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Abstract:- This paper presents the methodology for the simulation of free surface fluid sloshing. Particularly the 

nu- merical solution of the fluid flow i.e., Navier-Stokes equations which is posed in a moving mesh framework 

is presented. The time-changing nature of the domain is handled by the arbitrary Lagrangian-Eulerian (ALE) 

framework. The govern- ing equations are discretized with the finite element method. A fixed point iteration 

technique is used for linearizing the resultant set of non-linear algebraic equations. A fully implicit one-step 

scheme is used for time stepping. For the mesh movement, a linear elastic model is used which is known to 

preserve the mesh quality. The stability estimates for the semi-discrete and fully discrete scheme are analyzed. 

The methodology is assessed through the simulation of fluid sloshing in a rectangular tank with an initial uneven 

surface. The methodology is shown to result in stable simulations for many time steps. The conservation of mass 

and other physical parameters along with numerical parameters are presented. 

Keywords: Navier-Stokes equation, Arbitrary Lagrangian Eulerian formulation,  Moving mesh method, Implicit 

Euler discretization, Stability estimates,  Free surface fluid sloshing 

 

1. Introduction 

Free surface flows are ubiquitous in nature and industry. Unlike flows in full enclosures such as pipes, free surface 

flows are fluid flows where a part or complete(for example: droplets) por- tion of the fluid boundary is exposed 

to another phase such as gas or vacuum. Flows in rivers, oceans, laboratory towing tanks, flows past floating 

objects, bridge piers and fluid droplets in air/gas are examples of free surface flows. Simulation of free surface 

flows is particularly chal- lenging as the physical space occupied by the fluid and thus the computational domain 

itself changes with time. These types of flow problems are generally called free boundary problems (or) 

interface/multiphase flow problems. 

The difficulties inherent in these problems are very challenging for mathematical and com- putational analyses. 

From the mathematical point of view, one has to appropriately model the free boundary kinematics and solve the 

strong coupling between the boundary motion and the dynamics of the continuum. From the computational point 

of view and in the discrete setting, one has to correctly choose the discretization parameters, coupling, and solution 

algorithms for a stable and accurate solution. 

Tracking or capturing the interface, accurately  incorporating  the  boundary  conditions  on the interface, and 

guaranteeing mass conservation are some of the challenges in interface flow computations. It turns out that the 

development of robust and efficient numerical schemes for computing fluid flows with unsteady motion of moving 

interfaces is a challenging problem in the computational fluid dynamics(CFD) field[10]. 

Several techniques have been proposed in the literature to capture/track interfaces, see for an overview [13]. Based 

on how the interface is captured, all these techniques can be classified into two classes: (i) fixed grid and (ii) 

moving grid methods. Each method has its own advantages and disadvantages. Among the fixed grid techniques, 

Marker-and-cell(MAC)[17], Volume- of-Fluid(VOF)[15], Level Set(LS)[19] and Front-Tracking(FT)[13] are a 
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few popular techniques. The MAC method, where marker particles are used to identify each fluid, is the oldest 

and most popular method for computing multiphase flows. In the VOF method, a ’volume-of-fluid or marker 

function’ is used to identify each fluid phase. The ’volume-of-fluid’ function gives the volume fraction of one of 

the fluids in each of the cells of the discretized domain. Another popular and very flexible method is the Level 

Set method, which was introduced by Osher and Sethian. In this Eulerian kinematic description or fixed grid-

based method, the actual position of the free boundary is localized in a fixed mesh. The equations of the fluid are 

solved in a larger domain than that really occupied by the fluid. The interface between various phases has to be 

distinguished by the characteristic function (the ’volume-of-fluid marker function’ or the ’level-set function’). In 

principle, these methods can be employed for general free and moving boundary problems, however, the 

identification of the interface needs a refined mesh in order to obtain sufficient accuracy. Another popular method 

in dealing with PDEs in time-changing domains is the Arbitrary Lagrangian Eulerian(ALE) formulation which is 

used in this study. An early description of the approach is given in [9]. In this approach, the governing equations 

are posed in a moving mesh framework. The interface/boundary is resolved by the mesh and moves with the fluid 

in a Lagrangian way. The inner mesh points can be displaced in an arbitrarily prescribed way. This avoids quick 

distortion of mesh [4]. Since the boundary is resolved by the mesh in the ALE approach, the inclusion of boundary 

conditions in the solution process is straightforward [10]. 

