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Abstract:-This research introduces a Decentralized Alternating Direction Method of Multipliers (D-ADMM) 

model for optimizing analog transceivers with modulus constraints. Addressing the limitations of centralized 

and distributed ADMM approaches, the proposed D-ADMM model achieves a balanced trade-off among 

transceiver performance and hardware complexity. The optimization process involves iterative updates at each 

node and local fusion centers, ensuring consensus in a decentralized network. Unit modulus constraints are 

imposed on analog transceivers to enhance hardware feasibility. Results are discussed using spectral efficiency, 

bit error rate, and error rate. Simulation results demonstrate the D-ADMM's effectiveness in large-scale 

networks without a global fusion center. The decentralized optimization, through an iterative approach, proves 

its capability to handle non-convex problems and attain optimal solutions. Comparative results illustrate the D-

ADMM's superiority over traditional methods, showcasing its potential for advancing analog transceiver 

optimization in communication networks. 

Keywords: ADMM, Transceiver Performance, Optimization, Non-Convex Problem, Spectral Efficiency, Bit 
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1. Introduction 

The Alternating Direction Method of Multipliers (ADMM) has emerged as a powerful optimization technique, 

particularly in solving complex problems by breaking them down into more manageable subproblems [1]. 

ADMM has found widespread applications in various domains due to its ability to efficiently address non-

convex and large-scale optimization challenges [2]. In the context of analog transceiver optimization, ADMM is 

employed to achieve a delicate balance between transceiver performance and hardware complexity [3]. 

Traditional optimization approaches, whether centralized [4] or distributed [5], often struggle to achieve an 

optimal trade-off in this regard. Centralized ADMM, while effective in many scenarios, can face challenges 

when dealing with large-scale networks and intricate optimization problems [6]. The computational burden 

centralized optimization places on a single fusion center may become untenable, particularly in scenarios with 

multiple local fusion centers and the need for information exchange with single-hop neighbors simultaneously 

[7]. This limitation becomes more apparent in large-scale networks where deploying a single global fusion 

center is impractical. Distributed ADMM, on the other hand, seeks to address some of the shortcomings of 

centralized optimization by distributing the optimization task across nodes [8].  

However, achieving a balanced trade-off between transceiver performance and hardware complexity remains a 

challenge. The complexity lies in coordinating the optimization process across multiple nodes and fusion 

centers, especially when dealing with unit modulus constraints and intricate objective functions [9]. The 

inherent trade-off between performance metrics and hardware complexity is often not adequately addressed, 

leading to suboptimal solutions [10]. Remarkably, despite the growing significance of achieving an optimal 

balance in transceiver design, very little work has been dedicated to implementing a Decentralized ADMM (D-

ADMM) for this purpose [11,12]. D-ADMM holds the potential to overcome the limitations of both centralized 
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and distributed approaches [4,13]. By allowing local fusion centers to iteratively update their parameters and 

collaborate in achieving consensus, D-ADMM offers a more scalable and efficient solution [14].  

This research aims to fill this critical gap in the existing literature by proposing and implementing a D-ADMM 

model tailored for analog transceiver optimization. The emphasis is on achieving a balanced trade-off between 

transceiver performance metrics, such as spectral efficiency and bit error rate (BER), and hardware complexity, 

including considerations for unit modulus constraints. The decentralized nature of the ADMM framework 

ensures that computational load is distributed across nodes, enabling scalability in large networks. Through a 

series of simulations and analyses, we demonstrate how D-ADMM outperforms centralized and distributed 

counterparts in achieving an optimal balance, showcasing its potential for widespread application in large-scale 

communication networks. Hence, the contribution of this work is as follows 

● This research contributes by proposing a novel D-ADMM model tailored for analog transceiver 

optimization, addressing the limitations of both centralized and distributed approaches. 

● The work focuses on achieving a balanced trade-off between transceiver performance metrics, such as 

spectral efficiency and bit error rate, and hardware complexity, through the application of D-ADMM. 

● By harnessing the decentralized nature of ADMM, this research ensures scalability in large communication 

networks, allowing for efficient optimization without the computational burden associated with a single 

global fusion center. 

