# A Study on W<sub>1</sub>- Curvature Tensor in *LP*-Kenmotsu Manifolds

# Gyanvendra Pratap Singh<sup>1</sup>, Anand Kumar Mishra<sup>2\*</sup>, Pawan Prajapati<sup>3</sup>, Rajan<sup>4</sup>

<sup>1,2,3,4</sup> Department of Mathematics and Statistics Deen Dayal Upadhyaya Gorakhpur University, Gorakhpu (UP) India

Abstract: The objective of the present paper is to study the curvature properties of Lorentzian - Para Kenmotsu manifolds (abbreviated as "LP - Kenmotsu manifolds") satisfying the conditions of  $W_1$ -flatness,  $\xi - W_1$  -flatness,  $W_1 \cdot Q = 0$ ,  $\varphi - W_1$  - semisymmetric,  $W_1(\varphi X, \varphi Y, \varphi Z, \varphi W) = 0$  conditions and found some interesting results.

Mathematics Subject Classification 2010: 53C15, 53C25, 53D10.

*Keyword and Phrases:* Almost contact manifolds,  $\epsilon$ - Kenmotsu manifolds, LP-Kenmotsu manifolds,  $\phi$ -symmetric,  $\phi$ - semisymmetric,  $\psi$ -semisymmetric,  $\psi$ -curvature tensor, Einstein manifold,  $\psi$ -Einstein manifold.

#### 1. Introduction

The concept of Lorentzian paracontact, specifically Lorentzian para-Sasakian (LP –Sasakian) manifolds, was first presented by K. Matsumoto [7] in 1989. Subsequently, numerous geometers, including Matsumoto and Mihai [8], Mihai and Rosca [6], Mihai, Shaikh and De [5], Venkatesha, Pradeep Kumar, and Bagewadi [15], Venkatesha, and Bagewadi [16,17], and obtained several outcomes from these manifolds. F. Ozen Zengin studied the nature of LP – Sasakian manifolds admitting the M – projective curvature tensor and examined whether this manifold satisfies the condition  $W(X,Y) \cdot R = 0$ . Moreover, he proved that in the M – projective curvature tensor and examined whether this manifold satisfies the condition  $W(X,Y) \cdot R = 0$ .

Moreover, he proved that in the M -projectively flat LP - Sasakian manifolds, the conditions  $R \cdot R = 0$  and  $R(X,Y) \cdot S = 0$  are satisfied and then he introduced the concept of M -projectively flat space-time. A class of Vietually paracontact metric manifolds, called para-Kenmotsu (abbreviated P-Kenmotsu) and special para-Kenmotsu (abbreviated SP-Kenmotsu) manifolds was developed by Sinha and Sai Prasad [2] in 1995. These manifolds are comparable to P-Sasakian and SP-Sasakian manifolds. In 2018, Abdul Haseeb and Rajendra Prasad conducted research on  $\phi$ -semisymmetric LP - Kenmotsu manifolds with a quarter-symmetric non-metric connection admitting Ricci solitons [13]. They also defined a class of Lorentzian almost paracontact metric manifolds, called Lorentzian para-Kenmotsu (abbreviated LP-Kenmotsu) manifolds [1]. Pokhariyal [3] explored these tensor fields' properties on a Sasakian manifolds in more detail. These notations were expanded to nearly para-contact structures by Matsumoto, Ianus, and Mihai in 1986. They also analyzed para-Sasakian manifolds that admitted these tensor fields [9], with De and Sarkar generalizing their results in 2009 [14].

Subsequently, Rajan, Gyanvendra Pratap Singh, Pawan Prajapati, Anand Kumar Mishra [20] studies  $W_8$ -curvature Tensor in Lorentzian  $\alpha$  –Sasakian Manifold in 2020. The concept of  $(\epsilon)$  –Kenmotsu manifold admitind  $W_8$ - Curvature tensor was studied by G.P. Singh, A.K. Mishra, Rajan, P. Prajapati, and A.P. Tiwari [25] in 2022. A Friedmann and J.A. Schouten [11] introduced the concept of semi-symmetric linear connection on a differentiable manifold in 1924. H.A. Hayden [13] first described and researched semi-symmetric metric connection in 1932. G.P. Singh, Rajan, A.K. Mishra, P. Prajapati [26] have studies the curvature properties of  $W_8$ - Curvature tensor in generalized Sasakian-space-forms 2023. The semi-symmetric metric connection in a Riemannian manifold was the subject of a symmetric study initiated by K. Yano [24] in 1970, which was later

explained upon by a number of authers including S. Ahmad and S.I Hussain [29], M.M. Tripathi [22], C.OZgur et al. [18] and many others.