One main drawback of the ALE or moving mesh method is the need for re-meshing when the mesh is too distorted 

or the quality of mesh(indicated by a metric) is too low during the course of the simulation. This re-meshing of 

the computational domain and interpolation of quantities of interest to the new mesh from the old mesh is 

computationally expensive. Also for three-dimensional and realistic meshes, re-meshing algorithms are almost 

nonexistent. But as the interface is resolved, accurate representation of the dynamics of the free surface is possible 

for not too large topological changes. This gives the ALE method a powerful advantage in mass conservation. As 

mentioned, the method fails when there are large topological changes such as overturning of waves, splitting and 

merging of fluid, etc. Whereas interface-capturing methods can capture large topological changes but the interface 

cannot be represented accurately which leads to mass conservation problems. 

In this study, we choose the ALE concept for the kinematic description, a linear elastic model for mesh movement 

which is known to conserve mesh quality better than harmonic extension[10], the finite element method for space 

discretization, an implicit Euler method for time discretiza- tion and finally all the equations are solved in a 

coupled fashion. The primary unknowns are the fluid velocity, the pressure, and the mesh velocity. Our 

contribution in the present paper concerns the following important issues: the finite element discretization of the 

coupled system of governing equations, a fully implicit Euler time-stepping scheme, the use of fixed point iteration 

technique to deal with nonlinearity, analyzing stability estimates for both semi-discrete and fully discrete scheme 

in moving mesh problems and establishment of benchmark tests to easily validate the code. 

It is, indeed, well known that when discretizing the Galerkin formulation of  the  Navier- Stokes equations, care 

should be exercised to avoid undesirable oscillations for pressure in the low Reynolds regime and for the whole 

system in the advection-dominated regime. The first kind of instabilities can be avoided by choosing compatible 

velocity and pressure finite element approximations, i.e. to satisfy the inf-sup condition [23], [4]. Whereas in the 

latter case, insta- bilities can be avoided by adding some diffusive mechanisms such as the effect induced in the 

streamline Petrov Galerkin method and Galerkin Least Squares method [18]. Our study for the paper pertains to 

the former, the low Reynolds regime. Hence stabilization techniques for high Reynolds/advection dominated 

regime are not discussed. 

The rest of the paper is arranged as follows: Section 2 presents the governing equations in ALE formulation. 

Section 3 presents the function spaces and the weak form of the equations. Further, the finite element discretization 

and stability estimates of the semi-discrete scheme are analyzed in Section 4. Section 5 presents the time stepping 

and stability of the fully discrete scheme. Implementation aspects and numerical results are presented in section 

6. Finally, the observations and conclusions are presented in section 7. 

2. Governing Equations 
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The Navier-Stokes equations for an incompressible fluid in a time-dependent domain Ω(t) ⊂ 𝑅 3, together with 

the force balancing boundary conditions on the free surface ΓF (t) ⊂ ∂Ω(t) and no penetration free slip boundary 

conditions on ΓW (t) = ∂Ω(t)/ΓF (t) are given by 

   
𝜕𝑢

𝜕𝑡
+ (𝒖 ∙  𝛻)𝑢 − 

1

𝜌
𝛻 ∙ 𝑇(𝒖, 𝑝) = 𝒈             𝑖𝑛 𝛺(𝑡) × [0, 𝐼] 

𝛻 ∙ 𝒖 = 0                           𝑖𝑛 𝛺(𝑡) × [0, 𝐼] 

                                                      −𝑇 · 𝑛 =  𝑟                         𝛤𝐹  (𝑡)  ×  [0, 𝐼]                                                   (1) 

  𝑢 · 𝑛 = 0                         𝛤𝑊  (𝑡)  ×  [0, 𝐼]  

                                                     𝜏𝑖 · 𝑇 · 𝑛 = 0          𝑓𝑜𝑟 𝑖 = 1,2 𝑜𝑛(𝑡)  × [0, 𝐼]   

 

where u, p, ρ, t, r, τ , n and I denote the fluid velocity, pressure, fluid density, time, external traction, unit tangent, 

outward unit normal and given end time respectively. Here, the stress tensor  𝑇(𝑢, 𝑝) is given by 

                    𝑇(𝒖, 𝑝) = −𝑝𝐼 + 2𝜇𝐷(𝒖)                                                 (2) 

where 𝐼 and µ denote the identity tensor and the dynamic viscosity of the fluid respectively. Further, the velocity 

deformation tensor 𝐷(𝒖) is given by 

𝐷(𝒖) =
1

2
(𝛻𝒖 +  𝛻 𝒖𝑇) 

where the superscript T denotes transpose. Further, the kinematic condition 

𝒘 · 𝑛 =  𝒖 · 𝑛   𝑜𝑛  𝛤𝐹  (𝑡)  ×  [0, 𝐼] 

on the free surface has to be satisfied, i.e., the normal velocity of the interface should be equal to the normal 

velocity of the fluid(at the interface). Here w is the interface velocity. In addition, the initial condition and initial 

domain have to be specified i.e., u(x, 0) = u0(x) and 𝛺(0). For our computations in section 6, we use u0(x) = 0 

i.e., the fluid is at rest at time t = 0. The computational domain used in the study is shown in figure 1. 

