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Abstract:-  In the proposed SIQVR model, we examine the impact of vaccination and lockdown on COVID-19. 

Beginning with the outbreak in Wuhan in December 2019, India's nationwide lockdown on March 24, 2020, and 

vaccination campaign starting January 16, 2021, are analyzed. Using a five-dimensional mathematical model with 

nonlinear differential equations, our study reveals that complete eradication of the virus is possible only with total 

lockdown and universal vaccination. Without these measures, the virus will persist. Effective management 

includes contact tracing, quarantine, accelerating vaccination and targeted lockdowns. 
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1. Introduction 

Throughout the course of history, intermittent outbreaks of infectious diseases have had profound and lasting 

impacts on societies. These incidents have significantly shaped various aspects of human civilization, such as 

economics, politics, and social dynamics, with their effects often enduring for extended periods. These epidemic 

events have played a crucial role in influencing the foundational principles of modern medicine, leading the 

scientific community to develop essential concepts in epidemiology, disease prevention, immunization, and 

antimicrobial treatments [1,2]. Over the course of history, the globe has encountered various epidemics and 

pandemics, and one of the most significant was the Black Death outbreak, commonly referred to as the bubonic 

plague, in the year 1347. This specific pandemic is noteworthy for being the deadliest recorded in history, causing 

widespread devastation primarily in Europe [3,4,5]. The global outbreak of the Spanish flu from 1918 to 1920 

was the first-ever worldwide pandemic and the first to occur in the era of modern medicine. Throughout this time, 

fields like infectious diseases and epidemiology extensively studied the nature of the diseases and the development 

of the pandemic [6,7,8]. The early 21st century witnessed a notable public focus on the onset of Severe Acute 

Respiratory Syndrome (SARS), triggered by the SARS Coronavirus (SARS-CoV-2) and emanating from China. 

The outbreak affected fewer than 10,000 individuals in China and Hong Kong initially, with additional cases 

reported in various countries. Due to the dedicated efforts of international public health systems, the outbreak was 

effectively controlled by mid-2003. In 2009, there was a revival of the 1918 "Spanish flu" pandemic, recognized 

as the 2009 H1N1 pandemic [9,10,11]. Commonly known as the "swine flu," this episode was thought to arise 

from the combination of avian, swine, and human influenza viruses. Fortunately, its impact was milder compared 

to the original Spanish flu. In December 2019, a pneumonia outbreak surfaced in Wuhan, a significant city in the 

central Chinese province of Hubei. Rapidly, it disseminated throughout the country. The Chinese Center for 

Disease Control and Prevention (CCDC) pinpointed a new beta-coronavirus, initially designated as 2019-nCoV, 

which is now officially acknowledged as Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) 

[12,13,14,15]. The third outbreak of a zoonotic coronavirus in the first two decades of the 21st century was 

triggered by SARS-CoV-2, the virus that leads to COVID-19. This virus facilitated the transmission of the disease 

from person to person, causing substantial worldwide health worries. The World Health Organization (WHO) 

expressed deep concern about the seriousness and swift global spread of this highly infectious illness, officially 

categorizing it as a pandemic on March 11, 2020 [16,17,18]. As per the WHO’s 57th report dated March 17,2020, 
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there were a total 179112 confirmed cases worldwide, resulting in 7426 deaths, reflecting a mortality rate of 

approximately 4Director-General of the World Health Organization, commented that the world had possibly not 

witnessed such a devastating illness and emerging threat since the time before World War II. As of March 21, 

2021, Uttar Pradesh had reported 607,050 confirmed cases of COVID-19, with 8,758 deaths, 2,774 active cases, 

and 595,518 recovered cases. By September 18, 2021, India had recorded a 2 total of 33,447,010 confirmed 

COVID-19 cases, including 447,166 (1As of March 21, 2022, Uttar Pradesh had documented 2,070,285 confirmed 

COVID-19 cases, with 23,492 deaths, 778 active cases, and 2,046,015 recovered cases [19,20,21,22]. By March 

22, 2022, India had reported a total of 429,843,48 confirmed COVID-19 cases, including 516,574 (1Researchers 

globally have been exerting substantial efforts to track and prevent the spread of the disease [23,24,25,26]. They 

have been conducting experiments with innovative diagnostics and have successfully developed vaccines to curb 

the impact of the virus [27,28,29]. The potential of mathematical models lies in their ability to monitor and forecast 

the trajectory of an epidemic in various scenarios. Epidemiological mathematical models play a crucial role in 

predicting the peak in advance and evaluating the impact of different factors on controlling its spread. This study 

aims to introduce a flexible model that describes the flow of an epidemic, applicable to the specific conditions of 

a local city. 