 

2. Literature Survey 

The literature survey encompasses a broad spectrum of research works that contribute to the field of 

communication systems optimization. These works cover diverse objectives, methodologies, and findings, 

providing insights into various optimization techniques and their applications. In [15], addressed nonconvex 

optimization problems and proposed a Regularized ADMM (RADMM). The methodology involved proving the 

global convergence of the algorithm using an augmented Lagrangian function. The results indicate improved 

Mean Square Error Rate. In [16], focused on exploiting the sparsity and low-rank property of channels for 

channel estimation. The Symmetrical ADMM (S-ADMM) was proposed, demonstrating symmetrical handling 

of variables. The findings highlight the efficacy of S-ADMM for recovering training symbols, with potential 

extensions to time-varying mmWave channels. In [17], in the context of meeting high data transmission rate 

requirements for data aggregation, this work investigated transceiver optimization. It presented optimal 

structures for digital precoders and unconstrained analog transceivers, along with iterative algorithms. The 

results showcased reduced energy consumption compared to fully digital solutions. 

In [18], introduced a precoding scheme for OFDM transmission in MIMO systems with one-bit digital-to-

analog converters (DACs) and analog-to-digital converters (ADCs). They formulated and solved NP-hard 

optimization problems using the Cyclic Coordinate Descent (CCD) framework and ADMM (ADMM). The 

proposed precoding scheme mitigated the effects of coarse quantization, achieving performance close to full-

resolution systems. In [19], explored analog-digital hybrid transceiver optimization for distributed IoT sensing 

networks. It proposed both centralized and asynchronous distributed algorithms based on ADMM for satisfying 

unit modulus constraints. Results indicate performance close to fully digital counterparts with reduced 

computation overhead. In [20], presented an algorithm-adaptable, scalable generator for massive MIMO 

baseband processing systems. They implemented in Chisel hardware construction language, and it evaluated 

various channel models and demonstrated improved demodulation error vector magnitude with beam-space 

methods.  

In [21], presented a novel hybrid beamformer designs for a multi-user multi-cell mmWave system. The 

methodology involved semidefinite relaxation (SDR)-based approaches, Bayesian learning, and ADMM for 

centralized and distributed hybrid designs. Simulation results show improved performance over non-coordinated 

systems. In [22], designed constant modulus waveforms for dual-function radar-communication (DFRC) 

systems. It utilized ADMM for waveform synthesis, achieving a desired beampattern and demonstrating 

improved detection probability and BER for radar and communications. In [23], proposed a distributed 

cooperative AMC network based on machine learning to identify modulation schemes in non-cooperative 

wireless communication networks. The Co-AMC network achieved superior classification accuracy compared 
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to existing methods across various modulation schemes and SNRs. In [24], introduced a joint plane-wave and 

spherical-wave-based 3D channel model. They derived optimal design parameters, analyzed their sensitivity, 

and designs a quantization codebook. The results show that planar subarrays are superior to traditional arrays in 

terms of spectral efficiency and effective degree of freedom. 

In the existing body of research, there has been limited exploration regarding the implementation of a D-ADMM 

to attain a balanced trade-off between hardware components and transceiver performance. The majority of the 

literature has primarily focused on centralized optimization techniques and has not extensively delved into the 

decentralized paradigm. This research aims to bridge this gap by specifically addressing the incorporation of D-

ADMM in the context of analog transceiver optimization. The subsequent section provides a detailed discussion 

of this crucial aspect and outlines the proposed methodology to tackle the identified issue. 

 

3. Methodology 

3.1 System Model 

The system model comprises transmitter nodes, denoted by analog precoding matrices 𝐺𝐴 and 𝑃𝐴, responsible 

for shaping signals during the transmission phase. Receiver nodes receive and process the transmitted signals. 

The communication links involve analog precoders 𝐺𝐴 and 𝑃𝐴, representing analog communication links at 

transmitter nodes, while digital communication links are implicitly modeled, involving digital signal processing 

techniques. The optimization process employs the D-ADMM, leveraging iterative updates at each node and 

local fusion centers to achieve consensus in optimizing analog transceivers. The system enforces unit modulus 

constraints on analog transceivers 𝐺𝐴 and 𝑃𝐴 to ensure practical hardware feasibility. The overarching objective 

is to minimize a performance metrics-driven objective function, providing a balance between transceiver 

performance and hardware complexity. This optimization considers constraints on spectral efficiency, bit error 

rate, and an effective trade-off in the system's design. 