If  $\nabla$  is assumed to be a linear connection and M be an n —dimensional differentiable manifold then the curvature tensor R and torsion tensor T of  $\nabla$  are given by

$$T(X,Y) = \nabla_X Y - \nabla_Y X - [X,Y],$$
  
$$R(X,Y)Z = \nabla_X \nabla_Y Z - \nabla_Y \nabla_X Z - \nabla_{[X,Y]} Z$$

If Torsion tensor T vanishes i.e, if T=0, then the connection  $\nabla$  is called to be symmetric else it is non-symmetric. The connection  $\nabla$  is said to be metric connection if there exist a Riemannian metric g in M such that  $\nabla_g = 0$ , otherwise it is non-metric. We know very well that the Levi-Civita connection is defined as;

A linear connection is Levi- Civita if it is symmetric as well as metric.

If torsion tensor T of a linear connection  $\nabla$  is of the form

$$T(X,Y) = \eta(Y)X - \eta(X)Y,$$

Then  $\nabla$  is called semi-symmetric connection; where  $\eta$  is 1- form.

The semi-symmetric metric connections are very cruicial in the study of Riemannian manifolds. The semi-symmetric metric connection is associated with a variety of physical issues. For instance, if a man moves over the surface of the earth always facing a specific location, such as, Jerusalem, Mekka, or the North pole, so this displacement is semi-symmetric and metric.

The paper is structured as follows in response to the studies mentioned above. We provide a brief overview of a LP - Kenmotsu manifold and its features. We locate the  $W_1$ -flatness in LP -Kenmotsu manifold in section 3. The analysis of the  $\xi - W_1$  -flatness in LP -Kenmotsu manifold is covered in section 4. We discover the LP -Kenmotsu manifold satisfying the condition  $W_1$ . Q=0 in section 5.  $\phi - W_1$  semisymmetric LP -Kenmotsu manifold in analyzed in section 6. A special condition i.e,  $W_1(\phi X, \phi Y, \phi Z, \phi W) = 0$  condition which is given in the end of the section and present some interesting findings.

#### 2. Preliminaries

An n –dimensional differentiable manifold M admitting a (1, 1) tensor field  $\phi$ , contravariant vector field  $\xi$ , a 1-form  $\eta$  and the Lorentzian metric g(X, Y) satisfying

$$\phi^2 X = X + \eta(X)\xi,\tag{2.1}$$

$$\eta(\xi) = -1,\tag{2.2}$$

$$g(\xi,\xi) = -1,\tag{2.3}$$

$$\eta(X) = g(X, \xi),\tag{2.4}$$

$$g(\phi X, \phi Y) = g(X, Y) + \eta(X)\eta(Y) \tag{2.5}$$

For any vector fields *X*, *Y* on *M*, then it is called Lorentzian almost paracontact manifold. In the Lorentzian paracontact manifold, the following relation holds:

$$\phi \xi = 0, \qquad \eta(\phi X) \tag{2.6}$$

Also, we have

$$\phi(X,Y) = \phi(Y,X),\tag{2.7}$$

Where  $\phi(X,Y) = g(X,\phi Y)$ 

A Lorentzian almost paracontact manifold M is called Lorentzian parasasakian manifold if

$$(\nabla_X \phi)(Y) = g(X, Y)\xi + \eta(Y)\phi X + 2\eta(X)\eta(Y)\xi, \tag{2.8}$$

where  $\nabla$  is the Levi- Civita connection with respect to g and for any vector fields X, Y on M.

