# An Efficient Heuristic Approach for Solving Flow Shop Scheduling to Minimize the Makespan

# <sup>1</sup>K. Moorthi, <sup>2</sup>S. Jayakumar, <sup>3</sup>G. Vasudevan

1 Research Scholar PG and Research Department of Mathematics, Arignar Anna Government Arts
College, Cheyyar -604407, Tamil Nadu, India
2 Associate Professor and Head, PG and Research Department of Mathematics, Arignar Anna
Government Arts College, Cheyyar -604407, Tamil Nadu, India.
3 Assistant Professor & Head, Department of Mathematics
Vallal PT Lee Chengalvaraya Naicker Arts and Science College, Chennai -112.

Abstract:-Scheduling is a dynamic capability and specifically, flowshop scheduling issue with the objective of limiting makespan is a more finished one. In this paper, the creator settles one such issue with the objective of limiting makespan and compared with the current algorithms accessible in the literature. It was found that the creator developed algorithms perform better compared to every one of the current algorithms and furthermore the algorithms developed by NEH and jayavasu algorithms. Additionally the creator algorithms despite the fact that heuristic it gives close to optimal arrangement.

Keywords: Heuristics, FSSP, Makespan, NEH.

#### 1. Introduction

Each company occupied in the manufacturing business should apply a productivity refinement program. In order to draw out its exercises; the company needs to have a decent manufacturing process. The extened utilization of operations research in various area of science is a result of modern advancement. In keeping away from the situation of lines in the manufacturing system a general arrangement is required. One that is often utilized in scheduling mix is flow-shop design (gozalietal 2019). Flow-shop is the proportion of deciding the sequence of jobs that acknowledge the same product way. The flow-shop model is a job that is concentrated as a collection of interaction where a unique inclination design is applied. The arrangement of a flow-shop type production cycle can be tried stringently to products with stable format and delivered in full volumes, so selective reason ventures utilized are quickly returned(pnedo 2001).

The best arrangement displays the shortest amount of time for certain jobs, hardware, separate resources, services and any remaining incomes are organized to help the production plans to provide low expenses and extraordinary usages. Different objectives of computing best manufacture program are limiting clients sitting tight time for product or administration, guaranteed conveyance dates, keeping stocks levels low giving favoured, liked, working example, etc. On the off chance that n jobs are to be performed, each in turn, on every one up to m-machines, were the machines in order of each job ought to be executed, and the genuine time probable beside the works on every one machine are provided, then, at that point, the general sequencing problems to estimate arrangement of  $(n!)^m$  conceivable sequence, which limit the whole elapsed time between the beginning of the job on first machine and finishing of the keep going work on the past machine. Specifically, assuming n=4 jobs to be done and m=4 machine are to be utilized then the overall number of conceivable sequence will be  $(4!)^4 = 331776$ . Hypothetically it is very feasible to catch and the best sequence, yet this would demand a ton of calculation investment. In this manner one ought to embrace the sequencing technique.

A wild range of consciousness of the ordinary flow-shop scheduling problem is constrained by the scheduling literature to carry permutation schedules with minimization of the makespan. Quite possibly the earliest and first algorithms known as Johnson's algorithms [11] has been the premise of more flow-shops scheduling. After that the researchers developed particular heuristics for makespan minimization in the flow shop scheduling for 3-machines and 3-jobs problem. The problem of the task of times to a bunch of jobs for processing total a progression of machines has enduring the reasoning of researchers. An overflow of research has been expected in manufacturing scheduling. The practical significance of such problems is solid as scheduling assumes a significant part in remarkable productions, illustrating and control. A collection of scheduling algorithms has on grown above every earlier year into statement of contrasting manufacturing frameworks. Two recognizable problems that show up generally in the scheduling literature of the past 70 years are flow shop and job shop scheduling. In flow-shop scheduling it is generally expected that the jobs should be fixed on the machines in the equivalent mechanical or machine order. In the job shops scheduling then again, jobs are generally handled particular machine order.

## **Objectives:**

This study aims to elaborate and test a clever flow-shop scheduling strategy which is accomplished on random cases to track down an improved arrangement (lesser makespan) and quick computation time. In augmentation, this research is additionally to get the degree of capacity of the new strategy correlated to the connected technique explicitly Palmer, Gupta, Jayavasu, CDS and NEH.