2. Mathematical Model 

In this study we propose to analyze the flow of COVID-19 under five different conditions. In the following model 

S stands for susceptible, I stands for infected, Q stands for quarantined, V stands for virus population and R stands 

for recovered population. Susceptible population enter into the system with the constant rate A.   is the 

transmission coefficient of infection from infected human,    represent the transmission coefficient of infection 

directly from the virus present in the environment to the susceptible population. 
1  and 

2  are the rate at which 

population again becomes susceptible to infection after recovery.  is the natural mortality rate and 
1 2,  are 

disease related death rate of infected and quarantined population.   is the rate of isolating infected population 

after tracing at the k.   is the rate of tracing infected population and are quarantined on being suspected having 

infection. We assume that virus population is rising in the system at the constant rate 
0r  proportional to the 

infected population present in the system and 
0 is the rate of elimination of virus from the environment and   

is the recovery coefficient of quarantined population.  

                                     
1 2

dS
A SI VS I Q S

dt
    = − − + + −                                                               .....(2.1)   

                                     
1 1(1 ) (1 ) ( )

dI
k SI VS mI I

dt
      = − + + − − + + +                                .....(2.2)       

                                    
2 2( )

dQ
k SI mI I Q

dt
     = + + − + +                                                          .....(2.3)   

                                    
0 0

dV
r I V

dt
= −                                                                                                           .....(2.4)   

                                     
dR

Q R
dt

 = −                                                                                                          .....(2.5)   

With the initial conditions (0) 0, (0) 0, (0) 0, (0) 0S I Q V     and (0) 0R  . 
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If we substitute 
1 1 1L    = + + +   and  

2 2 2L   = + +  then the equation (2.1)  to (2.5)  becomes: 

                                  
1 2

dS
A SI VS I Q S

dt
    = − − + + −                                                               .....(2.6)   

                                 
1(1 ) (1 )

dI
k SI VS mI L I

dt
  = − + + − −                                                             .....(2.7)   

                               
2

dQ
k SI mI I L Q

dt
  = + + −                                                                               .....(2.8)   

                              
0 0

dV
r V

dt
= −                                                                                                             .....(2.9)   

                               
dR

Q R
dt

 = −                                                                                                         .....(2.10)   

                                                              Table 1: Table of Description 

              Variable and Parameter                     Description Susceptible 

                            A   Recruitment Rate 

                               Transmission rate of infection 

                              Transmission coefficient of infection directly from the 

virus 

                              Natural mortality rate  
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                          m   number of migrants 

                              Rate of infected migrants 

                          k   Rate of contact tracing 

                         
1    Rate of recovery of infective population 

                         
2   Rate of recovery of quarantined population 

                            Transmission rate from infective to quarantined population 

                        
1   Disease related death rate of infective population 

                        
2   Disease related death rate of quarantined population 

  

3. Boundedness of the System: 

The lemma provided specifies the region within which the system (2.1 ) to ( 2.5)  is attracted. 

Lemma 3.1 If the conditions outlined in section 2 are met, then the solutions to the system (2.1 ) to ( 2.5)  will 

be confined within the specified set. 

                                                 ( ) 0

0

, , , , : ,
A r A

S I Q V R S I Q V R V
  

 
 = + + + +   

 
  

Proof: Adding equation (2.1),(2.2),(2.3),(2.5)  and after doing some algebraic calculation, we have 

1 2 1 1(1 ) (1 ) ( )
dS dI dQ dR

A SI VS I Q S k SI VS mI I
dt dt dt dt

           + + + = − − + + − + − + + − − + + +   

                                                                                                  

2 2( )k SI mI I Q Q R       + + + − + + + −   

1 2

dS dI dQ dR
A S mI I I Q Q Q R

dt dt dt dt
      + + + = − + − − − − + −   

( ) ( ) ( )1 2

dS dI dQ dR
A m I Q S I Q R

dt dt dt dt
   + + + = − − − − − + + +   

Which implies that, ( )lim ( ) ( ) ( ) ( )
n

A
Sup S t I t Q t R t

→
+ + +    

Also, we have         
0

0

dV r A
V

dt



 −   

Thus                      
0

0

lim ( )
n

r A
SupV t

 →
   
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Hence the prove lemma. 