 

3.2 Decentralized Alternating Direction Method of Multipliers 

This work proposes a decentralized optimization model, D-ADMM, based on the ADMM consensus, to 

optimize analog transceivers in large-scale networks while considering modulus constraints. The model 

addresses the inherent non-convexity of the optimization problem associated with unit modulus constraints on 

analog transceivers. The objective is to achieve a balanced trade-off between transceiver performance and 

hardware complexity. The research focuses on a scenario with multiple local Fusion Centers (FCs) rather than a 

single global FC, reflecting the practical challenges in large-scale networks. The increasing demand for efficient 

data transmission in large-scale networks necessitates the optimization of analog transceivers. ADMM, known 

for its ability to decompose complex problems into manageable subproblems, is employed to address the non-

convex nature of the optimization task [25]. The parameters used for this work is presented in Table 1.  

Table 1. Variables used. 

Variable Description 

𝐴, 𝐵, 𝑃, 𝑈, 𝑉 Matrix 

𝐴𝐺 Analog precoder matrix 

𝐴𝐺
𝐻 Conjugate Transpose of Analog precoder matrix 

𝐴𝑃 Matrix 

𝐴𝑃
𝐻 Conjugate Transpose of Matrix 

𝐹𝐺 Feasible set of analog transceivers 

𝐺𝐴 Analog precoder matrix 

𝐺𝐴
𝐻 Conjugate Transpose of Analog Precoder Matrix 
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𝐻 Hermitian (conjugate transpose) of a matrix 

𝑖 Matrix Rows 

𝑗 Matrix Columns 

𝑛 Number of elements in the matrix 

𝑃𝐴 Analog precoder matrix 

𝑃𝐴
𝐻  Conjugate Transpose of Analog precoder matrix 

𝑄𝐺  Unit matrix for ADMM consensus 

𝑄𝑃 Right unit matrix for analog precoder 

𝑄𝑃
𝐻  Conjugate Transpose of Right unit matrix 

𝑅 Real part of the matrix 

𝑅𝑛
0.5 Square root of the matrix R 

𝑆𝐺  Reformulated analog precoder term 

𝑆𝐺
𝐻 Conjugate Transpose of Reformulated term 

𝑇𝑟 Trace of a matrix (sum of diagonal elements) 

𝑈𝐺 Analog precoder matrix 

𝑈𝐺
𝐻 Conjugate Transpose of Analog precoder matrix 

𝑈𝑃 Left unit matrix component 

𝑈𝑃
𝐻 Conjugate Transpose of Left unit matrix 

𝑉𝐻 Matrix 

𝑉𝐻
𝐺 Conjugate Transpose of Analog precoder matrix 

𝑉𝑃 Right unit matrix component 

𝑉𝑃
𝐻 Conjugate Transpose of Right unit matrix 

𝑊𝐺 Weight matrix 

𝑊𝑘
0.5 Matrix 

𝑊𝑃 Matrix 

𝑍𝐺 Auxiliary variable for consensus in ADMM 

 

This model considers unit modulus constraints on analog transceivers, particularly analog precoders (𝑃𝐴) and 

analog decoders (𝐺𝐴). The ADMM consensus involves the use of two-unit matrices, 𝑄𝑃 and 𝑄𝐺 . These matrices 

play a crucial role in achieving optimal performance during the optimization process. The process of D-ADMM 

starts with obtaining an optimal left unit matrix and its corresponding diagonal matrix. Additionally, a unit 

matrix 𝑄 is defined based on the obtained matrices. The objective function of ADMM is constrained by an 

upper bound. The Eq. (1) specifies this objective function, involving various matrices and weighted terms which 

is presented as follows 
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𝑇𝑟{(𝑈𝐺𝐴𝐺𝑄𝐺 − 𝑅𝑛
0.5𝐺𝐴

𝐻)𝐻𝑊𝐺(𝑈𝐺𝐴𝐺𝑄𝐺 − 𝑅𝑛
0.5𝐺𝐴

𝐻)}
≤  𝑇𝑟{(𝐴𝐺

𝐻𝑈𝐺
𝐻𝑊𝐺𝑈𝐺𝐴𝐺 + 𝐺𝐴𝑅𝑛

0.5𝑊𝐺𝑅𝑛
0.5𝐺𝐴

𝐻 − 2𝑅(𝐴𝐺))} 

(1) 