## 2. Literature Review:

This is a mind- blowing Johnson algorithm (1954) taking two machines flow-shop scheduling of limiting make-span objective. Later palmer(1965) decide heuristics calculation is an incline queue index to step by step of jobs on the machine in view of handling time and noted as the palmer's heuristic for the flow shop planning system. It has to be lead to job then the jobs with processing time are supposd to increment by machine to machines will acknowledge supriority for flow-shop scheduling problem. Gupta [5] (1971) proposed a different heuristic which was connected with palmer's heuristic [9]. The palmer's precise a slop index in a alter way by considering a couple of lovely realities nearby optimality of Johnson rule for three machine problems. Dannenbring (1977) arranged a experimental calculation is called Rapid Access and associated a case of palmer heuristic and CDS calculation. It's outcome to give a best arrangement as quick and just a feasible way.

Campbell, Dudek and smith (CDS) [2] (1970) suggested the heuristic such as the expansion about Johnson's calculation being flow-shop scheduling problem with limiting makespan. Every CDS heuristic is a different utilization of Johnson algorithm. The early generate 'm-1' sub-problem, where m is the number of machine. Johnson algorithm is again tested for all of the m-1 sub problems to out of make-span. The sub-problem is generates a perfect makespan surrounded by full m-1 sub-schedule, is utilized the schedule for the full problem. The CDS technique is superior one more focused on flow-shop heuristic. It is a result of Johnson's algorithm taken by the CDS strategy or it is effectively on grounds CDS technique evaluates 'm-1' schedules. In this paper a study is accomplished to compare the CDS strategy. The CDS generally delivers a ton of sequence which can be chosen as the perfect outcome. As indicated by Utami (2020) the CDS technique creates a perfect arrangement than the principal First Come First Server, Palmer and Dannenbring strategy although the CDS technique has shortcoming.

Nawaz, Enscore and Ham are a heuristic technique by Nawas and Collegues (1983), this strategy gather arrangement in an unmistakable order (Nawaz et al[8]., 1983). From the research conclusion, the NEH technique result a multiple optimal arrangement then the CDS strategy, yet NEH mode gives a more noteworthy computational time. The NEH approach is a steady development calculation acknowledge been granted as the leading heuristic technique in the flow shop problem (Taillard 1993). The NEH technique scale that the job as the more noteworthy total processing time for whole machines should accept earliness over the job with a less entire handling time. Nawaz Enscore and Ham heuristic calculation which is without a doubt the better understand flop-shop scheduling problem is put with the understanding job with long entire handling time on all

machines could be given higher priority than jobs by minimal total processing time. The NEH heuristic isn't just proficient, it is likewise easy to compute and accordingly wildly utilized. A huge number of studies have involved that heuristic as a kind of perspective went against to compare their outcome. The NEH heuristic which is seen as the perfect the permutation flow shop scheduling problems. Arranged on the thought job with long processing time on all machines ought to be scheduled as starting in the sequence as could really be expected? NEH is likewise really great for taking care of flow-shop scheduling problems with objective capabilities particular from the makespan, for example, limiting the center holding up time [7], total flow time [10], total makespan [4] for dispersed permutation flow-shop problem.

#### 3. ASSUMPTION

- 1. Every processing time for various machines is precisely known and unaffected by the plan in whichever the jobs though be completed.
- 2. A moving from one machine to another machine is only takes a tiny amount of time.
- 3. Before and another work can start on the same machine after one has started, the first one must be finished.
- 4. The previous to start of the time period under consideration, all jobs are known and prepared for processing.
- **5.** Only work can be processed at a time on a specific machine.
- **6.** Various types of machines will be used.
- 7. The orders of jobs are finished are unrelated to the order in which they are done.

#### 4. PROPOSED NEW MODIFIED ALGORITHM FOR PERMUTATION FSSP

**Step 1:** Assume that there are n numbers of job and m number of machine and check whether the two cases namely number of jobs less than number of machines and number of jobs equal to number of machine then go to step 2 where m and n are greater than two.

Step 2: Now calculate the sum of m-1 machines and denote by Hi

$$H_i = j=1m-1t_{1j}$$

**Step 3:** Calculate the sum number of m machines left machine 1 denoted by K<sub>i</sub>

$$K_i = j = 2m - 1t_{1j}$$

Step 4: Find the minimum of Hi and Ki and is denoted by V<sub>i</sub> then choose

$$V_i = minimum (H_i, K_i)$$

- Step 5: We get the sequence of  $V_i$  construct the sequence of  $V_i$  in ascending order.
- **Step 6:** Process all the jobs through all the machines as constructed the sequence obtained in step 5.