4. Equilibrium Analysis: 

System (2.1 ) to ( 2.5)  possesses two non-negative equilibrium points: the disease free equilibrium point 

0 ,0,0,0,0,0
A

E


 
 
 

 and the endemic equilibrium point ( ), , , , .n n n n n nE S I Q V R  While the existence of the 

disease-free equilibrium point is self-evident, we will now explore the existence of the endemic equilibrium point 

as outline below:  

We understand that if the equilibrium point of the model represented by equations (2.1 ) to (2.5)  is denoted as 

( ), , , ,n n n n n nE S I Q V R  it must be satisfy 

                    
1 2 0n n n n n n nA S I V S I Q S    − − + + − =                                                                   .....(3.1)   

 
1 1(1 ) (1 ) ( ) 0n n n n n nk S I V S mI I      − + + − − + + + =                                                        .....(3.2)   

                 
2 2( ) 0n n n n nk S I mI I Q     + + − + + =                                                                     .....(3.3)   

                                    
0 0 0n nr I V− =                                                                                                       .....(3.4)   

                                0n nQ R − =                                                                                                            .....(3.5)   

Where 
1 1 1L    = + + +   and  

2 2 2L   = + + . 

Now from equation (3.4) , we obtain 

                                     
0

0

n nr
V I


=     

From equation (3.3)  we have 

                            

2

1
( )n n nQ k S m I

L
   = + +    

From equation (3.2)  gives,  

                                      
0

1

0

(1 ) (1 ) 0n n n n n nr
k S I I S mI L I  


− + + − − =    

                                           0
1

0

(1 ) (1 )n n nr
S k I L m I  



 
− + = − − 

 
  

This implies that 

                                                 
1

0 0

0

(1 ) 1

(1 )

n L m A
S

r R
k



 


− −
= = 

− +
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Where                      

0

0
0

1

(1 )

(1 )

r
k

A
R

L m

 


 

 
− + 

 =
− − 

  

  

From equation (3.1)  we have 

                          

2 0 2
1

2 0 2

1 ( )

n
n

n n

A S
I

r
S k S m

L L



 
    



−
=

 
− + − − + 

 

  

                              
0 0

0

1
1

1
A

R A R

R

 
− 

−  = =  
  

   

Where           
( )2 2 0 2

1

0 2 0 0 2

(1 )
( )

kA r A
m

R L R L

   
   

  

+ + −
 = + − − +   

We observe that 
nI exist if 

0 1R   and 0  . 

              0   if  

2 2 0

2 2 0

0
2

1

2

( (1 )

( )

k r
A

R

m
L

   


   


  

 + + −
+ 

+ + 

+ +

  

Thus, we conclude that 
nI  exists if  

2 2 0

2 2 0

0
2

1

2

( (1 )

1

( )

A k r

R

m
L

   


    


  

 + + −
+ 

+ +  

+ +

  

From equation (3.5)  we obtain  

                                                         
n nR Q =     

                                           

2

1
( )n n nR k S m I

L


  


 =  + +    

                                            

2 0

( )n nA
R k m I

L R


  

 

 
= + + 

 
  

5. Basic Reproduction Number 

We determine the reproduction ratio using the next-generation matrix method as described by P. van den Driessche 

and Watmough. To achieve this, we divide the model into two compartments, 
1R  and 2R  , resulting in the 

following system form, 1 2X R R= −  where 
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                      1

(1 )

0

0

k IS VS

k IS

R

SI

 





− − 
 
 
 =
 
 
 − 

                  

1

2

2 0 0

1 2

(1 )

( )

,

mI L I

m I L Q

R r I V

Q R

A I Q S



 



 

  

− − + 
 
− + +

 
 = − +
 

− + 
 − − − + 

  

And               , , , ,
dI dQ dv dR ds

X
dt dt dt dt dt

 
=  
 

  