 

Fig..1 Computational domain at t = 0 for free surface fluid sloshing simulation 

2.1 Slip with friction boundary condition 

The free slip boundary condition that the velocity of the liquid relative to the solid surface at the liquid-solid 

interface is an assumption. It is known that these frictional effects will not affect the macroscopic flow profile of 
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the fluid in bulk fluid flows. As we are dealing with macroscopic or bulk fluid flow, this assumption is justified. 

Whereas in microfluidics, these frictional effects at interfaces strongly influence flow dynamics. The slip with 

friction or Navier-slip boundary condition is given as 

                                          𝑢 · 𝑛 = 0,      𝒖 ∙  𝜏𝑖 = −𝜖𝜇(𝜏𝑖 ∙ 𝑇(𝒖, 𝑝) ∙ 𝑛),    𝑜𝑛  𝛤𝑊  (𝑡)  ×  [0, 𝐼]                              (3) 

For i = 1, ..., d-1, where d is the dimension of the considered problem. 𝜖𝜇 is the slip coefficient. The unit of stress 

in SI units is kg/m.s2 and the velocity is m/s. So the unit of slip coefficient 𝜖𝜇 is velocity/unit stress. The first 

condition in (3) is the no penetration boundary condition, that is the fluid cannot penetrate an impermeable solid 

boundary and thus the normal component of the velocity is zero. The second condition is the slip with friction 

boundary condition, that is at the liquid-solid interface, the tangential velocities of the fluid are proportional to 

their corresponding tangential stresses. Depending on the choice of ϵ, one gets different boundary conditions as 

follows.  

1. no-slip if ϵ = 0 

2. slip with friction if 0 < ϵ < ∞ 

3. free slip if ϵ = ∞ 

 

 

Fig...2 Interpretation of Navier slip length ϵ 

For an interpretation of slip length, see Fig 2. For example, in the case of shear flow, i.e., partial slip ϵ can be 

interpreted as the fictitious distance to the solid surface as shown in Fig 2(second). For a more detailed description 

of the slip boundary condition, see [5]. In the present paper, we have considered an impervious and free slip 

boundary condition at the fluid-solid interface(walls) at all times. Thus u · n = 0 and τ i · T · n = 0 is the condition 

on ΓW (t) × [0, I]. 

2.2 Model Problem and its ALE formulation 

Let the boundary points on all the interfaces be denoted by 𝜒𝐹  . In the ALE formulation, the boundary points 𝜒𝐹  

are advected with their corresponding velocity as 

                                                                                    
𝑑𝜒𝐹

𝑑𝑡
= 𝑢(𝜒𝐹 , 𝑡)                                                                     (4) 

and the inner points are moved arbitrarily to preserve the mesh quality. 

To rewrite the equation (1) in ALE form, let us define a family of mappings At, which at each time t ∈ [0, T)  map  

a  point  (namely  ALE  coordinate)  𝑌 ∈  𝛺̂ of  a  reference  domain  𝛺̂  onto  a point (namely Eulerian coordinate) 

X of the current domain Ωt. That is, 

𝐴𝑡: 𝛺̂  → 𝛺𝑡 ,       𝐴𝑡(𝑌) = 𝑋(𝑌, 𝑡) 

for each t ∈ [0, T). We assume that the mapping At is a homeomorphic function i.e, 𝐴𝑡 ∈  𝐶0(𝛺̂). Furthermore, 

we assume the mapping 
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𝑡 → 𝑋(𝑌, 𝑡),         𝑌 ∈  𝛺̂ 

Is differentiable almost everywhere in [0,T). 

The function v in (1) is defined on the Eulerian frame. Here we define 

The function v in (1) is defined on the Eulerian frame. Here we define 

 

which is the corresponding function on the ALE frame. Furthermore, the time derivative of v on the ALE frame 

is given by 

 

Here |𝛺̂ is used to indicate the time derivative is on the ALE frame. Further, the time derivative on the Eulerian 

frame is indicated by |𝑋. The domain velocity w is defined by 

𝒘(𝑿, 𝑡) =
𝜕𝑋

𝜕𝑡
|𝛺̂ 

Now to get  
𝜕𝑣̂

𝜕𝑡
=

𝜕𝑣

𝜕𝑡
|𝛺̂ , i.e., the time derivative of 𝑣̂, we apply total derivative to the composition v ◦ 𝐴𝑡 to obtain  

                                                                                         (5) 

where 𝛻𝑋 denotes the gradient with respect to the Eulerian coordinate (this is qualitatively and quantitatively the 

same as normal space gradient as space gradients are not influenced by mesh velocity). Using the above relation 

(5) in the equation (1), we get 

                                              (6) 

The extra term −𝑤 ∙  𝛻𝑋 𝑣 can be interpreted as a correction in the actual time gradient of the quantity v because 

of the extra unphysical time gradient induced by mesh movement. 

