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Abstract : The implementation of variable compression ratio (VCR) engines in diesel technology has improved 

performance, fuel efficiency, and pollution control. However, controlling exhaust back pressure (EBP) is a 

challenge for these engines. Efficient EBP management is crucial for optimal engine operation and desired 

performance outcomes. This review paper addresses the lack of studies on exhaust system configurations in 

VCR engines and provides insights into optimization strategies for tackling EBP challenges. The paper explores 

techniques such as after treatment systems (ATS), regeneration cycles, exhaust thermal management control, 

variable valve train strategies, and airflow management strategies. The goal is to provide practical guidance for 

managing this complex issue through innovative strategies. The study also highlights future directions and 

challenges, including the implementation of variable geometry turbochargers, active exhaust valve control 

systems, integrated thermal management solutions, innovative materials and manufacturing processes, and the 

use of sensors for real-time monitoring. 

Key words: Variable compression ratio, Exhaust Back Pressure, After treatment systems, regeneration cycles, 

variable valve train strategies. 

1 Introduction 

The most recent development in the discipline of diesel engine technology is the introduction of variable 

compression ratio (VCR) engines. This innovation aims to improve performance, fuel efficiency, and pollution 

management [1]. Despite this, the effective management of the EBP remains a significant challenge for these 

advanced engines. The exhaust system's resistance can significantly influence the engine's performance, the 

generated pollutants' concentration, and the overall system's efficiency [2, 3]. In order to fully utilize the 

potential of diesel engines with VCRs, it is absolutely necessary to develop and implement optimization 

solutions that specifically target the reduction of issues brought on by EBP. 

Efficient management of EBP is vital for ensuring optimal engine operation and achieving desired performance 

outcomes in VCR diesel engines. Engineers may optimise the engine and exhaust system by precisely adjusting 

different components to manage backpressure. This allows them to achieve a delicate equilibrium that 

maximises performance and reduces hazardous emissions [4, 5]. Few studies have attempted to develop a 

conceptual framework for monitoring backpressure and mitigating its impact, thereby enhancing the efficiency 

of the VCR diesel engine [6, 7, 8]. This is noticed by the lack of studies that involve a detailed investigation into 

the exhaust system configurations of the VCR diesel engines. Consequently, this review thoroughly examines 

optimisation solutions specifically aimed at addressing the difficulties caused by EBP in VCR diesel engines. 

Through a critical review of innovative approaches and best practices, this study aims to provide valuable 

insights and practical guidance for engineers and researchers seeking to optimize engine performance in a 

dynamic operating environment. 



Tuijin Jishu/Journal of Propulsion Technology 

ISSN: 1001-4055 

Vol. 45 No. 2 (2024)  

__________________________________________________________________________________ 

6286 

2 Fundamentals of EBP (EBP) 

EBP is a crucial parameter in the operation of internal combustion engines, impacting performance, emissions, 

and overall efficiency. When exhaust gases exit the engine cylinders, they flow through the exhaust system to be 

expelled into the atmosphere [9]. Backpressure refers to the resistance encountered by these gases as they 

navigate through the exhaust system before exiting the tailpipe. This resistance is primarily caused by 

components such as catalytic converters, mufflers, exhaust pipes, and bends. An excessive amount of 

backpressure can disrupt the flow dynamics, leading to reduced engine performance, increased fuel 

consumption, and compromised emissions control [10, 11]. 

Efficiently managing the exhaust's backpressure is critical for optimizing engine efficiency and achieving 

desired outputs. Excessive levels of backpressure can cause a restriction in the exhaust system, limiting the 

movement of exhaust gases and reducing the engine's efficiency in discharging combustion waste [12]. As a 

result, this can lead to a decrease in power generation, a reduction in torque, and ineffective fuel burning. In 

addition, an excessive amount of backpressure can cause an increase in exhaust gas temperatures, which can 

potentially result in overheating problems, reduced engine dependability, and rapid deterioration of engine 

components. 