**Step 7:** Now calculate the makespan for the given problem. We got the feasible sequence which is supposed to be near optimal solution.

## 5. Numerical Illustration:

Case (i): Number of jobs less than the number of machine (n<m)

Table: 1

| Machine | $\mathbf{M}_1$ | $M_2$ | M <sub>3</sub> | <b>M</b> <sub>4</sub> | M <sub>5</sub> | $M_6$ |
|---------|----------------|-------|----------------|-----------------------|----------------|-------|
| $J_1$   | 4              | 5     | 3              | 6                     | 4              | 7     |
| $J_2$   | 6              | 4     | 6              | 7                     | 8              | 9     |

| $J_3$ | 3 | 6 | 5 | 4 | 6 | 8 |
|-------|---|---|---|---|---|---|
| $J_4$ | 5 | 3 | 4 | 5 | 7 | 6 |

**Step 1:** There are four jobs and six machines.

Step 2: Now calculate the sum of processing time first five machines.

 $H_1 = 22$ .

**Step 3:** Calculate the sum of processing time left to machine 1.

 $K_1 = 25$ .

**Step 4:** Find the minimum of  $H_1$  and  $K_1$ ,

 $V_1 = minimum (22, 25)$ 

 $V_2 = minimum (31, 34)$ 

 $V_3 = minimum (24, 29)$ 

 $V_4 = minimum (24, 26)$ 

Step 5: We get the value

 $V_1 = 22$ ,  $V_2 = 31$ ,  $V_3 = 24$ ,  $V_4 = 24$ .

**Step 6:** process all the jobs through all the machines as constructed the sequence obtained in step 5. Optimal sequence is  $\{j_1, j_3, j_4, j_2\}$ ;  $\{j_1, j_4, j_3, j_2\}$ 

Table 2: Makespan calculation using our new algorithm flow shop scheduling

| Machine        | $M_1$ | $M_2$ | $M_3$ | $M_4$ | $M_5$ | $M_6$ |
|----------------|-------|-------|-------|-------|-------|-------|
| $\mathbf{J}_1$ | 0-4   | 4-9   | 9-12  | 12-18 | 18-22 | 22-29 |
| $J_3$          | 4-7   | 9-15  | 15-20 | 20-24 | 24-30 | 30-38 |
| $J_4$          | 7-12  | 15-18 | 20-24 | 24-29 | 30-37 | 38-44 |
| $J_2$          | 12-18 | 18-22 | 24-30 | 30-37 | 37-45 | 45-54 |

Total makespan = 54 hours

Table 3: Makespan calculation using our new algorithm flow shop scheduling

| Machine | $M_1$ | $M_2$ | $M_3$ | $M_4$ | M <sub>5</sub> | $M_6$ |
|---------|-------|-------|-------|-------|----------------|-------|
| $J_1$   | 0-4   | 4-9   | 9-12  | 12-18 | 18-22          | 22-29 |
| $J_4$   | 4-9   | 9-12  | 12-16 | 18-23 | 23-30          | 30-36 |
| $J_3$   | 9-12  | 12-18 | 18-23 | 23-27 | 30-36          | 36-44 |
| $J_2$   | 12-18 | 18-22 | 23-29 | 29-36 | 36-44          | 44-53 |

Total makespan = 53 hours.

Based on makespan, the best sequence of our algorithms is  $\{j_1, j_4, j_3, j_2\}$ .

Case (ii): Number of job equal to the number of machine(n=m)

**Table 4: Numerical Illusation** 

| Machine | $\mathbf{M}_1$ | $M_2$ | $M_3$ | $M_4$ |
|---------|----------------|-------|-------|-------|
| $J_1$   | 2              | 3     | 1     | 4     |
| $J_2$   | 4              | 2     | 4     | 5     |
| $J_3$   | 1              | 4     | 3     | 2     |
| $J_4$   | 3              | 1     | 2     | 3     |

Step 1: There are four jobs and four machines.

**Step 2:** Now calculate the sum of processing time first 3 machines.

 $H_1 = 6$ .