If  $\xi$  is a killing vector field, the (para) contact structure is called K-(para) contact. In this case we have,

$$\nabla_X \xi = \phi X \tag{2.9}$$

Now, we define Lorentzian- para Kenmotsu manifold:

Definition 2.1: A Lorentzian almost paracontact manifold M is called Lorentzian para-Kenmotsu manifold if

$$(\nabla_X \phi)(Y) = -g(\phi X, Y)\xi - \eta(Y)\phi X. \tag{2.10}$$

In the Lorentzian-para Kenmotsu manifold, we have

$$\nabla_X \xi = -X - \eta(X)\xi,\tag{2.11}$$

$$(\nabla_X \eta)(Y) = -g(X, Y) - \eta(X)\eta(Y) \tag{2.12}$$

Additionally, the curvature tensor R, the Ricci tensor S and the Ricci operator Q in a Lorentzian para-Kenmotsu manifold M with respect to the Livi-Civita connection satisfies [8]

$$R(X,Y)\xi = \eta(Y)X - \eta(X)Y,\tag{2.13}$$

$$R(\xi, X)Y = g(X, Y)\xi - \eta(Y)X \tag{2.14}$$

$$R(\xi, X)\xi = X + \eta(X)\xi \tag{2.15}$$

$$g(R(X,Y)Z,\xi) = \eta(R(X,Y)Z) \tag{2.16}$$

Or, 
$$g(R(X,Y)Z,\xi) = g(Y,Z)\eta(X) - g(X,Z)\eta(Y)$$
 (2.17)

$$S(X,\xi) = -(n-1)\eta(X), \tag{2.18}$$

$$Q\xi = (n-1)\xi,\tag{2.19}$$

where g(QX,Y) = S(X,Y).

For any vector fields X, Y and Z on M it yields to

$$S(\phi X, \phi Y) = S(X, Y) + (n-1)\eta(X)\eta(Y)$$
 (2.20)

Here we note that if  $\epsilon = 1$  and the structure vector field  $\xi$  is a space like, then an  $\epsilon$ -Kenmotsu manifold same as usual Kenmotsu manifold.

**Definition 2.2:** A Lorentzian almost paracontact manifold M is said to be as  $\eta$ -Einstein manifold if its Ricci tensor S is of the form

$$S(X,Y) = a g(X,Y) + b\eta(X)\eta(Y)$$
(2.22)

where a and b are scalar functions on M.

A Lorentzian almost paracontact manifold M is said to be a generalized  $\eta$ -Einstein manifold if its Ricci tensor S is of the form

$$S(X,Y) = ag(X,Y) + b\eta(X)\eta(Y) + c\phi(X,Y)$$
(2.23)

where a, b and c are scalar functions on M and  $\phi(X,Y) = g(\phi X,Y)$ .

If c = 0, then the manifold reduces to an  $\eta$ - Einstein manifold.

Also, it is an Einstein manifold if b and c both are 0.

### 3. $W_1$ -flat LP-Kenmotsu Manifold

In this section, we study  $W_1$ - flat in LP-Kenmotsu manifold:

**Definition3.1:** An LP-Kenmotsu manifold is said to be  $W_1$  – flat if

$$W_1(X, Y)Z = 0, (3.1)$$

for any vector fields X, Y and Z on M.

 $W_1$  – Curvature tensor [6] is defined as

$$W_1(X,Y)Z = R(X,Y)Z + \frac{1}{n-1}[S(Y,Z)X - S(X,Z)Y]$$
(3.3)

$$\Rightarrow g(Y,Z)X - g(X,Z)Y + \frac{1}{n-1}[S(Y,Z)X - S(X,Z)Y] = 0$$
 (3.4)

Replacing X by  $\xi$  in (3.4) we get

$$g(Y,Z)\xi - g(\xi,Z)Y + \frac{1}{n-1}[S(Y,Z)\xi - S(\xi,Z)Y] = 0$$

$$\Rightarrow g(Y,Z)\xi - \eta(Z)Y + \frac{1}{n-1}[S(Y,Z)\xi - (n-1)\eta(Z)Y] = 0$$

$$\Rightarrow g(Y,Z)\xi - \eta(Z)Y + \frac{1}{n-1}[S(Y,Z)\xi - \eta(Z)Y] = 0$$

$$\Rightarrow \frac{1}{n-1}S(Y,Z)\xi = -g(Y,Z)\xi + 2\eta(Z)Y$$

$$\Rightarrow S(Y,Z)\xi = -(n-1)g(Y,Z)\xi + 2(n-1)\eta(Z)Y$$
(3.5)

Taking inner product with  $\xi$ , we get

$$-S(Y,Z) = (n-1)g(Y,Z) + 2(n-1)\eta(Y)\eta(Z)$$
  

$$S(Y,Z) = -(n-1)g(Y,Z) - 2(n-1)\eta(Y)\eta(Z)$$
(3.6)

Hence from the above discussion, we state the following theorem:

**Theorem 3.2:** If an n-dimensional LP – Kenmotsu manifold satisfying  $W_1$  –flat condition then the manifold is an  $\eta$ -Einstein manifold.