On the other hand, to effectively control EBP, researchers need well-designed exhaust system components, good 

maintenance practices, and effective engine tuning. Researchers can help reduce backpressure and improve the 

engine's performance by selecting elements such as high-flow catalytic converters and mufflers that do not 

restrict flow excessively. For optimal exhaust flow and to avoid blockages, it is important to do regular 

maintenance, which includes cleaning and checking the exhaust system's parts [13]. Also, making changes to the 

engine's tuning, like adjusting the fuel flow and air-fuel ratios, can help lower backpressure and make the engine 

run more efficiently [14]. These are all strategies that can be potentially applied to manage the EBP and 

maximize the performance and longevity of internal combustion engines while promoting better overall 

efficiency and emissions compliance. 

3 After treatment systems (ATS) 

After treatment systems (ATS) in internal combustion (IC) engines have a crucial function in decreasing 

harmful emissions and complying with strict environmental laws. These systems have been designed to filter 

exhaust gases as they exit the engine, eliminating harmful substances including nitrogen oxides (NOx), 

particulate matter (PM), carbon monoxide (CO), and hydrocarbons prior to their discharge into the atmosphere 

[15]. Typical elements found in after treatment systems include die sel particulate filters (DPFs), selective 

catalytic reduction (SCR) catalysts, diesel oxidation catalysts (DOCs), and exhaust gas recirculation (EGR) 

systems. 

Previous studies have shown that high levels of backpressure can disrupt the flow of exhaust gases through the 

system, affecting the performance of components such as DPFs, SCR catalysts, and DOCs [16, 17]. It is crucial 

to maintain an ideal equilibrium between EBP and ATS performance in order to maximise the efficacy of 

emissions management and minimise any detrimental effects on engine running. Few studies have suggested 

that designers must take into account elements such as the design of the exhaust system, the location of 

components, and the tuning in order to ensure that the levels of backpressure are within acceptable limits for the 

efficient operation of after treatment [18, 19]. However, some scholars have reported that managing EBP 

requires more than monitoring the ATS, and it is an ongoing challenge within the scientific field.  

3.1 Diesel particulate filter (DPF) 

Diesel particulate filters (DPFs) are designed to collect and eliminate particulate matter present in the exhaust of 

diesel engines, thereby minimising the emission of black smoke and hazardous substances [20]. Regeneration 

procedures, whether passive (occurring at high exhaust temperatures during normal driving) or active (including 

purposefully increasing exhaust temperatures), are necessary for the combustion of accumulated soot and the 

preservation of DPF efficiency. In diesel engines equipped with DPFs, high levels of EBP can obstruct the 

regeneration process, which is essential for burning off accumulated soot and maintaining the filter's 
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effectiveness. Increased backpressure may impede the flow of exhaust gases through the DPF, preventing the 

temperature from reaching the required levels for effective regeneration [21, 22]. The DPF has proven to be 

successful in reducing PM emissions from diesel engines. However, a drawback of the DPF is its adverse impact 

on the engine's fuel efficiency, as it also increases the EBP. Consequently, previous studies have shown that 

periodic or continuous regeneration events are essential for reducing the negative impact on fuel efficiency 

caused by high EBPs [23, 24, 25]. 

The filter's porous section captures PM. Nevertheless, the accumulation of PM on the filter wall causes the filter 

to gradually become blocked. DPF's carbon filtration efficiency can exceed 90%. During filtration, particulate 

deposition in the filter will lead to an increase in the exhaust back pressure of the diesel engine. Reduced EBP 

will definitely increase the costs associated with developing the exhaust system and diminish the sound quality. 