**Step 3:** Calculate the sum of processing time left to machine 1.

 $K_1\ = 8.$ 

**Step 4:** Find the minimum of  $H_1$  and  $K_1$ ,

 $V_1 = minimum (6, 8)$ 

 $V_2 = minimum (10, 11)$ 

 $V_3 = minimum (8, 9)$ 

 $V_4 = minimum (6, 6)$ 

**Step 5:** We get the value

 $V_1 = 6$ ,  $V_2 = 10$ ,  $V_3 = 8$ ,  $V_4 = 6$ .

**Step 6:** process all the jobs through all the machines as constructed the sequence obtained in step 5. Optimal sequence is  $\{j_1, j_4, j_3, j_2\}$ ;  $\{j_4, j_1, j_3, j_2\}$ 

Table 5: Makespan calculation using our new algorithm flow shop scheduling

| Machine | $M_1$ | $M_2$ | $M_3$ | $M_4$ |
|---------|-------|-------|-------|-------|
| $J_1$   | 0-2   | 2-5   | 5-6   | 6-10  |
| $J_4$   | 2-5   | 5-6   | 6-8   | 8-11  |
| $J_3$   | 5-6   | 6-10  | 10-13 | 13-15 |
| $J_2$   | 6-10  | 10-12 | 13-17 | 17-22 |

Total makespan = 22 hours

Table 6: Makespan calculation using our new algorithm flow shop scheduling

| Machine | $M_1$ | $M_2$ | $M_3$ | M <sub>4</sub> |
|---------|-------|-------|-------|----------------|
| $J_4$   | 0-3   | 3-4   | 4-6   | 6-9            |
| $J_1$   | 3-5   | 5-8   | 8-9   | 9-13           |

| $J_3$ | 5-6  | 6-10  | 10-13 | 13-15 |
|-------|------|-------|-------|-------|
| $J_2$ | 6-10 | 10-12 | 13-17 | 17-22 |

Total makespan = 22 hours

# 6. Result Analysis:

In the outcome we compare the issue for the number of machines not exactly number jobs and number machines more prominent than number of jobs. Here we compare our outcome with the Gupta, Palmer, Jayavasu, CDS and NEH to our algorithms. It has been find that algorithms ignore better compared to Gupta, Palmer, Jayavasu, CDS, and NEH tracked down literature. The table 7 beneath gives the comparision of the algorithms track down the literature. A piece of 30 such problems decided to show the viability of the calculation and the problems are given in appendix.

Table: 7

| nxm, Makespan |                     |        |       |     |        |          |                  |
|---------------|---------------------|--------|-------|-----|--------|----------|------------------|
| GL N          | nxm,                |        |       | Ma  | kespan | Т        | T 6              |
| Sl.No         | n-job,m-<br>machine | Palmer | Gupta | CDS | NEH    | Jayavasu | Our<br>Algorithm |
| 1             | 3x3                 | 16     | 16    | 16  | 16     | 16       | 16               |
| 2             | 3x3                 | 23     | 23    | 21  | 21     | 21       | 21               |
| 3             | 3x4                 | 34     | 33    | 33  | 33     | 33       | 33               |
| 4             | 3x5                 | 35     | 39    | 36  | 34     | 34       | 34               |
| 5             | 3x5                 | 27     | 28    | 27  | 27     | 28       | 27               |
| 6             | 3x5                 | 32     | 31    | 29  | 29     | 29       | 29               |
| 7             | 3x6                 | 39     | 37    | 36  | 36     | 36       | 36               |
| 8             | 3x6                 | 39     | 38    | 38  | 38     | 38       | 38               |
| 9             | 3x7                 | 35     | 36    | 35  | 35     | 36       | 35               |
| 10            | 3x7                 | 54     | 51    | 51  | 51     | 51       | 51               |
| 11            | 4x3                 | 21     | 21    | 21  | 21     | 21       | 21               |
| 12            | 4x4                 | 35     | 33    | 33  | 33     | 38       | 33               |
| 13            | 4x4                 | 39     | 31    | 31  | 31     | 31       | 31               |
| 14            | 4x4                 | 35     | 33    | 32  | 32     | 32       | 32               |
| 15            | 4x4                 | 38     | 38    | 38  | 38     | 38       | 38               |
| 16            | 4x4                 | 37     | 35    | 39  | 35     | 35       | 35               |
| 17            | 4X4                 | 28     | 27    | 27  | 27     | 27       | 27               |
| 18            | 4X5                 | 33     | 40    | 33  | 33     | 33       | 33               |
| 19            | 4X5                 | 47     | 45    | 44  | 45     | 45       | 44               |
| 20            | 4X5                 | 48     | 44    | 44  | 43     | 44       | 44               |
| 21            | 4X5                 | 55     | 49    | 53  | 49     | 49       | 49               |
| 22            | 4X5                 | 39     | 35    | 35  | 35     | 35       | 35               |
| 23            | 4X5                 | 45     | 39    | 39  | 38     | 39       | 38               |
| 24            | 4X6                 | 52     | 46    | 44  | 45     | 45       | 44               |
| 25            | 4X6                 | 57     | 54    | 53  | 54     | 54       | 53               |
| 26            | 4X6                 | 43     | 36    | 35  | 36     | 36       | 35               |
| 27            | 4X7                 | 43     | 41    | 40  | 40     | 41       | 40               |
| 28            | 4x5                 | 30     | 27    | 27  | 27     | 27       | 27               |
| 29            | 5x6                 | 46     | 46    | 46  | 46     | 51       | 46               |
| 30            | 4x4                 | 24     | 24    | 22  | 22     | 22       | 22               |