The Eq. (1) represents an upper bound constraint on the objective function for analog transceivers. 𝑈𝐺, 𝐴𝐺, 𝑄𝐺 , 

and 𝐺𝐴 are the matrices related to the analog transceiver. 𝑇𝑟 denotes the trace operation, 𝑊𝐺  is a weight matrix, 

𝑅𝑛
0.5 is the square root of the matrix 𝑅𝑛. In Eq. (1), the right-hand side involves matrix products, conjugate 

transpose, and weighted terms. The Eq. (1) controls and optimizes the performance of analog transceivers, 

taking into account modulus constraints. Further, Eq. (2) is mentioned as the source of the matrix inequality that 

leads to Eq. (1), which is defined as follows 

𝑅(𝑇𝑟(𝑈, 𝐴, 𝑉, 𝐵)) ≤ ∑ 𝜆𝑖

𝑛

𝑖=1

(𝐴)𝜆𝑖(𝐵) 
(2) 

Eq. (2) represents the inequality involved within the trace of matrix products and eigenvalues. This inequality 

involving trace operations and eigenvalues is fundamental in deriving the upper bound constraint in Eq. (1). It 

provides a mathematical foundation for controlling the spectral properties of the involved matrices, contributing 

to the optimization process. Further, Eq. (3) defines the calculation of the diagonal matrix 𝐴 × 𝐺 which is as 

follows 

𝐺𝐴𝑅𝑛
0.5𝑊𝐺𝑈𝐺𝐴𝐺 = 𝑈𝐺 × 𝐴𝐺 × 𝑉𝐺

𝐻 (3) 

Eq. (3) calculates the product of matrices involving analog precoders and square root of matrix 𝑅. It plays a 

crucial role in expressing the relationship between𝐺𝐴,𝑈𝐺,𝐴𝐺, and 𝑉𝐺
𝐻, facilitating the optimization of analog 

transceivers under modulus constraints. Moreover, Eq. (3) helps for the formulation of the ADMM model. 

Further, Eq. (4) sets a constraint on the unit matrix 𝑄𝐺  where 𝑉𝐺 and 𝑈𝐺 are matrices related to the analog 

transceivers, which is defined as follows 

𝑄𝐺 = 𝑉𝐺𝑈𝐺
𝐻 (4) 

Eq. (4) imposes a constraint on the unit matrix 𝑄𝐺 , ensuring it equals the product of 𝑉𝐺  and the conjugate 

transpose of 𝑈𝐺. This constraint contributes to maintaining the orthogonality and unitarity of the matrices 

involved in the optimization process. Similar to Eq. (4), Eq. (5) defines the right unit matrix 𝑄𝑃 for the analog 

precoder as given in below equation 

𝑄𝑃 = 𝑉𝑃𝑈𝑃
𝐻  (5) 

Eq. (5) sets the relationship between 𝑉𝑃 and 𝑈𝑃, providing constraints essential for optimizing the analog 

precoders in the ADMM framework. For optimization of analog transceivers, the following equation is defined.  

𝑃𝐴
𝐻𝑊𝑘

0.5, 𝑊𝑃𝑉𝑃𝐴𝑃 = 𝑈𝑃𝐴𝑃𝑉𝑃
𝐻 (6) 

Eq. (6) involves operations with 𝑃𝐴, 𝑊𝑘
0.5, 𝑊𝑃, 𝑉𝑃, and their conjugate transposes. It plays a crucial role in 

computing terms necessary for the optimization of analog transceivers, particularly in the context of modulus 

constraints. For introducing unit modulus constraints for analog transceivers, i.e., 𝑃𝐴 and 𝐺𝐴, the constraints are 

defined as follows  

𝐺𝐴 ∈ 𝐹𝐺 (7) 

Eq. (7) acknowledges the complexity of obtaining these constraints directly from the phase projection, 

emphasizing the importance of considering modulus constraints in the optimization process. From Eq (7), the 

objective function can be reformulated as follows 

𝑇𝑟{(𝑉𝑃𝐴𝑃𝑄𝑃 − 𝑊𝑛
0.5, 𝑃𝐴)𝐻𝑊𝑃(𝑉𝑃𝐴𝑃𝑄𝑃 − 𝑊𝑘

0.5, 𝑃𝐴)} (8) 

Eq. (8) formulates the objective function involving the unit modulus component of 𝐺𝐴 and the element 𝐹𝐺. The 

