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Abstract 

This study's goal is to provide an early analysis of deep learning (DL) for signal identification in wireless 

systems that use non-orthogonal multiple access (NOMA). The successive interference cancellation (SIC) 

approach is frequently used at the receiver in NOMA systems when several users are decoded successively. 

Without explicitly calculating channels, a DL-based NOMA receiver can decode messages for several users at 

once. To estimate the multiuser uplink channel (CE) and recognize the initial broadcast signal in this study, it is 

recommended that a deep neural network with bi-directional long short-term memory (Bi-LSTM) be utilized. 

The suggested Bi-LSTM model, in contrast to conventional CE techniques, may immediately retrieve 

transmission signals impacted by channel distortion. During the offline training phase, the Bi-LTSM model is 

trained using simulation data based on channel statistics. The trained model is then applied to retrieve the 

transmitted symbols in the stage of online deployment. According to the findings, the DL method could 

outperform a maximum probability detector that considers interference effects when inter-symbol interference is 

substantial. 

Keywords-NOMA, Deep learning, signal detection, wireless communication, Bi-LSTM 

 

1. Introduction 

Cellular networks are getting denser and more complexsince of the rising demand for wireless services that can 

achieve exceptionally high speeds while maintaining a low level of latency. The creation and management of 

cellular networks that have a large number of components and features is one of the most significant tests that 

operators of cellular networks face. As a direct result of this, self-organizing networks, also known as SONs, 

have developed into essential elements in the management of wireless cellular networks[1]. SON technology 

mains to decrease capital and operational expenses by reducing the amount of human participation required in a 

network via the use of multiple capabilities. These capabilities include self-healing, self-optimization, and self-

configuration. The prevention of cell failures is an important application for self-healing technology. It pertains 

to base stations (BSs) that experience a coverage gap in the network because they are unable to continue 

offering services to customers who are present in their service area [3][25].  

Cellular networks are using a wide variety of accessing approaches, with as FDMA, TDMA, CDMA, and 

OFDMA, to expand coverage and throughput. These accessing strategies take advantage of the idea of 

orthogonality to lessen the likelihood of interference between users; however, this also has the effect of lowering 

https://encyclopedia.pub/entry/42132#ref_1
https://encyclopedia.pub/entry/42132#ref_3
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the total number of users who are multiplexed to access the spectrum[4].  By permitting more users than the 

available orthogonal resources can handle, NOMA has developed into a viable alternative in 5G networks for 

increasing the spectral efficiency (SE) of networks and the capacity of cell-edge users. In the powerdomain, 

NOMA makes advantage of fresh user multiplexing strategies that were underutilized in earlier generations. A 

sequential interference canceller (SIC) is used to de-multiplex users on the receiver side after multiplexing them 

in the power domain of NOMA [5][6]. 

The 5G wireless network, which is the next generation of wireless communication, provides greater QoS and 

higher capacity for applications employed by current wireless networks. It also enables exceptionally fast data 

rates and extremely low latency[7]. Multipath delay spread and Doppler shift is two factors that contribute to 

frequency selective fading in the channel of a wireless communication system. The modeling of the time-

varying wireless channel is an essential part of the processin 5G wireless communication systems [8].The 

LSTM kind of deep learning architecture was investigated to identify and forecast time series events that had 

varying lengths of time delays between them[9]. To fix the problems with the LSTM, a Bidirectional LSTM has 

been included in the system. A specified time frame is used to train the model utilizing input data sequences 

from both the past and the future of that time frame[10]. Moreover, [29] have shed light on the difficulty of 

training deep feedforward neural networks, which is relevant to the challenges faced in optimizing certain deep 

learning architectures." 

1.1 NOMA scheme based on power domain division 

In NOMA, multiple users' signals can be superimposed on top of one another. Sharing the same radio resources 

across numerous user equipment (UEs) might lead to an increase in capacity or throughput in NOMA, as 

demonstrated in Figure 5a and Figure 5b. This can be predicted to boost capacity or throughput. The provision 

of service to users located in the cell center as well as at the cell edge is an example of a common NOMA 

application scenario[11]. Because of the relatively low route loss experienced by users near the cell center, this 

user's signal is the one that is identified first during the process of signal detection. Meanwhile, the signal of 

users at the cell edge is considered to be interference. In the process of detecting the signal of a user at the cell 

edge, the signal of a user in the cell center is first recognized and decoded. After that, the received signal is 

processed to remove the user's signal from the cell center, and the user's signal from the cell edge is discovered, 

found, and decoded [12]. 