 

2.3 Linear elastic model for mesh movement/velocity 

Given the free surface boundary displacement/velocity, the interior points can be moved based on the linear elastic 

model. It is known that the linear elastic model preserves the mesh quality better than harmonic extension [10]. 

The model is given by 
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Here w is the mesh velocity, λ1 and λ2 are called Lamé constants and for the present computations 

they are taken as λ1 = λ2 = 1. Also no ALE mapping is required for mesh movement as it is treated in Lagrangian 

way. 

2.4 NSE-ALE equation coupled with linear elastic model 

Here we write equation (6) in 2.2 coupled with linear elastic model 

                                       

with the boundary conditions and initial conditions as 

                                 

 

3. Governing Variational form of the NSE-ALE equation 

To derive the weak formulation of the governing equations (8) with the boundary conditions (9), we define 

solution and test spaces 

 

for velocity, where  

                                     
pressure, and 

 

for linear elastic model for mesh movement. 

The 𝑣 = 𝑣̂ ◦ 𝐴𝑡
−1 in velocity space and similar composition in pressure space essentially means the 

(basis)functions in the current domain i.e, 𝒗 ∈ Ω𝑡  are obtainable by composition of (ba- sis)functions  in  reference  

domain i.e,  𝒗̂ ∈ Ω̂𝑡  with  ALE  mapping, and no such mapping or  ALE transformation is required for mesh 

movement as it is treated in the Lagrangian way. 

Moreover,  the L2−inner  product,  the  norm  and  the  semi-norm,  (·, ·)t,  ∥ · ∥0,t  and  | · |1,t,  respectively, over 

Ωt are defined as 



Tuijin Jishu/Journal of Propulsion Technology 

ISSN: 1001-4055 

Vol. 45 No. 2 (2024) 

__________________________________________________________________________________ 

4343 

 

Thus the weak form for NSE-ALE equation coupled with linear elastic model reads: Find u ∈ VA(Ωt),  p ∈ QA(Ωt) 

and w ∈ S(Ωt) such that 

 

Applying integration by parts to the stress tensor term in the weak form of momentum equation and applying 

boundary conditions gives. 

 

The complete derivation is given in appendix A. 

Following a similar procedure of applying integration by parts to the symmetric tensor term in the weak form of 

the linear elastic model. The weak form reads: Find w ∈ S(Ωt) such that 

                                

 

The application of integration by parts is elaborated in appendix B. Putting it all together, thus after applying 

integration by parts, the weak form of Navier-Stokes equations in ALE form coupled with linear elastic model 

reads: Find u ∈ VA(Ωt), p ∈ QA(Ωt), and w ∈ S(Ωt) such that 

        

with the boundary and initial conditions specified in (9). 

Remark: The quantity  
1

𝜌
∫ ⬚

∙

𝛤𝐹
𝑣 ∙  𝑟is a known quantity and is taken to RHS in the system matrix assembly 

process. 

We will utilize an important inequality known as Korn’s inequality, which states that: 

                         

where C0(Ωt) is a positive constant, whose value depends on Ωt. 
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Lemma 1 Let u = u(x, t) be the divergence free velocity, that is ∇ · u = 0, in a time varying domain Ω𝑡 ∈  𝑅2 and 

Γ (t) = ∂Ωt. Let n be the outward unit normal vector on Γ (t), then, 

                     

and 

                  

where P is a set of parameters, are equivalent and both preserve volume of Ωt 

Proof. The solution of (14) gives a parametrization of Γ (t) as 

                                       

The volume of Ωt is 

                   

Now, take the time derivative and use(14) to get  

                                 

The first term in the above integral vanishes, since 

 

Then we have, 

 

If  𝑃 ∈ [0, 1], then we have X0(0) = X0(1), since Γ (0) is a closed curve. Due to the unique solvability of (15) we 

conclude 

𝑿(𝑡, 1)  =  𝑿(𝑡, 0)   ∀  𝑡 ≥  0 

Thus, the second term also vanishes, and we get 

𝑑

𝑑𝑡
|𝛺𝑡| = 0 → |𝛺𝑡| =  𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 =  |𝛺0| 

Now, using (15) we have to replace (18) by 

𝑢1 = (𝒖 ∙  𝑛)𝑛1 𝑎𝑛𝑑 𝑢2 =  (𝒖 ∙  𝑛)𝑛2 

Thus, for the first term in the integral (15), we get 

(𝒖 ∙  𝑛)𝑛1 ∙  𝑛1 + (𝒖 ∙  𝑛)𝑛2 ∙  𝑛2 =  (𝒖 ∙  𝑛) 
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which means that the first term vanishes again. Further, the second term vanishes too, since it is independent of 

the velocity field. i.e., it uses only the argument of Γ0 is closed and the unique solvability of (15). Hence both (14) 

and (15) are equivalent, and in the continuous model, ∇ · u = 0 in Ω(t) guarantees the conservation of volume 

[10]. 