Eq. (8) highlights that optimizing this objective function alone may not be as effective as addressing the actual 

problem, motivating the need for further reformulation. Hence, to reformulate the objective function, the 

following equation is defined 

𝑋 = 𝑇𝑟{𝑃𝐴
𝐻𝑊𝐾

0.5𝑊𝑃𝑊𝑘
0.5𝑃𝐴 + 𝑄𝑃

𝐻𝐴𝑃
𝐻𝑉𝑃

𝐻𝑊𝑃𝑉𝑃𝐴𝑃𝑄𝑃} − 2𝑇𝑟{𝑅(𝑃𝐴
𝐻𝑊𝑘

0.5𝑊𝑃𝑉𝑃𝐴𝑃𝑄𝑃)} (9) 

Eq. (9) represents the reformulation of the objective function using an iterative method to handle unit modulus 

constraints for analog transceivers. The terms involve trace operations and matrix products with 𝑉𝑃, 𝐴𝑃, 𝑄𝑃, 𝑃𝐴, 

𝑊𝑘
0.5, and 𝑊𝑃. The first term of Eq. (9) aims to minimize the impact of the modulus constraints on the analog 

precoders 𝑃𝐴. Further, the second term of Eq. (9) adjusts the objective function by considering the product of 

matrices related to the optimization process. The following Eq. (9) has to be formulated within the objective 

function for analog precoder design within the ADMM framework. Hence, the following equation is presented. 
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𝑇𝑟{(𝑈𝐺𝐴𝐺𝑄𝐺 − 𝑅𝑛
0.5𝐺𝐴

𝐻)𝐻𝑊𝐺(𝑈𝐺𝐴𝐺𝑄𝐺 − 𝑅𝑛
0.5𝐺𝐴

𝐻) (10) 

Eq. (10) involves operations with𝑈𝐺, 𝐴𝐺, 𝑄𝐺 , 𝑅𝑛
0.5, 𝐺𝐴

𝐻, 𝑊𝐺, and trace operations. Moreover, Eq. (10) represents 

a critical aspect of the optimization process, addressing the performance of analog precoders while adhering to 

modulus constraints. 

𝑋 = 𝑇𝑟{𝐺𝐴𝑅𝑛
0.5𝑊𝐺𝑅𝑛

0.5𝐺𝐴
𝐻 + 𝑄𝐺

𝐻𝐴𝐺
𝐻𝑈𝐺

𝐻𝑊𝐺𝑈𝐺𝐴𝐺𝑄𝐺} − 2𝑇𝑟{𝑅(𝐺𝐴𝑅𝑛
0.5𝑊𝐺𝑈𝐺𝐴𝐺𝑄𝐺)} (11) 

Eq. (11) provides breakdown of the terms involved in the objective function for analog precoder design. Similar 

to Eq. (9), it involves trace operations and matrix products with 𝐺𝐴, 𝑄𝐺 , 𝑈𝐺, 𝐴𝐺, 𝑅𝑛
0.5, 𝑊𝐺, and their conjugate 

transposes. The terms in Eq. (11) contribute to the overall optimization process by addressing specific aspects of 

the analog precoder design. 

𝐺𝐴𝑇𝑟{𝐺𝐴𝑊𝐺𝐺𝐴
𝐻} − 2𝑇𝑟{𝑅(𝐺𝐴𝑆𝐺

𝐻)} (12) 

Eq. (12) introduces the reformulated analog precoder term 𝑆𝐺 . It discards redundant terms from the objective 

function, defining the optimization function for the analog function. The objective is to minimize the trace of the 

product of matrices involving 𝐺𝐴, 𝑊𝐺, and 𝑆𝐺  while considering modulus constraints. 

|[𝐺𝐴]𝑖,𝑗| =∝, ∀𝑖,𝑗  (13) 

Eq. (13) presents the optimization problem with constraints on the modulus of 𝐺𝐴. The modulus of each element 

in the matrix 𝐺𝐴 is constrained to a specific value (∝). This introduces unit modulus constraints on analog 

transceivers, crucial for practical hardware implementation. For addressing the non-convex nature of unit 

modulus problem, the following equation is defined 

𝐺𝐴𝑇𝑟{𝐺𝐴𝑊𝐺𝐺𝐴
𝐻} − 2𝑇𝑟{𝑅(𝑍𝐺𝑆𝐺

𝐻)} (14) 

Eq. (14) introduces an auxiliary variable 𝑍𝐺 to split the objective function, contributing to the development of an 

effective optimization strategy. 

|[𝑍𝐺]𝑖,𝑗| =∝, ∀𝑖,𝑗 (15) 

Eq. (15) calculates the auxiliary variable 𝑍𝐺, replacing the term 𝐺𝐴 in Eq. (13). Constraints imposed on the 

modulus of 𝑍𝐺, introduce a coupling effect between unit moduli. This enhances the optimization process and 

ensures effective tradeoff among hardware complexity and transceiver performance. The results of the proposed 

D-ADMM are evaluated in the next section. 