The primary benefit of NOMA is that it is possible to schedule a cell center user and a cell edge user to achieve 

great performance with very minimal processing cost (the SIC detector is always used). It's also simple to get a 

use rate of 200 percent. The biggest drawback of NOMA is the limitations it places on users who must adhere to 

fixed time slots. Users in the cell's core and its periphery should typically share the same resource block. One 

user's SNR is guaranteed to be poor owing to interference from the other user's signal when a SIC type receiver 

is applied to a system with two users scheduled at the cell center or the cell edge. The NOMA was first 

conceived as an eMBB device[13]. When applied to mMTC, the result would be a low received SNR and a 

small number of users (only two or three users might share a block of resources, compared to many more in 

other non-orthogonal multiple access systems) [26]. Estimating the channels used by consumers requires either 

further pilots or a lengthy introduction. 
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Figure 1.Block diagram of NOMA[14]. 

2. Review of literature 

The author examined thatin milling, surface roughness, and machining precision are crucial quality indicators. 

Recent developments in sensor technology and data processing have made it possible to utilize cutting force 

signals gathered during machining to forecast and quantify machining quality. Artificial neural networks 

(ANNs) trained with deep learning can analyze and conclude massive amounts of signal data. On the other hand, 

the whole-data training showed that the deep neural network (DNN) model had an error rate of over 50%, while 

the CNN and LSTM models only had an error rate of 20%. Predictions of machining accuracy using DNN and 

CNN models trained on the whole dataset were within 10% of the true value, whereas predictions using the 

LSTM model had an error of up to 20%. The outcomes of the categorization training, however, did not increase 

much. Concerning analytical efficiency across all training processes, the CNN model came out on top, followed 

closely by the LSTM model [15]. 

The author developing sound communication systems in an underwater acoustic environment (UWA) is still 

difficult for researchers. The communications system is complicated because these acoustic channels have 

unfavorable characteristics including a significant propagation latency and erratic Doppler shifts. The hybrid 

combining of the CNN and ensemble single feedforward layers (SFL) is used in this research to present a unique 

intelligent selection approach between the various modulation schemes, such as CDMA, TDMA, and OFDM. 

The channel characteristics are extracted using CNN, and the modulation is chosen based on the CNN outputs 

using boosted ensembled feed-forward layers. The full experiment is conducted and different hybrid learning 

models and conventional techniques are examined. The results of simulations show that the suggested hybrid 

learning models outperformed the other models in implementing the communications schemes under dynamic 

underwater conditions, reaching approximately 98% accuracy and a 30% increase in BER performance [16]. 

The author looked at the performance of LSTM-based DL NOMA receivers in the presence of Rayleigh fading 

channels. We compare the DL-based NOMA detector's performance to that of the traditional NOMA technique, 

and the results show that it performs significantly better. After accounting for all plausible conditions except for 

the cyclic prefix (CP) and clipping distortion, we compare the performance of the DL detector to that of the 

simulated curves in terms of MMSE and the least square error (LSE) estimate. The simulation curves 

demonstrate that the detector's accuracy performs admirably when it reaches 1 when the SNR is higher than 15 

dB, assuming that the DL technique is more robust to clipping distortion [17]. 

The authoranalyzed thatuniversal filtered multicarrier (UFMC) has become a viable rival for OFDM for wireless 

systems in the 5G and beyond. In this research, we suggest a detector for the UFMC system that is based on Bi-

LSTM. The suggested detector employs DL-based training data to directly detect conveyed symbols. The 

system is initially provided with the use of pilot symbols and training data. The DL-based network factors are 

tuned during training. The trained network is used to identify the signal during the testing phase. The suggested 

scheme's performance has been contrasted to that of the DL-assisted OFDM system and to signal detection 
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methods that employ traditional channel estimate techniques. The experiments demonstrate the flexibility and 

efficiency of the suggested Bi-LSTM-based DL in detecting UFMC signals [18]. 

The author examined two emerging approaches to tackling time series prediction issues machine learning- and 

deep learning-based algorithms. It has been discovered that these methods produce more accurate results than 

conventional regression-based modeling. In OFDM-NOMA, a method for signal detection with deep learning is 

provided. Different deep learning-based optimization techniques like Sgdm, RMSprop, and Adam are used to 

detect signals using the DNN with a Bi-LSTM. A comparison of neural networks and optimizers identifies the 

most accurate detection combination. The simulations indicate that the Bi-LSTM-based DL approach may 

successfully detect signals in NOMA system situations in the LSTM model and that it may outperform the 

standard SIC approach. Consequently, DL is a trustworthy and crucial technique for identifying NOMA signals 

[19]. 