Given that the infected compartments are I, Q, and V, the Jacobian matrix 
1R   and 

2R   derived from 
1R   and 

2R   at the disease-free equilibrium are as follows: 

1

(1 ) 0 0

0 0 0

0 0 0 0

0 0 0 0

A A
k

A
kR



 




 
− 

 
 

=  
 
 
 
 

           &            

1

2

2

0 0

(1 ) 0 0 0

( ) 0 0

0 0

0 0

mI L

m L
R

r



 



 

− − + 
 

− +
 =
 −
 

− 

  

Now, we have     

           
   

   

2 0

1
0

2

0 11 2 0

2 0 0 1 2 1

0 0

0 0 01

0 (1 ) 0(1 )

(1 ) (1 )

L Q

R
r m LL m L

L r r m L L m L

 

 

    

   

−

 
 
 =
 − − +− −
 

− − + − − + 

  

                                                              

1

1 2.R R
−

 =   

                

 

 2 0 0 2

2 0

1 2 0

(1 ) (1 ) (1 ) 0

1
0 0

(1 )

0 0 0 0

0 0 0 0

A A
L k k r A A m L

A
L k k A

L m L

      
 

   
   

    
− − + − − +    

    
 

 =  
− −  

 
 
 

  

It is noted that 
1R   is a non-negative matrix, while 

2R   is a non-singular M-matrix with a non-negative inverse, 

and the product of 
1R   and 

2R   is also non-negative. Hence, as per   is identified as the next generation matrix. 

Consequently, the reproduction number is defined as: 
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   
 

 

2 0 0
2

0

1 2 0 1 1 0 1 2 0

(1 ) (1 )
(1 )

, , ,0
(1 ) (1 ) (1 )

A A
L k k r A

A m L
R Max

L m L L m L L m L

    
  

        

 
− − + − − + 

=  
− − − − − − 

  

  

 0 2

1

(1 )

(1 )
I

k A
R

L m



 

−
=

− −
        and               

 
0

0

1 2 0(1 )
V

r A
R

L m L



  
=

− −
  

0IR   represents the total number of secondary infections caused by infected individuals, while 
0VR denotes the 

total number of secondary infections resulting from a viral load sufficient to spread the infection. 

6. Local Stability Analysis:  

Local stability analysis of the system reveals how small disturbances affect the system's equilibrium points. The 

local stability of these equilibrium points is assessed by examining the signs of the real parts of the eigenvalues 

of the variational matrix. To do this, we derive the general variational matrix of the system, which is obtained as 

follows: 

                    

1 2

1

2

0 0

0

(1 ) (1 ) (1 ) 0 0

( ) 0 0

0 0 0

0 0 0

I V S S

k I V k S m L S

V k I k S m L

r

      

    

   



 

− − − − + − 
 

− + − + − −
 
  = + + −
 

− 
 − 

                  

....(6.1)   

6.1 Local Stability Analysis of disease free Equilibrium Point 

The variational matrix of the system at the disease-free equilibrium point 
0 ,0,0,0,0

A
E



 
 
 

  is given by: 

                 

1 2

1

0

2

0 0

0

0 (1 ) (1 ) 0 0

( )

0 0 0

0 0 0

0 0 0

A A

A A
k m L

V E
A

k m L

r

    
 

  
 

  




 

 
− − + − 
 
 

− + − − 
 =
 

+ + − 
 

− 
 

− 

                             ....(6.2)   

The eigenvalues of the matrix are 0 2, , L − − −   and the remaining two eigenvalues are determined from the 

quadratic equation: 
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2 0
0 1 0 1

1 0

(1 )

(1 ) 1 (1 ) (1 ) 0
(1 )

A
k

Ar A
L m L m k

L m




       
  

  
−     

 + + − − − + − + − − − − =   
− −    

    

  

(6.3)  

Based on equation (6.3), we can deduce that both eigenvalues are negative if 
0 1R    

Similarly, by using Lyapunov function we can show that our model system is Global asymptotically stable. 

7. Numerical Simulation 

In the preceding sections, we scrutinized our mathematical model through analytical means. To validate our 

analytical conclusions and observe the population's quantitative dynamics over time, we engage in numerical 

simulation using a specific set of hypothetical parameters. 