Therefore, it is crucial to maintain optimal back pressure levels for both performance engines and DPFs. Yang et 

al. [26] subsequently proposed that the design of the DPF should take into account factors such as filtration 

efficiency, pressure drop, and high temperature resistance. Similarly, Chiavola, Chiatti, and Sirhan [26] and 

Xiaobo Li [27] reported that in order to mitigate the blockage, the collected particles should undergo a reaction 

and combustion process. Alternatively, the operation of changing the filter should be carried out at specific 

intervals. Numerous studies have reported on this approach, which ensures an improvement in engine 

performance and efficient engine EBP management. Other studies have investigated the impact of injection 

parameters on particulate emissions and concluded that a micro-hole nozzle with high injection pressure will 

reduce particulate matter to a greater value [28, 29]. 

These current studies are evidence that, when designing the DPF, EBP should be a vital consideration. In fact, 

Bardon et al. [30] introduced a channel design with a wavy pattern. This design was based on a square 

symmetry channel filter and involved adding a sinusoidal undulation to the filtering system's walls. Through this 

approach, the volume of the inflow channel and the area available for filtering were enhanced, leading to a 

reduction in back pressure and an increase in ash storage capacity. Nevertheless, the filter wall proved to be 

insufficient in strength and prone to cracking, therefore rendering it impractical for use. Xiao et al. [31] 

proposed a new type of asymmetric channel particulate filter, named HRT filter, as the cross section of the 

channels is composed of hexagons, rectangles, and triangles (Figure 1). The HRT structure gains three potential 

advantages: (1) reducing the regeneration frequency and the regeneration cost of the DPF; (2) reducing the filter 

volume with equal soot load; and (3) reducing the EBP of the diesel engines, then improving the power 

performance and fuel economy. 

 

a) 
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b) 

Figure 1: a) Overall structure of the HRT filter body and 

b) Cross-sectional diagram of the channel [31]. 

3.2 Selective catalytic reduction (SCR) 

Selective Catalytic Reduction (SCR) is a widely employed technology for minimising nitrogen oxide (NOx) 

emissions from the exhaust systems of diesel engines. Although SCR systems are highly efficient in decreasing 

harmful emissions, they can also cause an increase in backpressure within the exhaust system [32]. SCR systems 

employ catalysts, such as AdBlue, which is based on urea, to transform NOx into nitrogen and water, resulting 

in a substantial decrease in NOx emissions [33, 34]. When employing SCR technology, it is crucial to design the 

exhaust system in a manner that reduces any potential rise in backpressure, thereby effectively managing it. 

Accurate dimensioning of components, such as the SCR catalyst and the related piping, is essential to prevent 

excessive restriction of exhaust flow, which may result in increased backpressure [35]. In addition, it is crucial 

to undertake routine maintenance and monitoring of the SCR system to ensure maximum efficiency and avoid 

accumulation or restriction that may lead to increased backpressure. 

Several studies have been conducted aiming to manage backpressure while employing SCR. For instance, 

Karamitros and Koltsakis [36] reported that the backpressure across SCR catalyst coated on DPF (referred to as 

SCRF) can be minimized by the use of high porosity filters and by optimizing the wash coat loading of the filter 

without a large impact on the NOx reduction performance [37]. Similarly, Guan et al. [38] validated that 

integrating the SCR and DPF functions into one single unit by washing and coating the SCR catalyst onto the 

wall-flow DPF may be a viable solution to manage backpressure. The schematic diagram illustrated in Figure 2 

presents the phenomena of PM filtration in a DPF, the passive soot oxidation in the soot cake layer, and the SCR 

reactions in the substrate wall [39, 40]. Many other researchers have reported that advanced coating technology 

and different concentrations of catalyst along the axis with different lengths will significantly assist in managing 

backpressure. 