The author focused on the v2v dynamic channel in tactical interactions, which exhibits time-varying and 

nonstationary features because of the quick movement, directional antennas, and difficult terrain. We suggest a 

CSI predictor based on the LSTM network to get an accurate CSI and decrease pilot overhead. The addition of 

the gating mechanism to LSTM units results in an enhanced RNN that has outstanding learning performance on 

both long- and short-term inputs. Results from simulations support the usefulness of the LSTM-based predictor 

in comparison to conventional IEEE 802.11p approaches. Further analysis is done on the important variables 

that have an impact on the proposed predictor's performance [20]. 

The author analyzed thatdue to the rapidly increasing wireless capacity demands imposed by enhanced 

multimedia apps and the significantly growing demand for user access necessary for the IoT, the 5G networks 

have trouble managing large-scale heterogeneous data traffic.When compared to traditional OMA techniques, 

this results in a significant increase in bandwidth efficiency. Many researchers were inspired to devote 

significant research resources to this area as a result. In contrast to other NOMA approaches already in use, we 

emphasize the key benefits of power-domain multiplexing NOMA. We give possible remedies as well as a 

summary of the difficulties with the NOMA's current research activities. We conclude by providing some design 

recommendations for NOMA systems and pointing out potential future research directions [21]. 

The author studied that the primary focus of this paper is the analysis of the implementation of NOMA systems 

on SDR platforms since NOMA has been identified as a key allowing technology for the 5G wireless networks. 

This report provides a thorough analysis of NOMA's historical development as well as the most recent trends 

and potential future research initiatives. OMA and NOMA system performance is also contrasted in terms of 

rate pairs (throughput), and spectrum efficiency. The conclusion is that the NOMA system outperforms OMA 

solutions, and it will be emphasized that SDR is a versatile platform for implementing and testing future 

wireless innovations [22]. 

The author stated that UAVs have recently attracted a great deal of interest for a variety of uses, including 

wireless protection, surveillance flights, precision agriculture, development, power line tracking, and blood 

supply, among others. The UAV's inherent characteristics, such as rapid deployment, swift mobility, increased 

flight length, advances in payload capacities, etc., make it a strong option for a variety of applications in 5G and 

Beyond communications. To increase system efficiency, we build a review in this article to look into the UAVs' 

joint optimization challenges. We also examine the effects of AI, ML, DRL, MEC, and SDN on joint 

optimization issues involving UAVs and give difficulties and ideas for further study [23]. 

The authorprovided a ground-breaking solution to the issues of user grouping and power allocation in this 

workusing NOMA systems. First, users must be gathered and assigned to the predetermined periods. The 

answer regarding how much electricity should be given to the various consumers is provided in the second step 

that comes after this. By attempting to solve the partitioning step of this problem, we find a solution with the 

first Reinforcement Learning (RL)-based method that has been published. To handle the user grouping issue for 

NOMA systems in stochastic situations, we specifically employ the Object Migration Automata (OMA) and one 
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of its versions. Then, based on a greedy heuristic, we infer the power allocation using the ensuing groupings. 

The simulation findings show that our method is capable of precisely and quickly resolving the issue [24]. 

3. Problem formulation 

NOMA has been identified as viable multiple-access technology in 5G wireless networks for enhancing 

spectrum efficiency and system performance. By multiplexing users in the power or code domains, NOMA 

gives many users coordinated access to the same frequency resources [1]. In OFDM systems, one user has 

access to a set of subcarrier channels within a single time slot. By putting the NOMA concept into practice, the 

bandwidth resources may be efficiently utilized by sharing the subcarriers sent to a user with poor channel 

conditions with a user with outstanding channel conditions. Since the receiver will receive a superposition of 

signals from many users, inter-user interference must be reduced to successfully decode NOMA systems. 

Through SIC in the power domain, contemporary multi-user detection (MUD) in NOMA is accomplished. 

Finally, using CSI, messages from multiple users are decoded in decreasing order of signal strength [2]. The 

potential for pilot symbols used for channel estimation [27]to interfere with signals from other users” makes the 

collection of CSI in NOMA challenging. As a result, methods for estimating conventional channel parameters 

like least square (LS) and MMSE estimations may perform substantially less well. In [3], a novel power 

allocation and channel estimate strategy for a two-user NOMA system is put forth, where a minimal SINR for 

the weak user is guaranteed while the “average effective signal-to-noise-plus-interference (SINR) for the strong 

user” is maximized. Nevertheless, the suggested method is for narrowband channels. For time-dispersive 

channels, the computational difficulty may grow. 