4. Finite element discretization of the ALE equation 

Let 𝑇ℎ,𝑡 be the collection of simplices obtained by triangulating the time-dependent domain Ω𝑡. We denote the 

diameter of the cell 𝐾 ∈  𝑇ℎ,𝑡  𝑏𝑦 ℎ𝐾,𝑡, and the global mesh size in the triangulated domain 𝛺ℎ,𝑡by ℎ𝑡 ∶=

{ℎ𝐾,𝑡 ∶ 𝐾 ∈  𝑇ℎ,𝑡} . Suppose 𝑉ℎ  ⊂  𝑉𝐴(Ω𝑡), and 𝑄ℎ  ⊂  𝑄𝐴(Ω𝑡), is a conforming  finite  element  (finite-

dimensional)  space.  Let 𝜙ℎ  ∶=   {𝜙𝑖(𝑥)}, 𝑖  =   1, 2, . . . , 𝑁 ,  be  the finite element basis functions of 𝑉ℎ. For the 

discrete form of the Navier-Stokes equation to have a stable solution, the discrete function spaces have to satisfy 

the so called Inf sup condition [12], [14], [6]. 

Hypothesis: (Uniform inf-sup condition) There exists a positive constant β1 independent of the discretisation 

parameter h such that                                   

 

Where 

 

which is the pressure and velocity coupling in the Navier-Stokes equation 

 

The solution spaces for velocity and pressure have to be chosen in such a way that the condition (19) is satisfied. 

The following finite element pairs satisfy discrete inf-sup stable conditions on simplices with a constant β1, which 

is independent of mesh parameter h. 

1. continuous, piecewise polynomials of degree less than or equal to k for the velocity and continuous, 

piecewise polynomials of degree less than or equal to k − 1 for the pressure approximation, i.e., (pk/pk−1), for k ≥ 

2. 

2. continuous piecewise polynomials of degree less than or equal to k, enriched with cell bubble functions 

for the velocity and discontinuous piecewise polynomials of degree less than or equal to k − 1 for the pressure 

approximation, i.e., 
𝑝𝑘

𝑏𝑢𝑏𝑏𝑙𝑒

𝑝𝑘−1
𝑑𝑖𝑠𝑐  𝑓𝑜𝑟 𝑘 ≥ 2. 

3. continuous piecewise polynomials of degree less than or equal to k, k = 2, 3 in 2D for the velocity and 

discontinuous piecewise polynomials of degree less than or equal to k − 1 for the pressure approximation, i.e., 

pk/(pk−1 + p0), for k = 2, 3. 

4. On macro-element meshes, continuous piecewise polynomials of degree less than or equal to k, k ≥ 2 in 

2D and k ≥ 3 in 3D, for the velocity and discontinuous piecewise polynomials of degree less than or equal to k − 

1 for the pressure approximation i.e., (𝑝𝑘/𝑝𝑘−1
𝑑𝑖𝑠𝑐) for k, k ≥ 2 in 2D and k ≥ 3 in 3D, on macro element meshes.      
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The inf-sup stability proof of 
𝑝𝑘

𝑏𝑢𝑏𝑏𝑙𝑒

𝑝𝑘−1
𝑑𝑖𝑠𝑐 , 𝑓𝑜𝑟 𝑘 = 2, 3  is given in [8]. The stability proofs of pk/(pk−1 + p0), k = 2, 3 

and 
𝑝𝑘

𝑝𝑘−1
𝑑𝑖𝑠𝑐, are presented in [16], [22] and [20], [21], [24] respectively. For the stability proof of all other finite 

element pairs pk/pk−1, 
𝑝𝑘

𝑏𝑢𝑏𝑏𝑙𝑒

𝑝𝑘−1
𝑑𝑖𝑠𝑐 , , we refer to [23] and the references given there. 