## 4. $\xi$ - $W_1$ flat LP-Kenmotsu Manifold

In this section, we study  $\xi$ - $W_1$ - flat in LP-Kenmotsu manifold:

**Definition 4.1:** An LP-Kenmotsu manifold is said to be  $\xi - W_1$ - flat if

$$W_1(X,Y).\,\xi = 0,\tag{4.1}$$

for every vector field X, Y on M.

Now, (4.1) turns into

$$R(X,Y).\xi + \frac{1}{n-1}[S(Y,\xi)X - S(X,\xi)Y] = 0$$

$$\eta(Y)X - \eta(X)Y + \frac{1}{n-1}[(n-1)\eta(Y)X - (n-1)\eta(X)Y] = 0$$

$$\eta(Y)X - \eta(X)Y + \eta(Y)X - \eta(X)Y = 0$$

$$2\eta(Y)X - 2\eta(X)Y = 0$$

$$\eta(Y)X - \eta(X)Y = 0$$

Putting  $X = \xi$  and Y = QY, we get

$$\eta(QY)\xi - \eta(\xi)QY = 0$$

$$\eta((n-1)Y\xi + QY = 0$$

$$QY = -(n-1)\eta(Y)\xi$$

$$QY = -(n-1)\eta(Y)\xi$$

$$g(QY,Z) = -(n-1)\eta(Y)\xi$$

$$S(Y,Z) = -(n-1)\eta(Y)\eta(Z)$$

Hence from the above discussion, we state the following theorem:

**Theorem 4.2:** If a n-dimensional LP-Kenmotsu manifold satisfying  $\xi - W_1$ -flat condition then manifold is a special type of  $\eta$  Einstein manifold.

# 5. LP-Kenmotsu Manifolds Satisfying $W_1$ . Q = 0

In this section, we study LP-Kenmotsu Manifold satisfying  $W_1$ . Q = 0. Then, we get

$$W_1(X,Y)QZ - Q(W_1(X,Y)Z) = 0. (5.1)$$

Putting  $Y = \xi$ , we get

$$W_1(X,\xi)QZ - Q(W_1(X,\xi)Z) = 0. (5.2)$$

Using (3.2), we get

$$\Rightarrow R(X,\xi)QZ + \frac{1}{n-1}[S(\xi,QZ)X - S(X,QZ)\xi] - Q\left[R(X,\xi)Z + \frac{1}{n-1}S(\xi,Z)X - S(X,Z)\xi\right] = 0.$$

$$g(\xi,QZ)X - g(X,QZ)\xi + \frac{1}{n-1}[(n-1)\eta(QZ)X - S(X,QZ)\xi]$$

$$-Q\left[g(\xi,Z)X - g(X,Z)\xi + \frac{1}{n-1}(n-1)\eta(Z)X - S(X,Z)\xi\right] = 0.$$

$$Or, \eta(QZ)X - g(X,QZ)\xi + \eta(QZ)X - \frac{1}{n-1}S(X,QZ)\xi - Q\left[\eta(Z)X - g(X,Z)\xi + \eta(Z)X - \frac{1}{n-1}(S(X,Z)\xi)\right] = 0$$

$$\Rightarrow 2\eta(QZ)X - S(Z,X)\xi - S(X,Z)\xi - Q[2\eta(Z)X - g(X,Z)\xi - \frac{1}{n-1}S(X,Z)\xi] = 0$$

$$Or, 2[(n-1)\eta(z)X - S(X,Z)\xi] - 2(n-1)\eta(Z)X + (n-1)g(X,Z)Q\xi + S(X,Y)\xi = 0.$$

$$Or, \qquad -S(X,Z)\xi + (n-1)g(X,Z)\xi = 0.$$

$$Or, \qquad S(X,Z)\xi = (n-1)g(X,Z)\xi.$$

Taking inner product with respect to  $\xi$ , we have

$$S(X,Z) = (n-1)g(X,Z).$$

Hence we can state the following theorem:

**Theorem 5.1:** If a n-dimensional LP – Kenmotsu manifold satisfying  $W_1 \cdot Q = 0$  condition then manifold is Einstein manifold.

