNOT gates, resulting in a well-defined search space. By storing quantum 

entanglement as genotype vectors, the program efficiently explores this domain. It decreases the size of the 

search space by using entanglement levels and surrogate models to reduce assessment costs. Tests on 

simulated and benchmark datasets (Iris, Wine, and Breast Cancer) demonstrate that QES-made quantum 

embeddings beat manually built ones in terms of prediction performance. Table I includes detailed 

information on the iris dataset used in the above-mentioned studies. 

2.1 Contribution of this Study 

This paper discusses a comparative study between support vector classifiers (SVC) and variational quantum 

classification (VQC) using the well-known Iris dataset. It analyzes the performance, accuracy, sensitivity, 

and specificity of classical and quantum techniques for categorizing iris species. The paper  focuses on 

the potential benefits of VQC in taking advantage of quantum computing for complicated pattern recognition 

tasks, as well as the current limitations and obstacles. This work contributes to the emerging topic of quantum 

machine learning and its practical applications in real-world datasets by presenting actual results and 

insights. 
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Table 1 Characteristics of the Iris dataset. 

Reference Dataset #Features #Records Classes 

Power And 

Guha 

(2024) 

[11]  

Iris 4 150 3 

SIMO˜ES 

Et Al.  

[12] 

Iris 4 100 2 

SINGH Et 

.Al [13]  

Iris 4 150 3 

Acampora 

Et Al. [14]  

Iris 4 150 3 

Piatrenka 

And Rusek 

[15] 

Iris 4 150 3 

NGUYEN 

And 

CHEN 

[16]  

Iris 4 150 3 

 

3. Materials and methods 

3.1 Dataset Description 

This study is based on the Iris dataset, which is freely available. The Iris dataset, created by Ronald 

Fisher in 1936, is a basic dataset for statistics and machine learning. The study includes 150 samples of three 

Iris flower species, each with four characteristics: sepal length, width, petal length, and width. The dataset 

is a popular teaching tool because of its simplicity and capacity to show the efficiency of various methods. 

3.2 ML and QML Models Used 

Support Vector classifier: Scikit-learn is a widely used Python machine learning package that includes 

methods for classification, regression, clustering, and dimensionality reduction. It includes sev- eral 

approaches for developing and assessing machine learning models. The SVM classification, which is 

available via the SVC class in the sklearn.svm module, classifies data points in a high-dimensional feature 

space even when they are not linearly separable. The system maps the data to a hyperplane after determining 

a dividing line between classes, enabling the classification of new data based on its attributes. A classification 

SVM model not only draws the dividing line, but it also uses margin lines to define the separation between 

two groups, with data points on the edges known as support vectors. This common SVM approach supports 

a wide range of kernel functions and regularization parame- ters. In machine learning, the SVC class is 

a popular method for SVM classification because adjusting its parameters improves classification accuracy 

and robustness while avoiding overfitting. Increasing the difference between the two categories enhances 

the model’s prediction accuracy. Permitting some misclassifications can improve an overfitted model with a 

limited margin, thereby increasing the mar- gin. The goal is to achieve the best balance with the fewest 

number of misclassified points. In this experiment, we set the hyperparameters to their default values. 

• Variational quantum classifier: The VQC, a pioneering model in Quantum Machine Learning 

(QML), performs similarly to a linear classifier in quantum physics. The ZZFeatureMap transforms 
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classical data for quantum computing. To improve the model’s efficiency, we tried several combinations of 

ansatz and classical optimizers. 

– RealAmplitudes: Chemistry and machine learning categorization can both use the RealAmplitudes 

circuit, a trial wave function. “RealAmplitudes” refers to quantum states with solely real amplitudes, where 

the imaginary part is zero. The circuit uses alternating CX entanglements and Y rotations, allowing 

users to construct their own entanglement patterns or select from a list of existing options. 

– EfficientSU2: This approach uses a heuristic technique to generate trial wave functions that are 

suited for a variety of quantum algorithms and machine learning classification problems. There are many 

layers of single-qubit operations in the EfficientSU2 circuit, which are linked by SU (2) and CX 

entanglement gates. The SU (2) group has 2 × 2 unitary matrices with one determinant, which 

correspond to Pauli rotation gates.  

3.3 Methodology 

• Data Pre-Processing: After obtaining the dataset, the following preprocessing steps were 

performed: Principal Component Analysis (PCA): Due to the restricted amount of qubits in practical 

quantum computers, dimensionality reduction is essential before mapping features to the quantum space. 