We next define the semi discrete mesh velocity wh in space using the semi discrete ALE mapping 

                                                                            

 

Let 

 

where P1  is a set of polynomials of degree less than or equal to one on 𝐾, be the piecewise linear Lagrangian 

finite element space. To move the mesh, it is sufficient to move the vertices, and thus the semi  discrete  

(continuous  in  time)  mesh  velocity  𝑤̂ℎ(𝑡, 𝑌 ) ∈ 𝐿1(Ω̂)𝑑  in  the  ALE  frame  for each t ∈ [0, T) is defined as 

 

Here,  wi(t)  denotes  the  mesh  velocity  of  the  ith  node  of  simplices  at  𝑡𝑖𝑚𝑒 𝑡 𝑎𝑛𝑑 𝛹𝑖(𝑌), 𝑖 = 1, 2, … . 𝑀,  are 

the basis functions of 𝐿1(𝛺̂). We then  define  the  semi-discrete  mesh  velocity  in the Eulerian frame as 

 

Applying the finite element discretization to the NSE-ALE variational form (12), the semi- discrete form reads 

 

 

4.1 Stability analysis of semi-discrete (continuous in time) NSE-ALE equation 

 

Lemma 2 Stability of the semi-discrete problem: Let the discrete version of (9) hold true. Then, the solution of 

the problem (21) satisfies 

 

To derive the stability estimates, take vh = uh in (21), we obtain 
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We have made a modification to the equation above by including a consistent term (
1

2
∫ ⬚

.

𝛺(𝑡)
(𝛻 ∙ 𝒖ℎ)𝒖ℎ𝒗ℎ𝑑𝑥) 

to recover the stability estimates at the discrete level also. The first term can be written as 

 

The second term can be split as 

 

 

Since |𝑢ℎ|2 ∉  𝑄ℎ(𝛺𝑡), the additional consistent term will be beneficial in eliminating the second term of the 

above equation. We emphasize the fact that this modification is consistent because the exact solution satisfies 𝛻 ∙

𝒖 =  0. From here onwards, we will be taking into account the modified problem which includes the above-

mentioned consistent term. By utilizing equation (13) with the value of κ = 2µC0, and consolidating the previously 

mentioned factors, the resulting outcome is, 

 

In the semi-discrete case, the stability properties are affected by the domain velocity field. When the Neumann 

Boundary is set to zero, the apriori stability estimates for the Navier-Stokes equation in the ALE framework are 

the same as those in the fixed domain. This information can be inferred from the estimate provided above. Since 

the second term does not have a definite sign, the desired stability estimate can not be obtained. If (𝒖 − 𝜒̇𝐹) ∙ 𝑛 ≥

0, ∀ 𝑥 ∈  𝛤𝐹
𝑁,  the above estimate is stable. This happens when 𝛤𝐹

𝑁 is an outflow section means fluid exits the 

domain through the Neumann boundary 𝛤𝐹
𝑁. 

 

5. Time Stepping 

In this section, we present the stability estimates for a fully discrete NSE-ALE form. In particular, the first-order 

modified implicit backward Euler time discretizations are analyzed. Let 0 =  𝑡0  <  𝑡1  < · · · <  𝑡𝑁  =  𝐼 be a 

decomposition of the considered time interval [0, I]. Let us define 𝑘𝑛  =  𝑡𝑛+1 − 𝑡𝑛, 0 ≤ 𝑛 ≤ 𝑁 −  1, be a 

sequence of timesteps. 

5.1 Temporal discretization of ALE mapping 

 

Since the ALE technique is used to handle the time-dependent domain, the domain velocity has to be provided at 

each instant tn to discretize the Navier-Stokes equations in time. Therefore first we define the discrete (in time) 

domain velocity which is based on the ALE mapping. To define discrete (in time)  ALE  mapping,  the  reference 
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domain  Ωˆ  has  to  be  defined.  The  choice  of  the reference domain is arbitrary, and often the initial domain 

Ω0 is taken as the reference domain Ωˆ.  However,  if  the  deformation  of  the  domain  Ωt  is  very  large  in  

time,  then  it  is  appropriate to choose the latest available domain as the reference domain. Therefore we choose 

the previous timestep domain Ωtn as the reference domain at the time interval [tn, tn+1]. Using this, we define the 

discrete in-time ALE mapping and the domain velocity at the interval [tn, tn+1] as 

 

The finite element spaces for the velocity and the pressure using ALE extension in a moving domain on the time 

interval [tn, tn+1] can be defined as 

 

 

Fully implicit monolithic time discretization(one step): For a given fixed𝛺𝑡𝑛
 , 𝒖ℎ

𝑛 ∈ 𝑉ℎ(𝛺𝑡𝑛
), 𝑝ℎ

𝑛 ∈

𝑄ℎ(𝛺𝑡𝑛
), 𝒘̂ℎ

𝑛+1 ∈ 𝐻1((𝐴𝑛+1
𝑛 )−1 (𝛺𝑡𝑛+1

 )), 𝑓𝑖𝑛𝑑 𝒖̂ℎ
𝑛+1 ∈ 𝑉ℎ(𝛺𝑡𝑛+1

), 𝑝̂ℎ
𝑛+1 ∈ 𝑄ℎ(𝛺𝑡𝑛+1

), such that 

 