## 6. $\phi - W_1$ semisymmetric *LP* – Kenmotsu Manifolds

Vol. 45 No. 2 (2024)

In this section, we study  $\phi - W_1$  semisymmetric LP – Kenmotsu manifolds. Let  $W_1$  is  $\phi$  – semisymmetric, then we get

$$W_1(X,Y) \cdot \phi = 0 \tag{6.1}$$

By the definition of  $\phi$  – semisymmetric, we have

$$W_1(X,Y) \cdot \phi Z - \phi W_1(X,Y) \cdot Z = 0. \tag{6.2}$$

Where, X, X and Z are arbitrary vector fields in M.

Using equation (3.2) in (6.2), we have

$$R(X,Y)\phi Z + \frac{1}{n-1}[S(Y,\phi Z)X - S(X,\phi Z)Y] - \phi R(X,Y)Z - \frac{1}{n-1}[S(Y,Z)\phi X - S(X,Z)\phi Y] = 0. \tag{6.3}$$

Putting  $X = \xi$  in above equation, we get

$$R(\xi, Y)\phi Z + \frac{1}{n-1} [S(Y, \phi Z)\xi - S(\xi, \phi Z)Y] - \phi R(\xi, Y)Z - \frac{1}{n-1} [S(Y, Z)\phi\xi - S(\xi, Z)\phi Y] = 0.$$
 (6.4)

Using equations (2.11) and (2.15) in above and on simplification, we get

$$g(X,\phi Z)\xi + \frac{1}{n-1}S(Y,\phi Z)\xi + \eta(Z)\phi Y + \frac{1}{n-1}S(\xi,\phi Z)\phi Y = 0.$$

$$S(Y, \phi Z)\xi = -(n-1)g(Y, \phi Z)\xi - 2(n-1)\eta(Z)\phi Y.$$

Taking inner product with  $\xi$ , we get

$$S(Y,\phi Z) = -(n-1)g(Y,\phi Z).$$

Replacing Z by  $\phi Z$ , we get

$$S(Y, \phi^2 Z) = -(n-1)g(Y, \phi^2 Z)$$

Or,

$$S(Y, Z + \eta(Z)\xi) = -(n-1)[g(Y, Z) + \eta(Z)\eta(Y)]$$

$$S(Y,Z) + \eta(Y)S(Y,\xi) = -(n-1)[g(Y,Z) + \eta(Z)\eta(Y)]$$

Using (2.18) in above, we get

$$S(Y,Z) = -(n-1)g(Y,Z) - 2(n-1)\eta(Y)\eta(Z)$$

Hence we can state the following theorem:

**Theorem 6.1:** An n-dimensional LP - Kenmotsu manifold is said to be  $\phi - W_1$  semisymmetric if and only if it is an  $\eta -$  Einstein manifold.

## 7. $W_1$ curvature tensor satisfying $W_1(\phi X, \phi Y, \phi Z, \phi W) = 0$ condition

In this section we study a special property of  $W_1$  curvature tensor and found interesting result. We have

$$W_1(X,Y)Z = R(X,Y)Z + \frac{1}{n-1}[S(Y,Z)X - S(X,Z)Y]$$

Replacing X by  $\phi X$ , y by  $\phi Y$ , Z by  $\phi Z$  then we get

$$W_1(\phi X, \phi Y)\phi Z = R(\phi X, \phi Y)\phi Z + \frac{1}{n-1}[S(\phi Y, \phi Z)\phi X - S(\phi X, \phi Z)\phi Y]$$

Using equation (3.2), we get

$$W_{1}(\phi X, \phi Y)\phi Z = g(\phi Y, \phi Z)\phi X - g(\phi X, \phi Z)\phi Y + \frac{1}{n-1}[S(\phi Y, \phi Z)\phi X - S(\phi X, \phi Z)\phi Y]$$
(7.1)  

$$W_{1}(\phi X, \phi Y)\phi Z = [g(Y, Z) + \eta(Y)\eta(Z)]\phi X - [g(X, Z)\eta(X)\eta(Z)]\phi Y$$

$$+ \frac{1}{n-1}[S(Y, Z)\phi X + (n-1)\eta(Y)\eta(Z)\phi X - S(X, Z)\phi Y]$$
 -  $(n-1)\eta(X)\eta(Z)\phi Y$ 

