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Abstract:- This project presents the design and simulation of an autonomous tractor that can navigate through an
agricultural field using Robot Operating System (ROS) and Gazebo. The tractor model is constructed using Fusion
360 and imported into ROS. The tractor uses a LiDAR sensor to perform simultaneous localization and mapping
(SLAM) using the GMapping algorithm. The tractor also uses the Dijkstra algorithm and the Dynamic Window
Approach (DWA) for global and local path planning, respectively. The tractor’s motion is controlled using a PID
controller. The simulation results demonstrate the tractor’s ability to map the environment, locate itself, and avoid
obstacles while following a predefined path. The project also discusses the challenges and limitations of the
proposed methodology, as well as the scope for future work.
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1. Introduction

One of the most important roles of Farmers face challenges in sustainably producing large crop yields on limited
land. Autonomous tractors, de- signed to perform various agricultural tasks with minimal human intervention,
offer a solution. These tractors increase productivity and accuracy by performing tasks routinely and repetitively.
As farmland expands for diverse crops, the number of tasks increases. Laborers may not perform tasks consistently
or for extended hours, impacting crop production. Autonomous tractors, capable of prolonged, consistent work,
can mitigate these issues. Autonomous tractors navigate com- plex environments using path planning, sensors,
and con- trollers. Path planning finds efficient routes while avoiding obstacles and minimizing distance or time.
Algorithms adjust the tractor’s speed and path in response to uncertainties like weather changes or obstacles.
Sensors, such as LIDAR, enable independent operation and navigation. Controllers, like the PID controller, adjust
the tractor’s control. A virtual design and simulation of an autonomous tractor have been created to test this theory.
The tractor model, constructed using Fusion360, and farmland, created in Gazebo, facilitate efficient and robust
navigation using the Dijkstra algorithm and Dynamic Window Approach (DWA) with ROS. The simulation uses
RviZ and Gazebo interfaces, demonstrating the potential of autonomous tractors in modern agriculture.

2. Literature Survey

The summaries collectively detail a wide array of autonomous vehicle navigation techniques implemented in the
project, with a primary focus on Simultaneous Localization and Mapping (SLAM) algorithms. These techniques
encompass graphical SLAM, explore and return strategies, directed sonar navigation, and the integration of
adaptive algorithms like Adaptive Monte Carlo Localization (AMCL). The incorporation of diverse sensors such
as LIDAR and odometer is noteworthy, with an emphasis on fusing sensor data through particle filtering and
optimal estimation method called Kalman filter. The project consistently integrates common elements across these
methodologies, emphasizing the significance of correlations within SLAM algorithms, real-time implementation,
and optimization for virtual deployment. The efficacy of SLAM algorithms is underscored by their ability to
simultaneously map and localize, a crucial aspect for achieving autonomous navigation. Furthermore, the
summaries delve into path planning strategies, including the use of the Dijkstra Algorithm, Dynamic Window
Approach (DWA), and a fusion of A* and DWA to facilitate comprehensive navigation in dynamic environments.
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The recurring theme of utilizing the ROS is evident, offering an effective framework for developing, testing, and
deploying robotic applications. Overall, these papers help advance robotics by employing various approaches.
They emphasize the significance of accurate sensor data, efficient mapping, and reliable localization as pivotal
factors for achieving successful autonomous navigation across various scenarios in the project.

3. Methodology

The first step of this project was to pick the right software to run the simulation, making sure it was compatible
with the available resources. Upon trying out different softwares like MATLAB and Simulink coupled with Unreal
engine or Unity, ROS (Robot Operating System) met our requirements. This software is widely used to run robots
and autonomous vehicles. It offers a large collection of reusable software components, called stacks, that
implement common functionality, such as navigation, perception, manipulation, planning, and simulation. Stacks
can be composed of multiple packages and depend on other stacks. It also provides a set of tools for debugging,
testing, visualization, and introspection of the ROS system. An in-built package called Gazebo, which is a 3D
simulator that can simulate complex and realistic environments is used to depict the farmland (virtual
environment) and run the simulation as well.
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Fig. 1. ROS
3.1 Tractor and Farmland Model
The next step was to model a tractor. Modelling application

‘Fusion 360 was used to construct the model as per the necessities of the project. Since a full-scale model could
not be run in the software, a decision of scaling it down to the ratio of 1:3 was made. The new holland tractor
model 90TL was used as reference in modelling the tractor. The dimensions of the tractor are listed below:

e Height0.670 m

e  Track width 0.660 m

e Front surface of body to end: 0.710 m
e  Wheelbase 0.578 m
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Fig. 2. Fusion 360 Model of Tractor

A farmland was modelled on which the simulation was run, using the Gazebo interface. The field dimensions are
30m x 30 m.
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Fig. 3. Farmland Model

3.2 URDF

To implement these models, they had to be converted to the URDF format and certain parameters were to be
specified. The URDF extension stands for URDF (Unified Robot Description Format). It is an XML file format
for representing the physical properties of tractors in Robot Operating System (ROS). It is used to specify
characteristics of robots like geometry of the robot, materials used, Colour, joints, type of joints and various other
physical properties of the tractor, which are required in simulation, control, and path planning for tractors.