 

Figure 2: Schematic of physical and chemical processes in a single wall-flow substrate channel for the 

SCRF [40] 
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3.3 High-flow catalytic converters and mufflers 

It is well known that catalytic converters and mufflers play crucial roles in automotive exhaust systems, but they 

can also influence EBP in different ways. Catalytic converters, which are critical for reducing harmful 

emissions, may cause backpressure due to their traditional honeycomb structure, which can obstruct the flow of 

exhaust gases [41]. The configuration and compactness of the catalyst, along with the overall dimensions of the 

converter, collectively influence the magnitude of the backpressure imposed on the system. Additionally, the 

backpressure is directly proportional to the pressure drop across the catalytic converter or design of complete 

exhaust system components causing the backpressure [42]. On the other hand, most muffler designs aim to 

reduce noise by utilizing baffles, chambers, and acoustic materials to absorb sound waves and produce acoustic 

reflections [43]. Nevertheless, while mufflers can effectively reduce noise, they may inadvertently result in an 

increase in backpressure. Consequently, researchers have been exploring potential strategies to effectively 

employ catalytic converters and mufflers while managing the backpressure [44, 45]. 

With reference to Pangavhane et al. [46], the backpressure varies nonlinearly, and it cannot be predicted by any 

equation. However, research has suggested that manufacturers must carefully balance the need for efficient 

emissions control with minimizing backpressure to maintain optimal engine performance. However, this has 

been a challenge for many engine manufacturers. Nevertheless, some scholars have reported that strategic 

design considerations, such as the placement of baffles and the design of perforated tubes inside the muffler, are 

crucial in managing backpressure levels while still effectively reducing noise. According to Baharudin and 

Watson [47], catalyst models include: (1) hexagonal-shaped, (2) trigonal-shaped, (3) square-shaped, (4) circular-

shaped, triangular arrangement, (5) circular-shaped, square arrangement, and (6) circular shape, circular 

arrangement, as illustrated in Figure 3. Each model has distinct properties, such as wall thickness and the 

number of catalyst cells, which can influence its performance. 

 

Figure 3: Various models of catalyst [47]. 

Reports have suggested that varying the porosity of the muffler has a pronounced effect on the backpressure. 

Also, if the diameter of the hole is increased, the backpressure decreases sharply. In an effort to manage 

backpressure, Lu et al. [48] designed and analysed the catalytic converter for conventional diesel engines, in 

which they modified the hole diameter in a honeycomb structure as seen in Figure 4. Modifications in the design 

were observed to enable the uniform spread of flow within the casing, effectively using the entire area of the 

honeycomb structure. This led to a decrease in pressure across the catalytic converter, hence reducing 

backpressure. In contrast, a study conducted by Xu et al. [49], showed that the greater the number of catalyst 

cells, the higher the conversion efficiency and durability. However, the thicker the surface wall of the catalyst, 

the higher the back pressure, which can reduce engine combustion efficiency. 

 

Figure 4: Modified honeycomb structure hole diameter [48]. 
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3.4 Regeneration cycles 

Regeneration cycles are frequently employed in exhaust after treatment systems, such as DPF, to effectively 

regulate and mitigate backpressure. The regeneration procedure entails the combustion of accumulated soot 

within the filter to prevent blockage and uphold optimal performance [50]. Optimal engine performance and 

emission control can be ensured by efficiently managing backpressure by adjusting the time and frequency of 

regeneration cycles. Several studies have been conducted to analyse the impact of regeneration cycles on EBP 

and system performance [51, 52]. 

Research has shown that optimizing the frequency of regeneration cycles can help reduce backpressure while 

ensuring effective soot combustion. Moreover, recent reports have suggested that adjusting the regeneration 

intervals based on engine operating conditions may reduce the backpressure and yield improved overall system 

efficiency. Zhang et al. [53] compared different regeneration strategies, such as passive, active, and forced 

regenerations, to evaluate their effectiveness in managing backpressure. Findings suggest that active 

regeneration methods can offer better control over backpressure levels and reduce the risk of filter clogging. 