 

4. Results and Discussion 

4.1 System Requirements 

To run the D-ADMM, Centralized-ADMM (C-ADMM), and Existing System Transceiver Optimization 

(ESTO) method [24], Windows 11 operating system was considered. A minimum of 8 GB RAM was considered 

to ensure smooth execution of the optimization algorithms. Additionally, MATLAB was preferred platform for 

implementing these methods, so it was essential to have MATLAB installed on the system. These specifications 

provided the computational resources and software environment needed to effectively carry out the optimization 

processes and evaluate the performance of the transceiver systems. 

 

4.2 Evaluation Parameters 

In this work, initially, random values are generated to evaluate antenna parameters. These parameters include 

the path loss exponent, the number of directions to look for interfering cells, and the percentage of the radius 

inside the cell where no user equipment is allowed. The parameter considered for evaluation are presented in 

Table 2. 

 

Table 2. Parameters considered for evaluation. 

Parameters Values 

Number of Nodes 10 

Number of Users 10 

Path Loss Exponent 1.8% 

Radius Inside the Cell 0.05 

Number of Random Users 500000 
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In the context of this work, the Monte-Carlo simulations for antenna system evaluation, key parameters are 

established. Each cell is assigned a specific number of random users, contributing to the stochastic nature of the 

simulation. The range for each base station antenna is defined, and the distribution of antennas follows a 

logarithmic scale, ensuring a balanced deployment. For evaluation of this work, spectral efficiency and Bit-

Error-Rate (BER) are considered. The spectral efficiency is evaluated using the following equation 

𝑆𝑝𝑒𝑐𝑡𝑟𝑎𝑙 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =
𝑁𝑒𝑡 𝐷𝑎𝑡𝑎 𝑅𝑎𝑡𝑒(𝑏𝑝𝑠)

𝐶ℎ𝑎𝑛𝑛𝑒𝑙 𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ (𝐻𝑧)
 

(16) 

Spectral Efficiency represents how efficiently the available bandwidth is utilized to transmit data. It is expressed 

as the ratio of the net data rate to the channel bandwidth. Higher spectral efficiency indicates a more effective 

utilization of the available spectrum for transmitting data, a crucial metric in assessing the performance of 

communication systems, especially in bandwidth-limited scenarios. The effective rate at which data is 

transmitted over the communication channel, typically measured in bits per second (bps). The range of 

frequencies allocated for the communication channel, measured in hertz (Hz). The following equation is used 

for evaluating the spectral efficiency. 

𝐵𝑖𝑡 𝐸𝑟𝑟𝑜𝑟 𝑅𝑎𝑡𝑒 =
𝑁𝑜 𝑜𝑓 𝑏𝑖𝑡𝑠 𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑑

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐵𝑖𝑡𝑠 𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝑟𝑒𝑑
 

(17) 

The Bit Error Rate (BER) is a measure used in digital communication systems to quantify the accuracy of data 

transmission. The BER is expressed as a ratio or percentage, providing insights into the reliability of the 

communication channel. A lower BER indicates better transmission quality and reliability, while a higher BER 

suggests a higher likelihood of errors in the received data. 

 

4.3 Spectral Efficiency 

In the comparative analysis of spectral efficiency per cell as presented in Figure 1, the performance of three 

optimization techniques, namely D-ADMM, C-ADMM, and ESTO, was evaluated. The assessment involved 

plotting the spectral efficiency against the number of base station (BS) antennas. The results demonstrate that 

the D-ADMM outperformed both the C-ADMM and ESTO in terms of spectral efficiency. The spectral 

efficiency, measured in bits per second per hertz (bps/Hz), is a critical metric indicating how effectively the 

available bandwidth is utilized for data transmission. The plotted data revealed a consistent trend where, as the 

number of BS antennas increased, the D-ADMM consistently exhibited higher spectral efficiency compared to 

its counterparts. This superiority of D-ADMM in achieving better spectral efficiency can be attributed to its 

decentralized optimization approach. By leveraging the ADMM consensus, D-ADMM efficiently coordinated 

optimization across multiple nodes and local fusion centers, resulting in improved spectral efficiency. The 

findings underscore the effectiveness of decentralized strategies in large-scale networks, highlighting the 

potential advantages of D-ADMM for enhancing spectral efficiency in comparison to centralized methods like 

C-ADMM and other optimization techniques such as ESTO. 