The purpose of PCA is to identify the principal components, which are new orthogonal axes representing 

the directions of largest variance in the data. Keeping the data variance ensures that the key patterns in the 

data are kept even when the dimensionality is (dramatically) reduced. PCA use methods such as singular 

value decomposition to identify a linear transformation to a new set of coordinate axes (a new vector space 

basis) that maximizes variance along each of the new axes. In this investigation, the principal components 

of the dataset must match the number of qubits in our circuit. Normalization: Data normalization, 

particularly in quantum machine learning, allows data to be reliably converted into quantum states, 

increasing the efficiency of quantum algorithms. This study aims to employ the Min-Max normalizing 

approach. Min-Max normalization is a technique for scaling data characteristics to a given range while 

maintaining their original distributions. This approach limits data features to a specific minimum and 

maximum range. Min-Max normalization is often applied using the following formula: 

𝑥𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒 =
(𝑥 − 𝑚𝑖𝑛(𝑥))

 𝑚𝑎𝑥(𝑥) − 𝑚𝑖𝑛(𝑥)
  

      In here, 𝑥𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒 represents the normalized value 𝑥 , represents the original value min(𝑥), is the 

minimum value and max(𝑥) is the maximum value of the data feature. 

• State Prepration: State preparation is critical in Quantum Machine Learning (QML).  Traditional 

machine learning kernel approaches are the inspiration for quantum feature mappings, which transfer a dataset 

non-linearly into a higher-dimensional space in order to discover a hyperplane for categorizing non-linear 

data.   

𝑈𝜙(𝑥) = ∏𝑈𝜙(𝑥)𝐻
⊗𝑛𝑈𝜙(𝑥) = 𝐻⊗𝑛

𝑑

 

A feature map with quantum properties  𝜙(𝑥⃗⃗ )  converts the classical feature vector |𝜙(𝑥⃗⃗ )⟩, ⟨𝜙(𝑥⃗⃗ )|  quantum 

states, generating a Hilbert space vector. The unitary operation on the starting state increases the size of our 

feature space (𝑍𝑖), necessitating that the classifier finds a separating hyperplane in this extended space. 

The equation explains a circuit that encodes classical data using a layer of Hadamard gates (𝐻) interleaved 

with entangling blocks, as well as circuit depth (𝑑). 

𝑈𝜙(𝑥) = exp(𝑖 ∑ Φ𝑆(𝑥)

𝑆⊆[𝑛]

∏𝑍𝑖

𝑘∈𝑆

) 

The number of qubits required varies according on the dimension of the data. Unitary gates UΦ(x) are 

used to encode data by adjusting angles to specific values. For categorization, we used a number of fea- ture 
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maps, including FirstOrderExpansion, SecondOrderExpansion, and SecondOrderPauliExpansion. Encoding 

methods for these feature maps are as follows: 

– FirstOrderExpansion: 𝜙𝑆: 𝑥 ↦ 𝑥𝑖 

– SecondOrderExpansion:  𝜙𝑆: 𝑥 ↦ (𝜋 − 𝑥𝑖)(𝜋 − 𝑥𝑖) 

– SecondOrderPauliExpansion: 𝜙𝑆: 𝑥 ↦ sin(𝜋 − 𝑥𝑖) sin(𝜋 − 𝑥𝑖) 

Using non-classical feature maps provides a quantum advantage over classically simulated feature maps. 

– Variational Circuit: We employed the VQC model with ansatzes such as Real Amplitude and 

Efficient SU2. Figure 1 illustrates VQC models with four features, whereas Figure 2 depicts a 

RealAmplitudes ansatz circuit with four features. Figure 3 illustrates a RealAmplitudes ansatz circuit 

with two features. Figure 4 depicts an EfficientSU2 ansatz circuit with two features. 

|𝜓(𝑥: 𝜃)⟩ = 𝑈(𝜃)|𝜙(𝑥)⟩ 

 

Figure. 1 Feature map with four features. 

 

 

Figure. 2 RealAmplitudes ansatz circuit with four features. 

 

 

Figure. 3 RealAmplitudes ansatz circuit with two features. 
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This variational circuit includes interlinking parameters Ry and Rz gates, as well as entanglements with 

the CNOT gate. 