Bagheri, Ershadi, and Assareh [54] developed computational models and simulations to assess the influence of 

regeneration cycles on backpressure dynamics. This study provided insights into the optimization of 

regeneration parameters and their impact on the exhaust system performance of a diesel engine. Luo et al. [55] 

conducted research that focused on evaluating the effects of various regeneration strategies on the overall 

performance of ATS. The study demonstrated that measuring backpressure under different regeneration 

conditions provides an insight into optimizing regeneration cycles for improved system efficiency and 

management of backpressure. 

On the other hand, researchers have been focusing on developing and testing active regeneration control 

strategies to minimize backpressure in diesel engines. For instance, Miranda et al. [56] implemented the real-

time control algorithms. The study aimed to optimize regeneration cycles for reduced exhaust restriction and 

enhanced engine efficiency. Dimaratos et al. [57] conducted a simulation-based study, where they modelled the 

impact of regeneration cycles on backpressure in light-duty vehicles. This study assisted in exploring the 

relationship between regeneration parameters and backpressure dynamics to inform optimal regeneration 

strategies. These studies collectively highlight the significance of regeneration cycles in managing and 

controlling EBP, showcasing the importance of strategic regeneration approaches in ensuring optimal engine 

performance and emission control. 

3.5 Exhaust thermal management control 

Exhaust thermal management control refers to the implementation of various strategies to regulate and optimize 

the temperature of exhaust gases in a vehicle's exhaust system [58, 59]. This control is crucial for improving 

overall engine performance, emission control, and fuel efficiency. Implementing exhaust thermal management 

control systems in diesel engines also facilitates compliance with emissions standards and plays a crucial role in 

reducing EBP [60]. By optimising the distribution of heat throughout the exhaust system, engineers can improve 

the performance of the engine and ensure that the aftertreatment components remain functional and work more 

efficiently. Several reports have suggested that by regulating the temperature of exhaust gases, several strategies 

can be employed to help mitigate and control backpressure effectively [ 61, 62]: 

1. Temperature modulation: Adjusting exhaust gas temperatures through techniques like exhaust gas 

recirculation (EGR) or selective cooling can impact backpressure levels. Moreover, controlling the 

temperature of gases entering the ATS, the risk of excessive backpressure can be minimized. 

2. Catalyst efficiency: Ensuring that the catalytic converter remains at the ideal operating temperature is 

essential for efficient emissions management. Researchers have demonstrated that by regulating exhaust 

temperatures to maintain catalyst operation, it is possible to minimise backpressure caused by ineffective 

pollutant conversion. 

3. Heat recovery systems: Implementing heat exchangers or waste heat recovery systems can help utilize 

exhaust heat energy efficiently. Extracting heat from the exhaust gas and redirecting it for other purposes, 

https://link.springer.com/article/10.1007/s11356-023-25579-4#auth-Zhiqing-Zhang-Aff1-Aff2-Aff3
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such as cabin heating or engine operation can immensely assist in reducing backpressure-causing thermal 

losses. 

Additionally, some other scholars have emphasized that strategies for exhaust thermal management control may 

further involve the use of heat exchangers, insulation, EGR, selective cooling, variable geometry turbochargers 

(VGT), and temperature sensors to monitor and adjust exhaust temperatures in real time [63, 64]. This is 

evidence that researchers are making efforts to explore various ways of managing backpressure in diesel 

engines. However, there are few reports that specifically address this issue in the VCR diesel engines. This 

could be due to the complexity of this innovation or to negligence, as most scholars are familiar with the 

conversional diesel engine. Consequently, these reports have served as a foundation and assisted immensely in 

the research field of VCR diesel engines. 

4 Variable valve train strategies 

In diesel engines, the variable valve train method allows for precise adjustment of the timing, lift, and duration 

of intake and exhaust valves. This optimisation enhances engine performance, reduces emissions, and improves 

efficiency under various operating situations [65]. Additionally, this technology provides the ability to actively 

regulate valve events, allowing the engine to efficiently adjust to various conditions. Utilizing variable valve 

train strategies can be an innovative approach to managing backpressure in diesel engines. Reports have 

suggested that by dynamically adjusting valve timing, lift, and duration, these strategies can optimize engine 

performance, emissions control, and exhaust gas flow, ultimately influencing backpressure levels [66, 67]. 