URDF describes robots as a hierarchical tree, where relationships between different links are specified based
on parent and child relation. In the sense each link either acts as a parent link or a child link.

The geometric shapes of each link must be specified in URDF to get detailed visualizations and collision
detection simulations.

URDF defines the joints connecting different links, including their types- revolute, prismatic, etc. and axis of
rotation. Which helps in the calculation of robot kinematics, such as the position and orientation of each link
relative to other.

Various physical properties like mass, inertia and various others of each link are specified in URDF. Allowing
for dynamic simulations and realistic simulations.

For this project multiple files related to URDF were created which include plugins file which included
controller and lidar configurations, materials and physical properties used for the autonomous tractor.

3.3 PID Controller and LiDAR Configuration

A Proportional-Integral-Derivative (PID) controller is a common type of controller used in ROS. It’s primarily
located in the controller node, which is the central node in the package. Here’s a simplified explanation of how it
operates:

Setpoint: This is the goal that the system aims to achieve. It’s typically provided externally, either manually
or by a higher-level control system.

Process Variable: This is the parameter that we want to control. It could be various things like temperature,
flow rate, pressure, rotation speed, etc. In our case, it’s the tractor’s speed.

Error Calculation: The controller compares the measured process variable with the setpoint. The difference
between these two values is used to compute a control signal. This signal is then sent to the actuation device,
which adjusts the system to reach the desired value (setpoint). Essentially, this error value helps determine
how much the output needs to be adjusted to bring the actual reading closer to the setpoint.

A LiDAR of the following characteristics was used.

Field of view: 180 degrees
Range: 20 meters
Frequency: 100 Hz
Accuracy: +-30 mm
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In this way, LiDAR helps in environment mapping by creating detailed 2D grid-based maps and providing
accurate data for digital elevation models and features like crop rows and obstacles like boulders/rocks. It also
aids in location pinpointing by allowing each measurement in the point cloud to be georeferenced.
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Fig. 4. Controller Configuration 1
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Fig. 5. Controller Configuration 2
3.4 Co-Simulation between Gazebo and Rviz

The meta operating system ROS was utilized for the simulation, incorporating two interfaces: RViz (Robot
Visualization) and Gazebo. Gazebo serves as a simulator enabling users to construct a virtual world where the
tractor is positioned, while RViz functions as a tool for presenting sensor data and state information from the
tractor. RViz does not replicate the world or the tractor, but rather visualizes the tractor's perspective. The tractor
model utilized in the simulation is a faithful reproduction of a real New Holland tractor. The virtual tractor model
is designed using Fusion 360 and exported to ROS in URDF file format. The tractor is equipped with a lidar
module (RP lidar) for self-directed movement. The URDF files encompass crucial details regarding the tractor
such as track width, component masses, moment of inertia, as well as lidar specifications (coverage angle, range,
frequency). A virtual world was established, containing the tractor model and a crop field situated on an irregular
terrain. The co-simulation between RViz and Gazebo functions in a manner where Gazebo simulates the robot
and its surroundings, while RViz visualizes the sensor data and state of the tractor. The left-hand window displays
the Gazebo interface, showcasing LIiDAR scanning and transmission of resampled data to the controller, aiding
the DWA path planner in determining the most efficient path for the tractor. On the right-hand side, the RViz
interface exhibits the visualization of tractor movement and the mapped environment. While these front-end
operations unfold, in the background, ROS manages multiple ROS topics continuously, resampling data at regular
intervals and devising new path plans for the tractor.
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Fig. 7. Co-Simulation between Gazebo and RViz

3.5 GMapping

The GMapping algorithm is a filter-based optimization algorithm used in SLAM. It separates localization from
mapping, it first locates the tractor, then mapping the surrounding environment. The process of GMapping has
been explained as follows:

Start — Initialize ——| Collect LiDAR
]
{
Update ; .
Particles Scan Matching Resampling
]
{
End Loop || Use Final Map N End

for Navigation

Fig. 8. Process of GMapping

o |Initialize Map and Particles: At the start, GMapping initializes an empty map and a set of particles representing
possible locations of the tractor. Each particle has a state consisting of our tractor (position and orientation)
and the map.