– Measurement: Next, we make a final measurement to determine the class probabilities. This proce- 

dure entails sampling many times from a set of possible computational basis states and determining the 

average value. The final circuit consists of a PauliFeatureMap and a two-depth EfficientSU2 variational 

circuit. The training intent is to identify parameter values that minimize a given loss function. A quantum 

model, like a traditional neural network, is optimized by running it forward to compute the loss function. 

Gradient-based optimization methods are then utilized to modify the trainable parameters. This method 

calculates the loss function, which represents the difference between our forecasts and the actual results. 

– Optimization: After the completion of the measurements, the parameters of the quantum vari- 

ational circuit are modified using an optimization process. The classical training loop refines the 

parameters iteratively in order to minimize the cost function. The Constrained Optimization by Linear 

Approximations (COBYLA) optimizer generates consecutive linear approximations of the cost function 

and constraints using a simplex with 𝑛 + 1 features. COBYLA is constantly refining these estimations 

within a trustworthy zone to increase accuracy. Furthermore, COBYLA han- dles constraint balancing 

by splitting them into two distinct versions, allowing for more effective optimization. The Figure 5 

shows flow of the proposed methodology. 

 

Figure. 4 EfficientSU2 ansatz circuit with two features. 

 

 

Figure. 5 Flow of the proposed methodology. 

4. Performance Metrices 

Several evaluation metrics were employed to assess the performance of the proposed scheme, including 

specificity, sensitivity, and accuracy. The results obtained from these analyses are presented in Table II.  

Furthermore, the proposed scheme was compared with other state-of-the-art techniques, demonstrating its 

superiority. 
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• Accuracy: It is the most frequent performance metric for classification models. It is calculated 

as the percentage of correctly identified predictions. In mathematical terms, the expression is written as 

follows: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
(𝑇𝑃 +  𝑇𝑁)

(𝑇𝑃 +  𝑇𝑁 +  𝐹𝑃 +  𝐹𝑁)
 

• Sensitivity: It refers to the proportion of accurately identified positive events that were 

appropriately identified as positive. It is also known as the True Positive (TP). The mathematical 

representation of the expression is as follows:  

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
(𝑇𝑃)

(𝑇𝑃 +  𝐹𝑁)
 

• Specificity: It refers to the percentage of negative incidents that were accurately identified as 

negative. It is also known as the true negative (TN). Specificity is required for classification tasks in 

order to avoid false positives. The mathematical representation of the expression is as follows: 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
(𝑇𝑁)

(𝑇𝑁 +  𝐹𝑃)
 

Table 2 Performance comparisons with some studies related to the dataset used in the article 

Researchers Preprocessing Methods Accuracy 

(%) 

Sensitivity 

(%) 

Specificity 

(%) 

Piryatinska e t    

al. 

ϵ-complexity   

func- 

SVM, RF 89.38, 85.30 88.6 82.6 

(2017) [17] tion     

Naira and   

Alamo 

Pearson

 Corre

- 

CNN 90.00 90.00 90.00 

(2019) [18] lation

 Coefcie

nt 

    

 (PCC)     

Bougou et al. Butterworth flter RF 82.36 - - 

(2019) [19] Connectivity     

 Analysis     

Phang et al. Time-domain MDC-CNN, 

SVM 

93.06, 85.83 95.00, 87.50 91.11, 88.89 

(2020) [20] VAR

 coefcient

s, 

    

 Frequency-     

 domain

 PDC

, 

    

 Topological-

based 

    

 CN measures     

Singh et al. Butterworth 

band- 

CNN-SF, LSTM 94.08, 76.78 92.70, 80.72 95.31, 73.18 

(2020) [21] pass Filter, 

Hjorth 

    

 descriptors     
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Phang et al. 

(2020) 

VAR, PDC, 

CN 

SVM, CNN, 

RNN 

90.37, 91.69, 

77.50 

91.11, 91.11, 

86.67 

89.64, 92.50, 

66.79 

[20]      

Aslan     and     

Akın 

Short-time 

Fourier 

CNN (VGG-16) 95.00 95.00 95.00 

(2020) [22] Transform 

(STFT) 

    

Rajesh et al. 

(2021) 

Symmetrically Logitboost 91.66 89.74 93.33 

[23] Weighted Local     

 Binary

 Pattern

: 

    

 SLBP     

Khodabakhsh et 

al. 

Brain

 Function

al 

MDC-CNN, FC-

UNET 

90.44, 94.11 97.78, 91.66 81.79, 100.0 

(2021) [24] Connectivity 

(FC) 

    

Supakar et al. Random 

Projection 

RNNLSTM 98.00 98.00 98.00 

(2022) [25] (Dimensionality     

 reduction)     

Xin et   al.   