Table 1   Parameter and values of model system (1-5) 

                                                                    Parameter Value unit 

 

   0.003 person−1day−1 [25] 

   0.002 viral load−1day−1 

1   0.01 day−1 

2   0.02 day−1 

   0.03 day−1 

k 0.4 day−1 

   0.02 day−1 

m 0.002 day−1 

1   0.04 day−1 

   0.02 day−1 

2   0.05 day−1 

0r   0.04 day−1 

0   0.03 day−1 

 

For these specified parameters, the basic reproduction number was determined to be 3.38. Additionally, we noted 

that the reproduction number attributable to the infected population, denoted as 
0IR  , is 1.36, while that stemming 

directly from the environment, denoted as 0vR  , is 2.01. This suggests that the number of secondary infections 

caused by the virus present in the environment exceeds those generated by the infected population alone. 
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We generated Figures 2 to 6 to examine the temporal variation of different populations. Figure 2 illustrates the 

variation of all populations over time when considering the presence of the virus population in the environment. 

Conversely, Figure 3 illustrates this variation without factoring in the virus population in the environment. Our 

analysis of these figures reveals that when accounting for the virus population, the number of infected individuals 

is higher compared to scenarios where the virus population is not considered. This observation serves as evidence 

indicating that the actual number of infected individuals in the system surpasses the reported infected population, 

affirming our predictions regarding the infected population. 

Figure 4 explores the temporal variation of the infected population under different transmission coefficients of 

infection from the virus and infected individuals [30,31,32]. It is evident that as both λ and β, the transmission 

coefficients, increase, the infected population also increases. However, the rate of increase in the infected 

population diminishes with higher values of   and β. This observation aligns with the concept of herd immunity, 

wherein once a certain portion of the population becomes infected, the rate of increase in infections decreases 

even with higher transmission rates. In Figure 5, the variation of the infected population over time is depicted for 

varying contact tracing rates of infected and immigrant individuals, represented by k and θ respectively. Notably, 

when contact tracing of immigrants and infected individuals is conducted at an equal rate, the infected population 

decreases. Remarkably, the graph reveals that the rate of contact tracing for immigrants significantly impacts the 

reduction of the infected population. Consequently, it's imperative for governments to enforce stringent measures 

to trace and quarantine infected immigrants to curb disease transmission. Figure 6 illustrates the variation of the 

infected population over time for different rates of population immigration. Here, it is observed that the infected 

population increases with higher rates of immigration of infected individuals. This implies that controlling the 

disease spread necessitates monitoring and regulating the immigration rate of the population. 

 

Figure 2. Variation of all population with time when presence of virus in the environment is considered 

 

Figure 3. Variation of all population with time when population is not considered in the atmosphere 



Tuijin Jishu/Journal of Propulsion Technology 

ISSN: 1001-4055 

Vol. 45 No. 2 (2024) 

__________________________________________________________________________________ 

6545 

                                             

Fig. 4 Variation of infected population with time for different values of   and β. 

                               

Fig. 5 Variation of infected population with time for different values of k and θ. 

 

8. Results and Discussion 

In this paper, we introduce a compartmental mathematical model for Covid-19 that accounts for the immigration 

of infected individuals and the influence of the virus population. We calculate the basic reproduction number for 

this model. Our findings indicate that the basic reproduction number consists of two components: one representing 

the number of secondary infections resulting from transmission by infected individuals, while the second term 

represents the number of secondary infections due to the transmission of the virus present in the environment. 

This implies that the virus's ability to survive in the environment plays a significant role in spreading the infection. 

We conduct an equilibrium analysis of the model, identifying the disease-free and endemic equilibrium points. 

We find that an endemic equilibrium exists if the basic reproduction number is between one and a specific 

constant. This suggests that if the basic reproduction number surpasses this constant, herd immunity occurs, 

leading to a decline in infection. Additionally, our stability analysis shows that the disease-free equilibrium is 

locally asymptotically stable if the basic reproduction number is less than one, and we identify the conditions for 

local asymptotic stability of the endemic equilibrium. We also determine the global stability conditions for both 

equilibrium states, observing that the disease-free equilibrium is globally stable if the basic reproduction number 

is less than one, while the endemic equilibrium is globally stable if it exceeds one. 
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