4. Research Methodology 

As seen in Figure 2, a two-user uplink NOMA scenario in an OFDM system is explored in this section. In this 

instance, the two user terminals exchange data simultaneously by using the same frequency resources. Two 

users' superimposed data symbols, together with channel noise, will be sent to the base station (BS). Both the 

BS and the user terminal make use of the same antenna.  

 

Figure 2. Two-user NOMA system 

The assumption used in the power distribution is that the transmitter and receiver are both aware of the CSI. The 

purpose of power sharing is to provide a range of users with anappropriate“SINR used at the receiver for joint 

decoding. The received signal on subcarrier k in an N-subcarrier OFDM system with " users per subcarrier is 

given by the equation below,” 

𝑌 𝑘 =   𝑝𝑖(𝑘)𝑀
𝑖=1 𝐻𝑖  𝑘 𝑋𝑖 𝑘 + 𝑊(𝑘)                                     (1) 

Where Y (k), Xi (k), and W (k) represent the additive white Gaussian noise, the user i's broadcast symbol, and 

the frequency-domain received signal. The transmission power allotted to the user I on subcarrier k is 

represented by the variable Pi(k). Each of the N subcarriersis allocated total power P and the power allocation 
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coefficient for user i is 𝑎𝑖 𝑘 =
𝑝𝑖 (𝑘)

𝑝
,  which is constrained to have  𝑎𝑖 𝑘 = 1.𝑀

𝑖=1 The scalar Hi(t) is the 

impulse response of a multi-path channel, and Hi(k) is the discrete Fourier transform (DFT) of this response,” 

ℎ𝑖 𝑡 =  𝜌𝑖 ,𝑙𝛿(𝑡 − 𝜏𝑖,𝑙)
𝐿
𝑙=1                              (2) 

where 𝜌𝑖 ,𝑙  and 𝜏𝑖,𝑙“are the complex channel gain and the corresponding time delay of the lth multipath 

component for user I?Each tap of the single-input and single-output (SISO) channel, which has a total of 20 

specified pathways L, is represented by Rayleigh fading. 

5. Proposed model 

This portion of the paper discusses the recommended "Bi-LSTM model input data preparation, model structure, 

and operation inside the NOMA OFDM" architecture. Next, the trained model’s online and offlinetesting 

processes are discussed below. 

5.1 Data generation 

The 64 subcarrier OFDM is taken into consideration in this work. One data symbol and two pilots make up each 

OFDM packet. Each symbol in the “quadrature phase shift-keying (QPSK) modulation” comprises two bits per 

subcarrier. “To prevent inter-symbol interference, the OFDM packet is broadcast across the Rayleigh channel 

following the IDFT and a guard period of CP data.” The multiuser sends the OFDM packet total to the BS, who 

then gets it with noise. By generating a feature vector (yu) from the received OFDM packet, a sample of training 

data is kept. All of the symbols in the OFDM packet's real and imaginary values are combined to create the 

feature vector yu. the number of labels and the number of total data packetsis multiplied to create the total 

training sample. By employing the matching B(f) in the training, the model may be taught to recover data on any 

subcarrier f. The number of features in each training sample makes up the feature vector's dimension. “The total 

number of features in this study is 64 x 3 x 2 = 384 with 64 subcarriers and 3 OFDM symbols. 

5.2 Model Architecture  

5.2.1 Network Description 

The LSTM network's forward and reverse directions make up the Bi-LSTM. It can make utilizedata from both 

sides since the input flows both ways, as seen in Figure 3 (a). Two cyclic neural networks make up the forward 

and backward layers, which can concurrently connect the output layers. Every point's before and after sequence 

information may be obtained through the output. Additionally, it investigates how they relate to one another 

through training. This operation can increase the accuracy of CE. For CE and signal detection, a particular kind 

of recurrent neural network composed of a series of LSTM cells is utilized, called the directed LSTM. The 

LSTM network is composed of four layers: "LSTM hidden layers, fully connected layers, softmax function 

layers, and classification layers." 100 hidden units are required to implement the LSTM hidden layer. The 

learnable weights in the LSTM hidden layers contain the input weights w. The bias is b, and the recurring 

weights are T. There are 16 classes in the second tier, which is entirely linked with a fully connected layer.  