o Collect Lidar Data: Lidar data is collected, which is a set of measurements of distances to nearby objects.
These measurements were used to update the map and particles.

e Update Particles: For every particle, GMapping predicts the tractor’s movement based on its current state and
the control inputs (velocity and turning rate). This prediction is used to update the state of the particle.

e Scan Matching: After creating a predicted map, GMapping tries to align the Lidar data with it. This includes
comparing the Lidar data with the areas of the map that are expected to match the measured distances. The
outcome is a score that shows how accurately the Lidar data aligns with the map.
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¢ Resampling: GMapping conducts resampling based on these scores, whereby particles with higher scores are
more likely to survive, while those with lower scores may perish. This process involves updating the set of
particles and their respective weights.

e End Loop: The iterations are repeated until a certain stopping condition is met, such as reaching a specific
time threshold or maximum number of iterations.

e Use Final Map for Navigation: Ultimately, GMapping utilizes the final map and the particle state to steer the
robot during navigation. The map furnishes the robot with information regarding its environment, while the
particle state indicates the tractor's perceived location.

While the flow chart explains how the process of the GMapping works the math’s behind it has been explained
as follows:

e Particle Update: The tractor’s motion is modelled as a random walk with Gaussian noise. The update equation
for a particle xi is given by:

Xi= Xi+V* o+ w * sqrt(or) * N (0, Q)

where v is the tractor’s velocity, dtis the time interval, w is the turning rate, N (0, Q) is a normally distributed
random variable with zero mean and covariance Q, and x; represents the current state of the robot.

e Scan Matching: Given a new LIDAR scan, | problem is solved using a fast and accurate approach called
FastSLAM. The equations for FastSLAM are complex and involve many steps, but they essentially involve
updating the belief about the tractor’s pose for each particle, given the observed LIDAR readings.

o Resampling: After each update, the set of particles is resampled according to their weights. The weight of a
particle is proportional to the likelihood of the observed data given the particle’s state. The resampling equation
is given by:

Wnew = Wold (= g = (log(wold) — log(sum(w,ld))) where wrew is the new weight of a particle, weld is the old
weight of the particle, beta is a parameter that controls the degree of resampling, and log is the natural
logarithm function 1.

These equations form the basis of GMapping’s operation. They allow the system to update its belief about the
tractor’s location and build a map of the environment over time.

3.6 Adaptive Mote Carlo Localization

In the domain of simulating autonomous tractors, precise localization is pivotal for effective navigation and task
execution. AMCL, an extension of the Monte Carlo Localization (MCL) algorithm, has demonstrated significant
advancements in this area. This subsection explores the mathematical foundations of AMCL and its relevance to
the virtual simulation of autonomous tractors. The working behind the same has been explained as follows:

o Particle Representation: AMCL Utilizes a set of Particles

e (Xi) to represent the tractor’s pose, with each particle (X;) encapsulating the tractor’s pose (X, y,) and a
corresponding weight (w;) denoting its likelihood

e Prediction Step: The prediction step updates the particle set based on the tractor’s motion model:
zt = motion — model(uy, :1:2,,, 1)

Here utis the control input at time t and x| signifies the predicted pose of particle i.

* Weight Update Step: Weights are recalibrated through the measurement model and sensor observations (Z;)
wti = 1/zt. p (zx|xit, m). w—i(t—1) p(Z2x',m) represents the likelihood of the sensor measurement given the
particle’s pose and the map m, (Z;) is a normalization constant.

e Resampling Step: To maintain diversity a resampling step is induced:

Resample ((Xy))

This step replicates particles with higher weights, ensuring a representative sample.

» Adaptation of Sample Size: A key feature of AMCL is the adaptive adjustment of sample size based on the
Kullback-Leibler Divergence (KLD). It dynamically calculates the number of particles (n) needed to represent
the posterior distribution, ensuring the error between true and sample-based distributions remains below a
predefined threshold.
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« Space Division through KD Tree: AMCL incorporates a KD tree for spatial distribution analysis, dynamically
adjusting bin sizes in the adaptive sampling method.

In simulating autonomous tractors, AMCL emerges as a robust solution, offering a balance between
approximation error and runtime efficiency, with dynamic sample size adaptation based on spatial distribution.