Nora, Lanzanova, and Zhao [68] assessed the effects of valve timing, valve lift, and EBP on the performance of 

gasoline direct injection (GDI) engines. The study showed that adjusting valve timing and lift from 3mm to 

8mm (Figure 5) can have a significant impact on EBP. Moreover, this study was validated by Abdelrahman et 

al. [69] when they demonstrated that strategically varying these parameters yields improvements in scavenging 

efficiency, EGR control, and overall engine performance. Other researchers have been interested in the impact 

of turbocharging systems. For instance, Jiaqiang et al. [70] investigated the performance and economic 

characteristics of a diesel engine with a variable nozzle turbocharger. The study concluded that coordinating 

valve timing with turbocharger functions has effects on exhaust gas flow, energy recovery, and backpressure 

management. 

 

Figure 5: Positions and heights of a) intake valve, b) exhaust value, and c) the combination for these two 

[68]. 

 Other scholars, on the other hand, have been investigating the role of variable valve timing in meeting emission 

regulations and improving ATS efficiency. Consequently, they have proven that optimizing exhaust gas 

temperatures through valve control may have an impact on exhaust emissions and backpressure levels [71, 72]. 

However, recent studies have shifted the focus to the development of advanced control algorithms for variable 

valve train systems. For example, Ding et al. [73] evaluated the effectiveness of real-time valve control in 

managing backpressure. The study concluded that dynamically adjusting valve timing based on engine load, 
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speed, and other parameters could assist in managing backpressure in diesel engines. Other studies have 

explored the synergies between variable valve train strategies and other engine technologies and reported that a 

combination of these optimization techniques may be essential in managing backpressure, thus maximizing the 

engine performance [74, 75]. 

5 Airflow management 

Airflow management in diesel engines involves regulating and maximising the flow of intake and exhaust air to 

improve combustion efficiency, engine performance, emissions control, and overall system operation [76]. 

Airflow management is crucial for optimising engine performance, managing backpressure and reducing 

environmental impact by carefully controlling the intake of air for combustion and the discharge of air through 

the exhaust system. The restriction of exhaust gases which results in backpressure can be cautiously managed by 

controlling the intake and exhaust flow of air [77]. In general, a reduction in airflow would result in a decrease 

in the overall air-fuel ratio, causing a rise in the combustion temperature and thus resulting in a higher exhaust 

gas temperature. This higher exhaust gas temperature may result in higher backpressure. 

Excessive back pressure can have an impact on the turbocharger's functionality, resulting in changes in the air-

to-fuel ratio that are typically enriched. This can potentially contribute to emissions and engine performance 

issues. The extent of the impact is contingent upon the nature of the charged air systems. High exhaust pressure 

may restrict the discharge of certain exhaust gases from the cylinder, particularly in naturally aspirated engines 

[78]. This can lead to the formation of an internal exhaust gas recirculation (EGR) system, which contributes to 

the reduction of nitrogen oxides (NOx). The observed decreases in NOx emissions with certain DPF systems, 

typically ranging from 2–3%, can perhaps be attributed to this phenomenon [79]. 

Researchers have discussed several ways in which airflow management can help to positively manage 

backpressure in diesel engines. For instance, Magar and Sundar [80] experimentally proved that 12°C reduction 

in intake manifold temperature through intercooler design optimization and adding insulating sleeves over the 

intake air system can significantly reduce the backpressure by 10%. Jiang et al. [81] reported that optimizing 

intake airflow through techniques like variable intake geometry, air filters, and intake manifold design can help 

reduce backpressure by ensuring the engine receives the correct air-fuel mixture for efficient combustion. 