## 7. Conclusion

ISSN: 1001-4055 Vol. 45 No. 2 (2024)

Scheduling assumes a significant part several flow shop industries. This paper fundamentally shows how the makespan are minimized by utilizing heuristics calculation and compared with Palmer, Gupta, CDS, NEH and Jayavasu. In view of the calculation developed, number of jobs less than the number of machines (n<m) and number of jobs equivalent to number of machines (n=m), it has been observed that our algorithm is as good as every other heuristic developed in the literature review. Eventhough CDS algorithm is tedious than our algorithm which is simple and elegant. It has been found that our algorithm produces near optimal solution when compared to other. This algorithm is the best solution one so for in the literature.

#### **References:**

- [1] Baker K R (1974), Introduction to Sequence and Scheduling, wiley.
- [2] Cambell, H. G., dudek, R. A. and Smith, M. L(1970). A heuristics algorithm for the n-job, m-machine problem. Management Science, 16, B630-B637.
- [3] Dnnenhring, D.G.: An evaluation of flowshop scheduling heuristic management Science, 23(11), (1977), 1174-1182.
- [4] Gao,J.; Chen, R. an NEH- based heuristic algorithm for distributed permutation flow shop scheduling problems. Sci. Res. Essays 2011, 6, 3094-3100.
- [5] Gupta, J.N.: A functional heuristic algorithm for flowshop scheduling problem, Operation Research Quarterly, 22(1), (1971), 39-47.
- [6] Jayasamkari S, jayakumar S and vijayaragavan R, "An Efficient Flow Shop Scheduling Problem with Makespan Objective", 12(4), 461-466,(2021).
- [7] Masssen, K.; Hipp, A.;perez-Gonalez, P. constructive heuristics for the minimization of core waiting time in permuation flow shop problems. In proceeding of the international Conference on industrial Engineering and Systems Management (IESM), Shanghai, china, 25-27 September 2019; pp1-6.
- [8] Nawaz, M., Enscore, Jr, E., Ham, I.: A heuristics algorithm form machine, n job flow shop sequencing problem, Omega, 11(1), (1983), 91-95.
- [9] Palmer, D.: sequencing jobs through a multi stage process method obtaining near optimum, Operation Research Quarterly, 16(1), (1965), 101-107.
- [10] Pan, Q.K.; Gao, L; Wang I.; Liang,; Li, X.Y. Efficitive heuristics and mathematics to minimize total flow time for the distributed flowshopproplem. Expert Syst. Appl. 2019,124, 309-324.
- [11] S. M. Johnson, Optimal two and three stage production schedules with setup times included, Naval Research logist Quarterly, vol.1, pp. 61-68 (1954).
- [12] Vasudevan G and Jayakumar S (2020), "An Algorithm for solving n-job m-machine flow shop scheduling problem with objective of minimizing makespan" International Journal of Advanced in Engineering and technology, 11(11), pp1203-1207.
- [13] Vasudevan G and jayakumar S (20200. "The heuristic algorithm for flow shop scheduling problem TET objective", Malaya Journal of matematik, 8(4), pp2071-2073.
- [14] Vasudevan G and jayakumar S and Sathiya Santhi(2020). "A better heuristic approach for n-job amd m-machine flow shop scheduling problem", ournal of computational Mathematica, 4(1), pp 118-124.