On simplification, we get

$$\begin{split} W_{1}(\phi X, \phi Y)\phi Z &= g(Y, Z)\phi X - g(X, Z)\phi Y + 2[\eta(Y)\eta(Z)\phi X - \eta(X)\eta(Z)\phi Y \\ &+ \frac{1}{n-1}[S(Y, Z)\phi X - S(X, Z)\phi Y] \end{split}$$

Taking inner product with  $\phi W$ , we have

$$\begin{split} W_{1}(\phi X, \phi Y, \phi Z, \phi W) &= g(Y, Z)g(\phi X, \phi W) - g(X.Z)g(\phi Y, \phi W) + 2[\eta(Y)\eta(Z)g(\phi X, \phi W) \\ &- \eta(X)\eta(Z)g(\phi Y, \phi W) + \frac{1}{n-1}[S(Y, Z)g(\phi X, \phi W) - S(X, Z)g(\phi Y, \phi W)] \end{split}$$

Now,

$$g(Y,Z)g(\phi X,\phi W) - g(X,Z)g(\phi Y,\phi W) + 2[\eta(Y)\eta(Z)g(\phi X,\phi W) - \eta(X)\eta(Z)g(\phi Y,\phi W) + \frac{1}{n-1}[S(Y,Z)g(\phi X,\phi W) - S(X,Z)g(\phi Y,\phi W)] = 0$$

Let  $\{e_1, e_2, ..., e_n\}$  be the set of orthonormal basis defined on manifold M.

Let  $X = W = \xi$ ,  $1 \le i \le n$  and taking summation, we get

$$\begin{split} g(Y,Z)(\phi e_{i},\phi e_{i}) - g(e_{i},Z)g(\phi Y,\phi e_{i}) + 2[\eta(Y)\eta(Z)g(\phi e_{i},\phi e_{i}) - \eta(X)\eta(Z)g(\phi Y,\phi e_{i}) \\ + \frac{1}{n-1}[S(Y,Z)g(\phi e_{i},\phi e_{i}) - S(e_{i},Z)g(\phi Y,\phi e_{i})] = 0 \end{split}$$

Since, 
$$g(\phi e_i \phi, e_i) = g(e_i, e_i) - \eta(e_i) \eta(e_i)$$
  
= (n-1).

Therefore,

$$(n-1)g(Y,Z) - g(e_i.Z)g(\phi Y,\phi e_i) + 2[(n-1)\eta(Y)\eta(Z) - \eta(X)\eta(Z)g(\phi Y,\phi e_i) + \frac{1}{n-1}[(n-1)S(Y,Z) - S(e_i,Z)g(\phi Y,\phi e_i)] = 0$$

$$(7.2)$$

Again,

$$g(\phi Y, \phi e_i) = g(Y, e_i) + \eta(Y)\eta(e_i).$$

Since, we have

$$g(e_i, Z)g(\phi Y, \phi e_i) = g(e_i, Z)g(Y, e_i) + g(e_i, Z)\eta(Y)\eta(e_i),$$
  
=  $g(Y, Z) + \eta(Y)\eta(Z),$   
=  $g(\phi Y, \phi Z).$ 

And,

$$\eta(e_i)g(\phi Y,\phi e_i) = \eta(e_i)g(Y,e_i) + \eta(e_i)\eta(Y)\eta(e_i),$$
  
$$= \eta(Y) - \eta(Y),$$

=0.

Also,

$$S(e_{i}, Z)g(\phi Y, \phi e_{i}) = S(e_{i}, Z)g(Y, e_{i}) + S(e_{i}, Z)\eta(Y)\eta(e_{i}),$$
  

$$= S(Y, Z) + S(\xi, Z)\eta(Y)$$
  

$$= S(Y, Z) + (n - 1)\eta(Y)\eta(Z).$$

Using above in (7.2), we get

$$(n-1)g(Y,Z) - g(Y,Z) - \eta(Y)\eta(Z) + 2(n-1)\eta(Y)\eta(Z) + \frac{1}{n-1}[(n-1)S(Y,Z) - S(Y,Z) - (n-1)\eta(Y)\eta(Z)] = 0.$$