Ukrop, Shanks, and Carter [82] on the other hand, predicted the running vehicle EBP using the airflow 

management technique. The analysis incorporated the function diagram for theoretical hot flow calculation 

(Figure 6), including all the necessary parameters that are vital for predicting EBP. The study further assessed 

the impact of the exhaust flowrate on the cold and hot EBP, as seen in Figure 7. The results in Figure 7 

demonstrated a linear relationship, depending if it’s a cold or hot EBP.  

 

Figure 6: Function diagram for theoretical hot flow EBP Calculation [82]. 
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Figure 7: Measured cold and hot back pressure data [82]. 

Other studies have focused on turbocharger control to reduce backpressure. These reports have demonstrated 

that effective turbocharger control strategies, such as adjusting boost pressure and waste gate operation, can help 

manage backpressure in diesel engines [83, 84]. On the other hand, the correlation between airflow management 

and thermal management in diesel engines has been a topic of interest. In this area, many scholars have reported 

that optimizing exhaust gas temperatures and airflow distribution may offer improvements in reducing 

backpressure, enhancing combustion efficiency, and achieving better emissions control [85, 86]. 

6 Future directions and challenges 

All these studies have provided an insight for future directions in managing EBP in VCR diesel engines, which 

could involve developing advanced technologies to optimize exhaust system designs. There are some notable 

gaps within the current studies. For example, some potential strategies and challenges that comprise a few 

studies include the implementation of the following technologies: 

1. Implementation of variable geometry turbochargers for effective backpressure regulation based on engine 

operating conditions.  

2. Utilization of active exhaust valve control systems to modulate backpressure by managing exhaust valve 

opening and closing.  

3. Development of integrated thermal management systems to maintain optimal exhaust gas temperatures and 

reduce backpressure.  

4. Innovation in materials and manufacturing processes to create lightweight and durable exhaust components 

conducive to minimizing backpressure. 

5. Integration of sensors in the exhaust system for real-time monitoring and data analytics for insights on 

backpressure levels and predictive maintenance 

Ultimately, the effective management of EBP in VCR diesel engines depends on the advancement of integrated 

and adaptive technologies that can seamlessly integrate the engine's variable compression capabilities with 

advanced turbocharging, EGR, and thermal management systems. To fully maximise the efficiency, 

performance, and emissions control of variable compression ratio diesel engines, it is crucial to address these 

difficulties by implementing innovative strategies and customised solutions. 
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7 Concluding remarks  

This review paper highlights the critical importance of effectively managing EBP in the context of innovative 

VCR engines. It thoroughly explores the impact of EBP on engine performance, emissions control, and overall 

system efficiency. Several studies have made efforts to manage backpressure. However, this current literature 

discusses some key areas in detail, which include the fundamentals of EBP and ATS, including DPFs and SCR, 

as well as strategies involving high-flow catalytic converters and mufflers, regeneration cycles, variable valve 

train strategies, airflow management, and exhaust thermal management control. According to the reviewed 

literature integrating innovative technologies like variable geometry turbochargers, active exhaust valve control 

systems, and integrated thermal management systems, researchers and engineers can develop advanced 

solutions for managing EBP in diesel engines with VCRs effectively.  

Despite the significant contributions these studies have made to the understanding of backpressure control, there 

are still some research gaps. This is due to the fact that backpressure is an ongoing concern within the IC engine 

area. With this being said, the present study discussed the importance of maintaining a delicate balance between 

achieving optimal engine performance and minimizing harmful emissions by effectively managing 

backpressure. It outlines various strategies and technologies that can be employed, such as optimizing airflow, 

utilizing advanced catalytic converters, designing effective regeneration cycles, and implementing variable 

valve train strategies. Based on all the literature explored in this context, future research and development in the 

field of managing EBP in VCR diesel engines is necessary. This includes the need for innovation in 

technologies that can seamlessly integrate variable compression capabilities with advanced turbocharging, EGR, 

and thermal management systems to maximize efficiency, performance, and emissions control. 
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