## **APPENDIX**

| JOB/    |    |    |    |
|---------|----|----|----|
| MACHINE | M1 | M2 | M3 |
| J1      | 3  | 5  | 2  |
| J2      | 4  | 3  | 5  |
| J3      | 2  | 2  | 4  |
| 2.      |    |    |    |

| JOB/    |    |    |    |
|---------|----|----|----|
| MACHINE | M1 | M2 | M3 |

ISSN: 1001-4055 Vol. 45 No. 2 (2024)

> JOB/ MACHINE

M1

M2

M3

M4

M5

M6

| J1                          | 4         | 6        | 3       |             |      |      |    |
|-----------------------------|-----------|----------|---------|-------------|------|------|----|
| J2                          | 5         | 4        | 6       | 7           |      |      |    |
| J3                          | 3         | 3        | 5       | 7           |      |      |    |
|                             | <u>.l</u> | 3.       |         |             |      |      |    |
| JOB/                        |           |          |         |             |      |      |    |
| MACHINE                     | M1        | M2       | M3      | M4          |      |      |    |
| J1                          | 2         | 4        | 3       | 7           |      |      |    |
| J2                          | 5         | 6        | 1       | 4           |      |      |    |
| J3                          | 7         | 8        | 9       | 3           |      |      |    |
|                             |           | 4.       |         |             |      | _    |    |
| JOB/                        | T         |          | T       |             |      |      |    |
| MACHINE                     | M1        | M2       | M3      | M4          | M5   |      |    |
| J1                          | 2         | 5        | 7       | 6           | 4    |      |    |
| J2                          | 4         | 6        | 2       | 7           | 8    |      |    |
| J3                          | 2         | 4        | 5       | 1           | 3    |      |    |
| 5.                          |           |          |         |             |      |      |    |
| JOB/                        |           |          |         |             |      |      |    |
| MACHINE                     | M1        | M2       | M3      | M4          | M5   |      |    |
| J1                          | 3         | 4        | 2       | 5           | 3    |      |    |
| J2                          | 2         | 5        | 4       | 3           | 5    |      |    |
| J3                          | 4         | 2        | 3       | 4           | 6    |      |    |
| 6.                          |           |          |         |             |      |      |    |
| JOB/                        |           |          |         |             |      |      |    |
| MACHINE                     | M1        | M2       | M3      | M4          | M5   |      |    |
| J1                          | 5         | 3        | 2       | 4           | 6    |      |    |
| J2                          | 2         | 4        | 3       | 1           | 5    |      |    |
| J3                          | 3         | 2        | 5       | 4           | 7    |      |    |
|                             |           | 7.       |         |             |      | ,    | 1  |
| JOB/                        |           |          |         | ,           |      |      |    |
| MACHINE                     | M1        | M2       | M3      | M4          | M5   | M6   |    |
| J1                          | 4         | 1        | 3       | 5           | 2    | 6    |    |
| J2                          | 5         | 4        | 6       | 2           | 4    | 7    |    |
| J3                          | 2         | 5        | 4       | 6           | 3    | 5    |    |
|                             | Г         | 8.       |         | <del></del> | Г    | T    | 1  |
| JOB/                        | 3.54      |          | 3.50    | 3.54        | 3.55 | 3.55 |    |
| MACHINE                     | M1        | M2       | M3      | M4          | M5   | M6   |    |
| 1.1                         | 5         | 1        | 4       | 3           | 6    | 8    |    |
| J1                          | 3         | 6        | 7       | 4           | 2    | 5    |    |
| J2                          |           |          | 2       | 1           | 5    | 7    | ļ  |
|                             | 6         | 4        |         |             |      |      |    |
| J2                          | 6         | 4        | L       | ı           |      |      |    |
| J2<br>J3                    | 6         | <u> </u> | 9       | ) <u>.</u>  |      | Γ    |    |
| J2<br>J3                    |           |          | 9       |             | M5   | M6   | M7 |
| J2<br>J3<br>JOB/<br>MACHINE | M1        | M2       | 9<br>M3 | M4          | M5   | M6   | M7 |
| J2 J3  JOB/ MACHINE J1      | M1<br>3   | M2 2     | M3 4    | M4<br>5     | 1    | 6    | 5  |
| J2<br>J3<br>JOB/<br>MACHINE | M1        | M2       | 9<br>M3 | M4          |      |      |    |

M7

ISSN: 1001-4055

Vol. 45 No. 2 (2024)

| J1 | 3 | 4 | 2 | 5 | 3 | 6 | 8 |
|----|---|---|---|---|---|---|---|
| J2 | 5 | 3 | 5 | 6 | 7 | 8 | 9 |
| Ј3 | 2 | 5 | 4 | 3 | 5 | 7 | 9 |