 
Figure 1. Spectral Efficiency per Cell. 

 

In the evaluation of total spectral efficiency as presented in Figure 2, a comparative study was conducted 

involving three optimization techniques: D-ADMM, C-ADMM, and ESTO. The outcomes were graphically 

represented by plotting spectral efficiency against the number of transmit antennas. The results conclusively 



Tuijin Jishu/Journal of Propulsion Technology 

ISSN: 1001-4055 

Vol. 45 No. 2 (2024)  

___________________________________________________________________________ 

4904 

demonstrate that D-ADMM outperforms both C-ADMM and ESTO, achieving superior total spectral efficiency. 

Total spectral efficiency encompasses the efficiency of the entire system in utilizing available resources for data 

transmission. The plotted data revealed a consistent and significant advantage for D-ADMM as the number of 

transmit antennas increased. The decentralized optimization approach of D-ADMM, utilizing the ADMM 

consensus, facilitated efficient coordination across nodes and local fusion centers, resulting in higher total 

spectral efficiency compared to centralized methods like C-ADMM and alternative optimization techniques like 

ESTO. These findings emphasize the efficacy of D-ADMM in optimizing the overall spectral efficiency of 

communication systems, particularly in scenarios with a varying number of transmit antennas. The decentralized 

strategy showcased in D-ADMM proves to be a promising approach for enhancing the total spectral efficiency, 

positioning it as a favorable choice in comparison to centralized counterparts and other optimization 

methodologies such as ESTO. 

 
Figure 2. Total Spectral Efficiency. 

 

Table 3. Spectral Efficiency Comparison.  

 D-ADMM C-ADMM ESTO 

Average Spectral Efficiency Per 

Cell  

39.038179 36.4673772 36.1885304 

Average Total Spectral 

Efficiency 

104.7563414 103.7346916 102.626712 

 

In Table 3, the spectral efficiency comparison has been presented. The average spectral efficiency per cell 

achieved by D-ADMM, C-ADMM, and ESTO was 39.03, 36.46 and 36.18 respectively. Further, the average 

total spectral efficiency achieved by D-ADMM, C-ADMM, and ESTO was 102.62, 10.373, and 104.75 

respectively.  

 

4.4 Bit Error Rate 

In the iterative optimization process conducted by C-ADMM for improving the BER, a thorough analysis was 

performed over five iterations as presented in Figure 3. The BER values were plotted against the average Signal-

to-Noise Ratio (SNR) per receive antenna, providing valuable insights into the system's performance over 

multiple optimization cycles. In iteration 1, the initial results revealed a higher BER, indicating a suboptimal 

performance of the system. This higher error rate suggests that the initial parameters or configuration may not 

have been optimal for the given SNR conditions. However, as the optimization process advanced to iteration 2, 

a slight reduction in BER was observed. This reduction indicated that the optimization algorithm, implemented 

by C-ADMM, started to adjust parameters, improving the system's resilience to noise and interference. 

Continuing to iteration 3, a notable drop in BER was observed. This improvement signifies the effectiveness of 

the optimization process, as the system adapted to better configurations, resulting in enhanced error correction 

capabilities. Iterations 4 and 5 demonstrated consistency in achieving lower BER values, indicating that the 

optimization algorithm reached a relatively stable and optimized state. The similarity between these last two 
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iterations suggests that the algorithm may have converged, achieving a near-optimal configuration for the given 

SNR conditions. The results for BER achieved by C-ADMM is presented in Table 4. 

 
Figure 3. BER of C-ADMM. 

 

Table 4. BER achieved for C-ADMM. 