Fig. 9. AMCL Particles Visualization

3.7 Global Path Planning

For Global path planning Dijkstra algorithm was chosen after researching the different algorithms and their
compatibility for large vehicles such as our tractor. Dijkstra algorithm is a type of path planning algorithm that is
used to create shortest obstacle free path from start point to end point by taking vehicle configuration into
consideration. It is basically used to create a static path on an occupancy grid map designed using sensors like
lidar or a combination of Ultrasonic and IMU (Inertial Measurement Unit) sensors. This algorithm finds all
possible paths from source to destination without neglecting any gird so has to find the most possible shortest path
based on cost (time and distance). One of the reasons for using this algorithm is the customization it offers like
different costs can be assigned to different terrains which is an added advantage to our project as it deals with
different terrains. This algorithm doesn’t need heuristics unlike other path planning algorithms like A* which
makes it suitable for applications where functions cannot be defined accurately. It even comes with few
disadvantages like it cannot be used for more complex or dynamic path planning and it cannot be used for very
large maps which can be neglected for our use case. VVarious other global path planners like Carrot planner can be
used for path planning. Carrot planner is the simplest path planning algorithm which creates path from start point
to end point without considering any obstacles which is a major disadvantage of Carrot planner.

Fig. 10. Base Local Planner Parameters
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Fig. 11. Global Path
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3.8 Local Path Planning

For local path planning DWA path planning algorithm has been used. It is a path planning strategy that can
produce smooth and collision-free trajectories for the tractor in realtime. It operates by choosing the optimal
velocity command from a set of permissible velocities that fall within the tractor’s dynamic constraints and sensor
range. The optimal velocity command is one that maximizes an objective function considering factors like distance
to the target, obstacle clearance, and alignment with the global path. Since the DWA Planner is mostly used for
mobile robots, it takes into account the tractor’s kinematics. Robot kinematics is a simple mathematical model
that is used to describe the position of the robot. For a general mobile robot, one can consider the case of 2D robot
Kinematics.

Global Path

candidates
paths

=
N

Obstacle

Fig. 12. DWA Path Planning

Fig. 13. DWA Local Planner Parameters

4. Results and Discussions

Results:

Mapping of the environment and localization of the vehicle were successfully accomplished through the
utilization of sensor data. The precise identification of the vehicle's position on the map provided a
comprehensive understanding of its spatial relationship with its surroundings.

For the purpose of charting a trajectory for the vehicle, sophisticated algorithms were employed. These
algorithms factored in various constraints of the vehicle, including speed and turning radius, to generate an
optimal and efficient path.

To ensure safe maneuvering around obstacles, specific motion control techniques were developed. Through
rigorous testing across different scenarios, these methods demonstrated effectiveness in averting collisions.
The integration of RViz and Gazebo facilitated a co-simulation framework, enabling real-time visualization
of the vehicle's motion and the surrounding environment in both platforms.

Customization of algorithms was carried out to address specific limitations, enhancing the vehicle's
performance in particular situations.
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e Applications such as sowing, fertilizing, harvesting, and weed removal could be carried out using various
attachments on the tractor, which constitutes a key element of the project aimed at benefiting farmers.
Discussion:

The project’s outcomes suggest that the set goals were effectively accomplished. The creation of an environment
map and the precise localization of the vehicle formed a strong basis for the subsequent stages of the project.
These foundational elements played a crucial role in the development of path planning and motion control
methods, which are key to the autonomous operation of the vehicle.

Path planning is a technique that involves determining an efficient route from the starting point to the destination
while avoiding obstacles and minimizing distance or time. This is particularly important as autonomous vehicles
need to navigate through complex environments, which can include uncertainties such as sudden changes in
weather, fallen trees, or animals on the path. Algorithms are used to adjust the vehicle’s speed and path in response
to these uncertainties.

Sensors enable the autonomous vehicle to operate independently and navigate through a variety of environments.
In this case, a LIDAR sensor is used. Controllers, on the other hand, adjust the lateral, longitudinal, and steering
control in the autonomous vehicle. Among the various controllers used for autonomous agents, a PID controller
has been found to be the most effective for this purpose.

A significant aspect of the project was the co-simulation between RViz and Gazebo. This setup allowed for real-
time visualization of the vehicle’s movements and the environment, proving to be an invaluable tool for testing
and fine-tuning the vehicle’s navigation capabilities. The ability to visualize the vehicle’s movements in relation
to its environment greatly facilitated the process of troubleshooting and optimizing the vehicle’s performance.

Another noteworthy achievement was the personalization of the algorithms used in the project. By customizing
these algorithms to tackle specific constraints, the performance of the vehicle was significantly improved. This
personalization allowed for a more flexible and adaptable system, capable of handling a wider range of scenarios
and conditions.

Looking ahead, there is potential for further work and improvements. Future efforts could focus on optimizing
these algorithms even further, as well as exploring additional methods for obstacle avoidance and path planning.
This approach demonstrates the potential of autonomous vehicles in modern agriculture. By creating a real-life
model based on the virtual scenario, we can achieve even more validation.
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