11.

| JOB/    |    |    |    |
|---------|----|----|----|
| MACHINE | M1 | M2 | M3 |
| J1      | 2  | 1  | 2  |
| J2      | 4  | 4  | 6  |
| J3      | 1  | 3  | 4  |
| J4      | 3  | 2  | 5  |

12.

| JOB/    |    |    |    |    |
|---------|----|----|----|----|
| MACHINE | M1 | M2 | M3 | M4 |
| J1      | 2  | 1  | 4  | 5  |
| J2      | 3  | 2  | 5  | 6  |
| J3      | 5  | 4  | 3  | 7  |
| J4      | 4  | 5  | 6  | 8  |

13.

| JOB/    |    |    |    |    |
|---------|----|----|----|----|
| MACHINE | M1 | M2 | M3 | M4 |
| J1      | 2  | 4  | 3  | 5  |
| J2      | 5  | 2  | 4  | 7  |
| J3      | 4  | 5  | 6  | 8  |
| J4      | 1  | 3  | 2  | 4  |

14.

| JOB/    |    |    |    |    |
|---------|----|----|----|----|
| MACHINE | M1 | M2 | M3 | M4 |
| J1      | 1  | 3  | 4  | 5  |
| J2      | 4  | 1  | 6  | 7  |
| J3      | 3  | 2  | 8  | 6  |
| J4      | 2  | 7  | 5  | 4  |

15.

| JOB/    |    |    |    |    |
|---------|----|----|----|----|
| MACHINE | M1 | M2 | M3 | M4 |
| J1      | 4  | 5  | 7  | 9  |
| J2      | 2  | 4  | 6  | 8  |
| J3      | 5  | 3  | 2  | 1  |
| J4      | 3  | 9  | 9  | 8  |

| JOB/    |    |    |    |    |
|---------|----|----|----|----|
| MACHINE | M1 | M2 | M3 | M4 |
| J1      | 3  | 4  | 2  | 6  |
| J2      | 5  | 3  | 5  | 8  |
| J3      | 2  | 5  | 4  | 7  |
| J4      | 4  | 2  | 3  | 5  |

| 17.  |    |    |    |    |  |  |  |
|------|----|----|----|----|--|--|--|
| JOB/ | M1 | M2 | M3 | M4 |  |  |  |

ISSN: 1001-4055 Vol. 45 No. 2 (2024)

| MACHINE |   |   |   |   |
|---------|---|---|---|---|
| J1      | 2 | 3 | 4 | 6 |
| J2      | 1 | 2 | 5 | 4 |
| J3      | 3 | 5 | 2 | 7 |
| J4      | 4 | 6 | 7 | 2 |

18.

| JOB/    |    |    |    |    |    |
|---------|----|----|----|----|----|
| MACHINE | M1 | M2 | M3 | M4 | M5 |
| J1      | 5  | 4  | 7  | 2  | 6  |
| J2      | 4  | 6  | 4  | 3  | 7  |
| J3      | 2  | 1  | 5  | 6  | 4  |
| J4      | 1  | 3  | 2  | 5  | 8  |

19.

| JOB/<br>MACHINE | M1 | M2 | M3 | M4 | M5 |
|-----------------|----|----|----|----|----|
| J1              | 7  | 4  | 2  | 5  | 8  |
| J2              | 1  | 3  | 6  | 4  | 5  |
| J3              | 4  | 7  | 5  | 6  | 7  |
| J4              | 6  | 1  | 4  | 7  | 9  |

20.

| JOB/    |    |    |    |    |    |
|---------|----|----|----|----|----|
| MACHINE | M1 | M2 | M3 | M4 | M5 |
| J1      | 4  | 5  | 3  | 6  | 4  |
| J2      | 6  | 4  | 6  | 7  | 8  |
| Ј3      | 3  | 6  | 5  | 4  | 6  |
| J4      | 5  | 3  | 4  | 5  | 7  |

21.

| JOB/    |   |    |    |    |    |
|---------|---|----|----|----|----|
| MACHINE |   | M2 | M3 | M4 | M5 |
| J1      | 5 | 3  | 6  | 4  | 7  |
| J2      | 4 | 6  | 7  | 8  | 9  |
| J3      | 6 | 5  | 4  | 6  | 8  |
| J4      | 3 | 4  | 5  | 7  | 6  |