Iteration/ 

SNR 

-4 0 4 8 12 16 

1 0.411333333 0.388 0.353145833 0.3009375 0.267729167 0.250854167 

2 0.4051875 0.342708333 0.229166667 0.138770833 0.07075 0.029729167 

3 0.4040625 0.343270833 0.2110625 0.098875 0.017916667 0.0006875 

4 0.402270833 0.3340625 0.199916667 0.085479167 0.011125 0.000104167 

5 0.402416667 0.342479167 0.208458333 0.089895833 0.011770833 8.33E-05 

 

In the iterative optimization process conducted by D-ADMM to improve the Bit Error Rate (BER), an analysis 

was performed over five sample iterations as presented in Figure 4. The BER values were systematically plotted 

against the average SNR per receive antenna, providing insights into the evolution of the system's performance. 

In the initial iteration, i.e., iteration 1, the results showed a relatively higher BER, indicating that the system's 

performance might not have been optimal under the initial parameters or configuration. However, as the 

optimization process advanced to iteration 2, a noticeable reduction in BER was observed. This reduction 

suggested that the decentralized optimization approach employed by D-ADMM was effective in adapting and 

improving system parameters, leading to better error correction capabilities. The trend continued in iteration 3, 

where a further drop in BER was observed. This indicated that D-ADMM continued to refine system 

parameters, achieving an even lower error rate. Iterations 4 and 5 demonstrated a consistent and similar level of 

low BER. This stability in the later iterations suggests that D-ADMM reached a convergent state, where the 

optimization process achieved a near-optimal configuration for the given average SNR per receive antenna 

conditions. The results for BER achieved by D-ADMM is presented in Table 5. 

 
Figure 4. BER of D-ADMM. 

Table 5. BER achieved by D-ADMM. 
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Iteration/S

NR 

-4 0 4 8 12 16 

1 0.402395833 0.351833333 0.2499375 0.1735 0.134604167 0.120229167 

2 0.4006875 0.334354167 0.203208333 0.094354167 0.021979167 0.0025 

3 0.400833333 0.3335 0.201541667 0.087541667 0.0128125 0.000229167 

4 0.401104167 0.333770833 0.200875 0.087395833 0.0125625 0.000125 

5 0.4010625 0.33375 0.200854167 0.087125 0.012625 0.000125 

 

The results analysis indicates that the BER achieved by D-ADMM is superior to that of C-ADMM. To further 

illustrate the comparison, an error comparison was conducted and visualized by plotting BER against average 

SNR per receive antenna as presented in Figure 5. The error comparison graph clearly demonstrates the 

performance distinction between D-ADMM and C-ADMM. In the case of C-ADMM, the graph showcases a 

direct drop in BER as the average SNR per receive antenna increases. This behavior might suggest that C-

ADMM tends to converge quickly to a specific BER value with changes in SNR conditions. Contrastingly, the 

error comparison for D-ADMM reveals a more fluctuating pattern in BER as the average SNR per receive 

antenna varies. This dynamic behavior indicates that D-ADMM adapts and adjusts its parameters continuously 

to optimize BER under changing SNR conditions. The fluctuations are attributed to the decentralized nature of 

the optimization process, which allows for ongoing adjustments at different nodes and fusion centers, 

contributing to a more adaptive and resilient system. The consistent outperformance of D-ADMM in the error 

comparison highlights its capability to achieve better results across varying SNR conditions compared to C-

ADMM. This flexibility and adaptability of D-ADMM contribute to its effectiveness in optimizing the system 

for improved error correction performance, making it a promising choice for scenarios with dynamic and 

changing communication conditions. 

 
Figure 5. Bit Error Rate Comparison. 

5. Conclusion 

This work introduces a novel approach to transceiver optimization through the development and implementation 

of a D-ADMM model. The study addresses the shortcomings of both centralized and distributed ADMM 

approaches, providing a unique solution for achieving an optimal trade-off between transceiver performance and 

hardware complexity. By formulating the optimization problem and incorporating unit modulus constraints, the 

proposed model demonstrates its effectiveness in improving key performance metrics, such as spectral 

efficiency and bit error rate. The D-ADMM model exhibits scalability in large-scale networks, offering a 

practical solution for decentralized optimization without the need for a global fusion center. The presented 

results showcase the superiority of the D-ADMM over traditional methods, emphasizing its ability to navigate 

the non-convex nature of the optimization problem. Overall, this research contributes valuable insights and a 

practical framework for advancing the field of analog transceiver optimization in communication networks. The 

integration of machine learning techniques and the exploration of novel hardware technologies for further 

optimizing transceiver performance will be crucial avenues for future research. 
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