                                  

                                                                     (23) 

With the boundary condition as 

𝑤̂𝑛+1 ∙ 𝑣ℎ = 𝒘̂ℎ
𝑛+1 ∙ 𝑣 𝑜𝑛 𝛤𝐹𝑡𝑛

 

Remark: The computation of 𝑤̂𝑛+1 is discussed when linearization is discussed. The following identity holds for 

all 𝜓ℎ  ∈  𝑉ℎ,0(𝛺ℎ,𝑡), 𝑡 ∈ (𝑡𝑛𝑡𝑛+1]. 

 

Where 𝜓̂ℎ ≔  𝜓ℎ(𝐴𝑛+1
𝑛 )−1, 𝑤̂ℎ = 𝒘ℎ(𝐴𝑛+1

𝑛 )−1 𝑎𝑛𝑑 𝐽𝑐𝑜𝑓 is the cofactor of the Jacobian 

Remark 1: In general an explicit of the form 

 

has been used in all-time integration schemes, since the domain Ω𝑡𝑛+1
 is unknown a-priori, and therefore the 

calculation of the Jacobian 𝐽𝑐𝑜𝑓  is not possible. 
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5.2 Linearisation and solution process 

Here we describe the linearisation process of the non-linear convection term in the weak form of the momentum 

balance equation of Navier-Stokes equations. It is based on a fixed point iteration type. As an example, consider 

the convection term at the time 𝑡𝑛2
 on [𝑡𝑛1

, 𝑡𝑛2
]. The non-linear convective term is then 

 

where Ω̂𝑛1
∶= (𝐴𝑛2

𝑛1)
−1

 (Ω𝑡𝑛2
). This results in a system of nonlinear algebraic equations. In general, instead of 

solving a nonlinear system, the convection term is linearised and a linear algebraic system is solved for the Navier-

Stokes equations. 

In our computations, we prefer to use the fully implicit form of the convection term (24) with an iteration of fixed 

point type. The basic idea in the fixed point iteration is to iterate the entire system with some criterion at each time 

step. At the time 𝑡𝑛2
, we use an iteration 𝒖𝑙

𝑛2 → 𝒖𝑙+1
𝑛2 based on 

 

with known 𝑢0
𝑛2(= 𝑢𝑛1). We iterate (25) for a fixed number of times or the residual becomes less than the 

prescribed value in each time step. It is clear that the fully implicit form with fixed point iteration is  

computationally more expensive than other time-stepping methods such as explicit or semi-implicit. However, 

the fully implicit form leads to a robust and stable solution, which is essential for moving domain problems. Thus 

 

with 𝒘̂ℎ,𝑙
𝑛+1 obtained from 𝒖̂ℎ,𝑙

𝑛+1 by solving the linear elastic equation. 

5.3 Stability estimates of the fully discrete NSE-ALE with Implicit Euler time discretization 

For the sake of simplicity, we will use the suffix (l) only for the second nonlinear term. The equation can be 

written as  
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Taking 𝑣ℎ = 𝑢ℎ
𝑛+1, we get 

 

The second term can be written as 

 

applying Cauchy-Schwarz inequality, we get 

 

From the Reynolds identity, we have 

 

and we get 

 

Let  

 

be the ALE mapping between 𝛺𝑡𝑛
 and 𝛺𝑡𝑛+1

 , and 𝐽𝐴𝑡𝑛,𝑡𝑛+1
 be it Jacobian. Then we have 
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Further, using the notation 

 

The above equation can be written as 

 

Summing over the index as i = 0, 1, 2, . . . , n, and assuming there is an outflow in the domain, the second term 

becomes positive, leading us to the following inequality: 

 

 

We now apply Gronwall’s lemma to get 
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The above stability estimate is stable provided we have 

 

6. Implementation and numerical results 

A test example of a rectangular fluid tank is taken with dimensions 1m in length, 0.4m in width, and the mean 

height of the fluid as 0.3m. A sinusoid is taken as the initial height profile of a free surface with amplitude 0.03m 

and spatial frequency 1Hz by linearly joining a sine waveform on one longitudinal edge and cosine(sine with a 

shift of 900) waveform on the other longitudinal edge. The profile is given as 𝑦 =
(𝑧−0.4)