22.

| JOB/    |    |    |    |    |    |
|---------|----|----|----|----|----|
| MACHINE | M1 | M2 | M3 | M4 | M5 |
| J1      | 3  | 1  | 4  | 2  | 5  |
| J2      | 2  | 4  | 5  | 6  | 7  |
| J3      | 4  | 3  | 2  | 4  | 6  |
| J4      | 3  | 2  | 3  | 5  | 4  |

| JOB/    |    |    |    |    |    |
|---------|----|----|----|----|----|
| MACHINE | M1 | M2 | M3 | M4 | M5 |
| J1      | 3  | 4  | 2  | 5  | 6  |

ISSN: 1001-4055 Vol. 45 No. 2 (2024)

| J2 | 5 | 3 | 5 | 6 | 8 |
|----|---|---|---|---|---|
| J3 | 2 | 5 | 4 | 3 | 7 |
| J4 | 4 | 2 | 3 | 4 | 5 |

24.

| JOB/    |    |    |    |    |    |    |
|---------|----|----|----|----|----|----|
| MACHINE | M1 | M2 | M3 | M4 | M5 | M6 |
| J1      | 3  | 4  | 2  | 5  | 3  | 6  |
| J2      | 5  | 3  | 5  | 6  | 7  | 8  |
| J3      | 2  | 5  | 4  | 3  | 5  | 7  |
| J4      | 4  | 2  | 3  | 4  | 6  | 5  |

25.

| JOB/<br>MACHINE | M1 | M2 | M3 | M4 | M5 | M6 |
|-----------------|----|----|----|----|----|----|
| J1              | 4  | 5  | 3  | 6  | 4  | 7  |
| J2              | 6  | 4  | 6  | 7  | 8  | 9  |
| J3              | 3  | 6  | 5  | 4  | 6  | 8  |
| J4              | 5  | 3  | 4  | 5  | 7  | 6  |

26.

| JOB/    |    |    |    |    |    |    |
|---------|----|----|----|----|----|----|
| MACHINE | M1 | M2 | M3 | M4 | M5 | M6 |
| J1      | 2  | 3  | 1  | 4  | 2  | 5  |
| J2      | 4  | 2  | 4  | 5  | 6  | 7  |
| Ј3      | 1  | 4  | 3  | 2  | 4  | 6  |
| J4      | 3  | 1  | 2  | 3  | 5  | 4  |

27.

| JOB/    |   |    |    |    |    |    |    |
|---------|---|----|----|----|----|----|----|
| MACHINE |   | M2 | M3 | M4 | M5 | M6 | M7 |
| J1      | 3 | 2  | 4  | 5  | 1  | 6  | 5  |
| J2      | 2 | 5  | 6  | 3  | 7  | 1  | 4  |
| J3      | 1 | 3  | 5  | 2  | 6  | 4  | 6  |
| J4      | 4 | 2  | 1  | 3  | 5  | 3  | 7  |

28.

| JOB/    |    |    |    |    |    |
|---------|----|----|----|----|----|
| MACHINE | M1 | M2 | M3 | M4 | M5 |
| J1      | 5  | 6  | 7  | 1  | 2  |
| J2      | 3  | 2  | 1  | 4  | 5  |
| J3      | 2  | 3  | 4  | 5  | 6  |
| J4      | 1  | 2  | 3  | 4  | 3  |

| JOB/<br>MACHINE | M1 | M2 | M3 | M4 | M5 | M6 |
|-----------------|----|----|----|----|----|----|
| J1              | 2  | 3  | 3  | 4  | 5  | 6  |

ISSN: 1001-4055 Vol. 45 No. 2 (2024)

| J2 | 4 | 5 | 6 | 7 | 2 | 3 |
|----|---|---|---|---|---|---|
| Ј3 | 6 | 7 | 8 | 3 | 4 | 5 |
| J4 | 3 | 4 | 5 | 6 | 4 | 3 |
| J5 | 2 | 4 | 6 | 6 | 3 | 2 |

| JOB/    |    |    |    |    |
|---------|----|----|----|----|
| MACHINE | M1 | M2 | M3 | M4 |
| J1      | 2  | 3  | 1  | 4  |
| J2      | 4  | 2  | 4  | 5  |
| J3      | 1  | 4  | 3  | 2  |
| J4      | 3  | 1  | 2  | 3  |