 

Figure 3 (a)“The architecture of the Bi-LSTM model system with its different layers. (b) The internal cell 

structure of the LSTM model.” 
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The fully linked layer is developed to organize and time-series data for categorization. The fully linked layer 

processes the LSTM layer output. Before adding a bias vector b, a fully linked layer multiplies the input by a 

weight matrix w. As a result, it analyses every component of each UE's complex modulated signal. The neurons 

in the layer with complete connectivity are all linked to the neurons in the layer below. All the characteristics 

and data gathered from the preceding layer are combined. The fully connected layer in the LSTM network 

uniquely manages each time step. The softmax activation function is utilized to create “the outputs for the 

terminal layer. The last layer's vector probability receives the output from the classification layer. The error 

between" them is then provided as training feedback after the building of a completely connected layer with an 

output size equal to the number of classes. The final formulation is as follows: "mean-squared error (MSE) for 

the whole network to detect at UEi:” 

𝑀𝑆𝐸 =
1

𝑄
 (𝑆𝑖 𝑞 − 𝑆 𝑖(𝑞))2𝑄

𝑞=1                                                       (3) 

Where “the number of training OFDM samples is represented by Q, and Si (q) is the target output, 𝑆 𝑖(𝑞) is the 

predicted output at the response q?”The standard Adam optimization approach is used to minimize the loss. 

5.2.2 The internal structure of LSTM 

When learning between time steps of sequence data, the "LSTM network can retain pertinent information. In the 

OFDM system, the time steps are preserved equally for all subcarriers.” The LSTM layer's single time-step 

module may be used to narrow the DNN's focus and enable multiuser detection for every given subcarrier. 

Figure 3(b) depicts the internal cell structure and functionality of the LSTM network. The previous cell state and 

the current input are combined to create the LSTM cell's output.The input gate, forget gate and output gate are 

the three gates that make up an LSTM cell. Figure 3(b) shows the relationships between the variables t, xt, and 

mt at a given time t. t stands for the time instant, mt stands for the “multiuser current output channel coefficient” 

and xt, the current input. The LSTM cell can enhance or eliminate data from the cell state at each time step; the 

gate action updates the cell state. The operation of each gate is summarized below: 

The forget gate regulates the degree of the cell state that needs to be reset. These words can be used to express 

the for gate frt:  

𝑓𝑟𝑡 = 𝑓𝜎𝑐 (𝑤𝑓𝑟𝑥𝑡 + 𝑇𝑓𝑟𝑚𝑡−1 + 𝑏𝑓𝑟)                                                      (4) 

Wherethe forget gate has a bfr bias, and wfr is the weight related to xt. The input gate controls the level of the 

cell state that has to be efficient. The following is an expression for the input gate int: 

𝑖𝑛𝑡 = 𝑓𝜎𝑐 (𝑤𝑖𝑛𝑥𝑡 + 𝑇𝑖𝑛𝑚𝑡−1 + 𝑏𝑖𝑛)                                                            (5) 

Where Tin is the weight related to 𝑚𝑡−1, and win is the weight related to xt.The input gate's bias is a bin. The 

candidate gate controls how information is added to the cell state. The following is one way to convey the 

candidate gate cat: 

𝑐𝑎𝑡 = 𝑓𝑡𝑎𝑛 ℎ(𝑤𝑐𝑎𝑥𝑡 + 𝑇𝑐𝑎𝑚𝑡−1 + 𝑏𝑐𝑎                                                     (6) 

Where Tca is the weight related to 𝑚𝑡−1, and wca is the weight associated with xt. The bias of the candidate 

gate is bca.” 

5.2.3 Offline training and online testing operation of the model 

Figure 4 illustrates how the offline portion of the training process is taken using the generated data and the 

suggested model.  
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Figure 4.Training and testing process of the proposed model.” 

The NOMA-OFDM signal is merged with the input from the "model training system" as an input layer to aid the 

DNN in improving the parameters. As supervised data, equivalent labels are used.” Algorithm 1 provides a 

summary of the proposed model's training procedure. 

Algorithm 1 Bi-LSTM training process 

1: Load the training and validation data samples. 

2: Initialize model parameters such as minibatch size, maximum epochs, and learning rate.  

3: Train the model network according to and calculate the accuracy error by equation (3) 

4: Adam optimization algorithm is used to compute the corrective parameters and to search for the optimal 

solution with an update of the parameters. 

5: Result: Trained model 

6: Save the model. 