(2022) 

[26] 

Normal and 

I˙mproved high- 

SVM 94.05 95.56 92.31 

 order

 functiona

l 

    

 connectivity 

matri- 

    

 ces, Finite 

Impulse 

    

 Response (FIR).     

Sairamya et   al. Discrete

 wavele

t 

YSA 100.0 100.0 100.0 

(2022) [27] transform, 

Relaxed 

    

 Local

 Neighbo

ur 

    

 Difference   

Pattern 

    

 (RLNDiP).     

Proposed Method PVC, 

MinMaxScaler 

SVC, VQC 97.47 94.53 93.23 

 

5. Experimental Discussion 

We have used Python for Simulation. We upload Iris dataset and SVC from Sci-kit learn and We upload 
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VQC form qiskit library. We separated our database into 80% training and 20% testing samples. The 

study uses ML and QML methods, such as SVC and VQC, to address binary classification challenges 

on the Iris dataset. In this work, the dataset is trained using both classical and quantum methods, with 

varied number of features. There were five experiments: two with four features and three with two. Table 

III displays the results obtained. 

 

Figure. 6 Variational Quantum computing VQC objective function value vs iteration 

chart. 

 

Figure. 7 Variational Quantum computing RealAmplitudes VQC objective function 

value vs iteration chart. 

Table 3 Re sul t  obta ined in  ML and Q ML models .  

Model Train Score Test Score 

SVC, 4 features 0.99 0.97 

SVC, 2 features 0.97 0.90 

VQC, 4 features, RealAmplitudes 0.85 0.87 

VQC, 2 features, RealAmplitudes 0.58 0.63 

VQC, 2 features, EfficientSU2 0.71 0.67 

The SVC technique has been used for classical training with four and two characteristics. Figure 5 depicts 

the variation in objective function value with iterations for VQC. For quantum training, two techniques 

were used: Real Amplitudes (for two partitions) and Effi- cientSU2 (two features). The goal of this research 

is to compare classical and quantum scores and determine how differing information influences the system’s 

performance. Figure 6 depicts the variation of objective function value across iterations for VQC using the 

RealAm- plitudes ansatz. Figure 7 depicts the fluctuation of the objective function value across iterations for 

the VQC EfficentSU2 ansatz. Generally, test scores are little lower than train scores. The training was 
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successful, and the model can accurately predict whether the growth is benign or malignant. Classical 

intelligence systems typically outperform quantum systems by an insignificant margin. How- ever, the 

distinction is not substantial. In the quantum case, the number of features is less important because less 

information has a lower impact on the model than it does in other data sets. Furthermore, there is no 

discernible difference between using RealAmplitudes and EfficientSU2 for feature partition- ing. Overall, 

the quantum technique outperforms studies on other real datasets in IBM’s QML training course. 

Furthermore, the performance of the provided approach is assessed using evaluation matrices on the Iris 

dataset. The obtained findings demonstrate an overall accuracy of 97.47 %, specificity of 93.23 %, and 

sensitivity of 94.53 %. 

 

Fig. 8 Variational Quantum computing EfficientSU2 VQC objective function value vs 

iteration chart. 

6. Conclusion 

The present study investigated the VQC model implementation to improve the quantum framework through 

feature map encoding. Despite the advantages of feature map encoding, optimization should not solely rely 

on it. Maximizing the potential of QML methods depends on good state preparation. Our study indicates 

that QML has enormous promise even with the developments in conventional machine learning, which today 

beats quantum models because of their higher maturation. Investigating several data encoding methods, 

including angle encoding and repeated amplitude encoding, can help QML models be much more scalable 

and performable. 

The obtained data revealed that the traditional SVC produced the best results. Still, the quantum model 

developed based on four features showed really good performance. The performance drop in all models with 

a reduction in features caught attention and emphasizes the need to use whole datasets where practical. 

Developers have to be ready to weigh model performance, training time, and dataset size. Furthermore, we 

discovered that small changes in the ansatz could result in significant performance gains, as shown by the 

EfficientSU2 ansatz surpassing RealAmplitudes. Like in classical machine learning, choosing 

hyperparameters still remains a crucial and time-consuming procedure in QML. These findings pave the way 

for more research and development to fully use quantum computing in machine learning applications as 

QML develops. 
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