0.4
(0.3 +

 0.03𝑠𝑖𝑛(2𝜋𝑥))  +  
𝑧

0.4
 (0.3 +  0.03𝑐𝑜𝑠(2𝜋𝑥)). This would cause imbalance in body forces and thus induces 

motion. The fluid properties, density is taken as 500 kg/m3, dynamic viscosity as 0.89Pa.s, and gravitational 

constant is taken as 9.8m/s2. The external traction at ΓF (t) i.e., r is taken as zero. The domain is discretized as a 

transfinite mesh with 1539 hexahedrons. A p2/p1 element is used for velocity/pressure in Navier-Stokes equations 

which satisfies the inf-sup condition which results in 42237 velocity degrees of freedom(for three components)and 

2000 pressure degrees of freedom. A p1 element is used for mesh velocity in a linear elastic model which gives 

6000 mesh velocity degrees of freedom. Figure 3 shows the computational domain at t = 0. Figure 6 shows the 

free surface at times 0.5s, 1.0s, 2.0s, and 4.0s respectively. The open source package deal.ii [3] which stands for 

’Differential equations analysis library’, which is a set of subroutines/classes for Finite element workflow is used. 

The library is written in C++ programming language and parallelization is based on MPI (Message passing 

interface). The FE package deal.ii can interface with various other MPI-based packages such as ’p4est’ [7] for 

domain decomposition and ’petsc’ [18] and ’mumps’ [2] for linear algebra/matrix solution process. The finite 

element mesh is generated by Gmsh [11] and visualization in Paraview [1]. The code was implemented on 64 

AMD EPYC cores on 4 interconnected nodes and took a wallclock time of 12 hours for 400 time steps. 

.  

 

Fig.3 Discretised domain with initial uneven free surface. 

As described in section 5, a fully implicit time discretization is employed with a time step of 0.01s. The simulation 

is carried out for a total of five seconds, i.e., 500 timesteps. The simulation was stable throughout. Table 1 shows 

the mass of the computational domain at various timesteps. In a span of 500 timesteps, a 1.30% of the total mass 
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is lost, which is well within acceptable limits. Table 2 shows the total mechanical energy (kinetic and potential) 

of the flow at various timesteps. It can be inferred from the table that the total mechanical energy monotonically 

decreases with time which is a nature of viscous flow and thus shows the stable nature of the scheme. Finally, 

figure 6 shows the result of the simulation, i.e., the free surface profile at times 0.5s, 1.0s, 2.0s, and 4.0s, 

respectively 

Table.1 Volume of the computational domain at various timesteps 

Time(s) Volume(m3) Vt+0.5 − Vt(m3) % loss from initial volume 

0 0.120003 - 0 

0.5 0.119393 -6.10e-4 0.53 

1.0 0.119368 -2.50e-5 0.55 

1.5 0.119212 -1.56e-5 0.68 

2.0 0.119236 2.40e-5 0.66 

2.5 0.119059 -1.77e-4 0.80 

3.0 0.118895 -1.64e-4 0.94 

3.5 0.118801 -9.50e-5 1.02 

4.0 0.118656 -1.45e-4 1.14 

4.5 0.118557 -9.90e-5 1.22 

 5.0 0.118460 -9.7e-5 1.30 

   

 

 

Fig.4 Volume of the fluid at various timesteps 
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Table.2 Total energy of the flow at various timesteps 

Time(s) Total energy(10J) 

0 9.97 

0.5 8.71 

1.0 7.85 

1.5 7.41 

2.0 7.20 

2.5 7.13 

3.0 7.08 

3.5 7.08 

4.0 7.07 

4.5 7.03 

5.0 7.02 

 

 

 

Fig.5 Total mechanical energy in the system at various timesteps 
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(a) Domain at t = 0.5s 

 

 

(b) Domain at t = 1.0s 

 

 

(c) Domain at t = 2.0s 

 

 

(d) Domain at t = 4.0s 

Fig.6 Free surface profile at 0.5s, 1.0s, 2.0s and 4.0s respectively 

7. Conclusion 

In this paper, we elaborate the ALE method for moving domain problems including a well- described inclusion 

of boundary conditions in weak form and time stepping. The stability estimates for the proposed NSE-ALE 

scheme are derived. It is shown that the stability of the semi-discrete (continuous in time) NSE-ALE equation is 

independent of the mesh velocity provided if it is an outflow through the Neumann boundary. Whereas the stability 

of the fully discrete scheme with the implicit Euler time discretization is only conditionally stable (time step 

depends on mesh velocity). We applied it to a test case of fluid sloshing in a rectangular tank. We have 

demonstrated the scheme and the simulation is stable for several timesteps. Particularly the scheme has shown 

very good mass/volume conservation properties. Thus it shows that the ALE approach for moving domain 

problems along with implicit Euler time-stepping schemes has very good mass conservation properties in 

applications with small topological changes.  
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