5.2.4 Testing process 

Following repeated training of the suggested method, the online training procedure is taken. Figure 4 displays 

the dataset-based testing procedure for the proposed model. 

6. Result and discussion 

In this portion, the suggested Bi-LSTM and “signal detection model in the NOMA-OFDM system” simulation 

results are described in detail. Using the simulation parameter, the suggested Bi-LSTM model and signal 

detection is simulated. 

 Impact size 

The training data is divided into batches, each of which has a significantly lower size than the whole quantity of 

training samples. Iteration refers to the procedure of one batch moving the “DNN in a forward and backward 

pass.”Figure 5depict the symbol error rate (SER) value of DNN trained withseveral batch size such as 2000, 

5000, and 20000 as shown below. The DNN will use batches of training data so that less memory is used for 

each propagation. The impact of various batch sizes is shown in Fig. 5(a), which illustrates that the "larger the 

batch and Fig.5(b) obtained the larger batch while 5(c) obtained a much larger batch which is the better 

performance the DNN" can be produced. To achieve the same validation accuracy during the training phase, 

smaller batches converge more quickly than bigger batches. Smaller batches display a lower testing 

precision.Although batches need fewer DNN parameter updates and iterations, more data is needed to produce a 

more precise estimation of the gradient for each update. Therefore, compared to other batch sizes, a larger batch 

size produces a final receiver with greater efficiency. 
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(a) 

 

(b) 

 

(c) 

Figure 5 (a). SER value of DNN trained with batch size = 2000 (b) batch size = 5000, and (c) batch size = 

20000. 

 Impact of learning rate 

Figure 6 illustrate the SER values of DNN trained with different learning rate such as 0.001, 0.01, and 0.05 as 

shown below.SER curves for both users are shown in Fig. 6, along with an analysis of the effectiveness of the 

“DL receiver trained at numerous learning rates. The correctness that a greater learning rate would result in 

more frequent changes to the DNN's weights and a larger validation error is validated by the fact that in Fig. 6, a 

lower learning rate correlates to a lower SER. A sluggish convergence is caused because many updates are 

required, even when a lower learning rate, like 0.001, leads to improved accuracy. For all other simulation 

situations, the learning rate has been changed to 0.01 to take into account a trade-off between training accuracy 

and training length. 
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(a) 

 

(b) 

 

(c) 

Figure 6 (a). SER values of DNN trained with learning rate = 0.001, (b) learning rate = 0.01, and (c) 

learning rate = 0.05. 

 Impact of the number of pilot symbols 

Figure 7 depict the SER values of DNN trained with different pilot such as 16 and 64 as shown below. Pilot 

symbols, which are utilized to recover channel response and are known to the receiver, are crucial to the success 

of LS and MMSE channel estimations. For the DL receiver, the impact of the pilot symbol count is examined. 

Each pilot sequence in the simulation consists of 64 or 16 pilot symbols. The SER curves of both examples for 

Users 1 and 2 are shown in Figs. 7(a) and (b), respectively. According to Figs. 7(a) and 7(b), both LS and 

MMSE approaches can produce accurate evaluations when 64 pilot symbols are employed. However, the DL 

receiver can perform more effectively. When the number of pilot symbols is reduced to 16, the accuracy of the 

LS and MMSE algorithms suggestively declines at "28 dB SNR for both User 1 and User 2. The DL receiver's 

ability to continue to provide performance equivalent to the 64-pilot scenario shows that the DNN is more 

robust to the number of pilot symbols and can achieve higher performance with fewer pilots. 
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(a) 

 

(b) 

Figure 7 (a) SER values of DNN trained with pilot = 16 (b) pilot = 64. 

7. Conclusion and future scope 

This work proposes a signal detection scheme based on the Bi-LSTM model for the NOMA-OFDM system 

[28]. The suggested model offers improved performance for CE and signal identification when compared to 

conventional SIC systems. The suggested Bi-LSTM network is more reliable in terms of signal recovery than 

the traditional CE approaches like MMSE, LS, and ML. According to the simulation findings, the DL method 

outperforms in comparison to classic channel estimation techniques,and the SIC receiveris more resistant to 

finite radio resources like pilot symbols, cyclic prefixes, and signal power. For increasingly complicated system 

models, such as MIMO systems, further analysis, and testing will be done. The starting point for this study's 

training and testing procedures is a static channel profile. Additionally, the optimization method used for 

training the Bi-LSTM network is based on the Adam algorithm [30], which has shown promising results in 

stochastic optimization tasks." 
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