$$(n-2)g(Y,Z) + (2n-3)\eta(Y)\eta(Z) + \frac{n-2}{n-1}S(Y,Z) - \eta(Y)\eta(Z) = 0.$$

$$(n-2)g(Y,Z) + 2(n-2)\eta(Y)\eta(Z) + \frac{n-2}{n-1}S(Y,Z) = 0.$$

$$(n-2)[g(Y,Z) + 2\eta(Y)\eta(Z) + \frac{1}{n-1}S(Y,Z)] = 0$$

That shows that either n = 2 or,

$$g(Y,Z) + 2\eta(Y)\eta(Z) + \frac{1}{n-1}S(Y,Z) = 0,$$

Or,

$$S(Y,Z) = (1-n)g(Y,Z) + 2(1-n)\eta(Y)\eta(Z).$$

Hence, we state the following theorem

**Theorem 7.1:** Let M be an n- dimensional LP- Kenmotsu manifold then M is said to satisfy  $W_1(\phi X, \phi Y, \phi Z, \phi W)=0$ , if and only if either n=2 or M is an  $\eta-$  Einstein manifold.

#### 8. Conclusions

In this paper, we proposed that  $W_1$  – flat in LP – Kenmotsu manifold is an  $\eta$  – Einstein manifold. Again, we have found that  $\xi - W_1$  – flat LP – Kenmotsu manifold is an  $\eta$  – Einstein manifold. Next, we deal with LP – Kenmotsu manifold satisfying  $W_1 \cdot Q = 0$  condition and found to be an Einstein manifold. Again, we discuss the LP – Kenmotsu manifold regard with  $\phi - W_1$  –semisymmetric condition and it comes out to be an  $\eta$  – Einstein manifold. Further, we discudded a LP – Kenmotsu manifold satisfying  $W_1(\phi X, \phi Y, \phi Z, \phi W) = 0$  condition and then it comes out to be an  $\eta$  – Einstein manifold.

#### 9. Statements and Declarations

**Fundings:** The authors declare that no funds, grants or other support were received during the preparation of this manuscript.

Informed Consent statement: Not applicable.

**Data Availability statement:** Data from the previous studies have been used and they are cited at the relevant places according as the reference list of the paper.

**Conflicts of Interest:** We declare that there is no con ict of interest be tween the authors.

# 10. Acknowledgement

The authors are very thankful to the anonymous refree and editor for his/her valuable comments and suggestions for improvement of the quality and presentation of this paper.

## Tuijin Jishu/Journal of Propulsion Technology

ISSN: 1001-4055 Vol. 45 No. 2 (2024)

#### Refrences

- [1] Abdul Haseeb and Rajendra Prasad, Certain results on Lorentzian para-Kenmotsu manifolds, Bulletin of Parana's Mathematical Society, (2018) doi.10.5069/bspm.40607.
- [2] B. B. Sinha and K. L. Sai Prasad, A class of almost para contact metric Manifold, Bulletin of the Calcutta Mathematical Society, 87(1995), 307-312
- [3] G. P. Pokharial, Study of a new curvature tensor in a Sasakian manifold, Tensor (N.S.), 36(1982), 222-225.
- [4] D. E. Blair, Contact manifolds in Riemannian geometry, Lecture notes in Mathematics 509, Springer-Verlag Berlin New york, (1976).
- [5] I Mihai, A. A. Shaikh and U. C. De, On Lorentzian para-Sasakian manifolds, Rendiconti del Seminario Matematico di Messina, (1999), Serie II.
- [6] I Mihai and R. Rosca, On Lorentzian P-Sasakian manifolds, Classical Analysis, World Scientific Publ., Singapore, (1992), 155-169.
- [7] K. Matsumoto, On Lorentzian Paracontact manifolds, Bulletin of the Yamagata University Natural Science, 12(2) (1989), 151-156.
- [8] K. Matsumoto and I Mihai, On a certain transformation in a Lorentzian para-Sasakian manifold, Tensor, N.S., 47(1988), 189-197.
- [9] K. Matsumoto, S. Ianus and Ion Mihai, On P-Sasakian manifolds which admit certain tensor fileds, Publ. Math. Debrece, 33(1986), 61-65.
- [10] U. C. De and S. Samui, The structure of some classes of  $(K, \mu)$ -contact space forms, Diff. Geom.Dyn.Sys.,18(2016),1-13.
- A. Friedmann and J. A. Schouten, Uber Die Geometric der halbsymmetrischen Ubertrangung, Math, Z., 21(1924), 211-223.
- [11] Haseeb, M. A. Kha and M. D. Siddiqi, Some more results on an  $\epsilon$  Kenmotsu manifold with a semi-symmetric metric connection, Acta Math. Univ. Comenianae, 85(1)(2016),9-20.
- [12] Rajendra Prasad, Abdul Haseeb and Umesh Kumar Gautam, On  $\phi$  semisymmetric LP Kenmotsu manifolds with a QSNM-connection admitting Ricci solitons, Kragujevac Journal of Mathematics, 45(5),(2021), 815-827.
- [13] U. C. De and Avijit Sarkar, On a type of P-Sasakian manifolds, Math. Reports, 11(2009), no.2, 139-144.
- [14] Venkatesha and C. S. Bagewadi, On concircular  $\phi$  recurrent LP Sasakian manifolds, Differ. Geom. Dyn. Syst., 10 (2008), 312-319.
- [15] Venkatesha and C. S. Bagewadi and K. T. Pradeep Kumar, Some results on Lorentzian para-Sasakian manifolds, ISRN Geometry, Vol. 2011, Article ID 161523, 9 pages, (2011). doi:10.5402/2011/161523.
- [16] Venkatesha, K. T. Pradeep Kumar and C. S. Bagewadi, On Lorentzian Para-Sasakian manifolds satisfying  $W_2$  curvature tensor, IOSR J. of Mathematics, 9(6), (2014), 124-127.
- [17] Ozgur, M. Ahmad and A. Haseeb, CR-Submanifolds of a Lorentzian para-sasakian manifold with a semi-symmetric metric connection. Hacettepe journal of Mathematics ans statistics, 39(4)(2010),489-496.
- [18] G. Pathak and U. C. De On a semi-symmetric connection in a Kenmotsu manifold, Bull. Calcutta Math. Soc., 94(4)(2002), 319-324.
- [19] Rajan, Gyanvendra Pratap Singh, Pawan Prajapati, Anand Kumar Mishra,  $W_8$  Curvature Tensor in Lorentzian  $\alpha$  Sasakian Manifold, Turkish Journal of Computer and Math.Edu., Vol.11 No.03(2020), 1061-1072.
- [20] M. M. Tripathi, E. Kilic, S. Y. Perktas and S. Keles, Indefinite almost para-contact metric manifolds, Int. J. Math. Math. Sci., (2010), art. id 846195,pp. 19.(1989), 655-659, Univ. La Laguna, La Laguna, 1990.
- [21] M. M. Tripathi, On a semi-symmetric metric connection in a Kenmotsu manifold, J. Pure Math., 16 (1999), 67-71.
- [22] X. Xufeng and C. Xiaoli, Two theorems on  $\epsilon$  Sasakian manifolds, Int.J.Math.Math.Sci.,21(2)(1998), 249-254.
- [23] K. Yano, On semi-symmetric metric connections, Revue Roumaine De Math Pures Appl.,15(1970)1579-1586.
- [24] K. Yano and M. Kon, Structures on manifolds, Series in pure math,. Vol.3, World Sci.,(1984).

# Tuijin Jishu/Journal of Propulsion Technology

ISSN: 1001-4055 Vol. 45 No. 2 (2024)

- [25] G.P Singh, Rajan, A.K. Mishra, P. Prajapati,  $W_8$  Curvature Tensor in generalized Sasakian-space-forms, Ratio Mathematics, vol-48(2023), 51-62.
- [26] G.P Singh, P. Prajapati, A.K. Mishra, and Rajan, Generalized B curvature tensor within the framework of Lorentzian  $\beta$  Kenmotsu manifold, Int. J. Geom Methods Mod. Phys., 21(2) (2024) 2450125.
- [27] P. Prajapati, G.P Singh, Rajan and A.K. Mishra,  $W_8$  curvature tensor in Lorentzian  $\beta$  Kenmotsu manifold, J. Rajs, Acad. Phys. Scie., 22(3)(4) (2023), 225-236.
- [28] S. Ahmadand S. I. Hussain, semi-symmetric metric connections in almost contactmanifolds, Tensor (N.S.). 30(1976), 133-139.