Pairwise Generalized \mathcal{F} —Strongly Contra-Continuous Maps

¹Dr. Nazir Ahmad Ahengar, ²Dr. Irom Tomba Singh, ³Dr. Harikumar Pallathadka

¹Department of Mathematics, Pimpri Chinchwad University, Pune-412106 India ^{2,3} Department of Mathematics and Department of Management Sciences, Manipur International University, Manipur-795140, India

Abstract: In this paper the concept of pairwise generalized_{\mathcal{F}} strongly contra continuous maps in generalized_{\mathcal{F}} -bi-topological space have been introduced and several results have been proved by making the use of some counter examples.

Keywords: Generalized_{\mathcal{F}} – bi-topological space, generalized_{\mathcal{F}} contra-continuous maps, generalized_{\mathcal{F}} semi-contra continuous maps

1. Introduction

Csaszar [6] introduced the notions of generalized topological spaces. He also introduced the notions of continuous functions and associated interior and closure operators on generalized neighborhood systems and generalized topological spaces. Bin Shahana [3-4] has introduced the concept of fuzzy pre-open sets and fuzzy α -open sets in fuzzy topological spaces. Thakur [17] has introduced the concept of fuzzy semi pre-open sets in fuzzy topological spaces. Beceren [2] introduced and studied the concept of strongly α -continuous functions, strong semi-continuity and fuzzy pre-continuity and investigate various characterizations. Further the author verified that fuzzy strongly α -continuous map is the stronger form of fuzzy α -continuous map. Palani Cheety [11] introduced the concept of generalized fuzzy topology and investigates various properties. Chang [5] has introduced the concept of fuzzy topological space as a generalization of topological space.

Kandil [8] introduced fuzzy bi-topological spaces in 1989. Nazir Ahmad Ahengar, et.al [9] introduced the concept of generalized_{\mathcal{F}} – topology in which they characterise the several results in the context of generalized_{\mathcal{F}} – topology . Further the authors [10] have given the concept of generalized_{\mathcal{F}} – closure and interior.

In this paper we have introduced the concept of pairwise generalized_{\mathcal{F}} strongly contra continuous map and studied its various relationships of these maps. The results have been shown by several counter examples.

Organization: Section 2 deals with the basic concepts and definitions related to generalized_{\mathcal{F}} -bi-topological space. In section 3, we introduce the concept of pairwise generalized_{\mathcal{F}} strongly contra continuous maps and studied various results in this context. Section 4 concludes the paper.

2. Preliminaries

Definition 2.1: Let (X, T_1, T_2) consisting of a universal set X with the generalized_{\mathcal{F}} – \mathcal{T} opologies \mathcal{T}_1 and \mathcal{T}_2 on X is called generalized_{\mathcal{F}} –Bi-topological space

Definition 2.2: A fuzzy set A of generalized_{\mathcal{F}} -bi-topological space $(X, \mathcal{T}_1, \mathcal{T}_2)$ is called generalized_{\mathcal{F}} (i, j) - semi – open set if $A \subseteq \mathcal{T}_j - \operatorname{Cl}_{\mathcal{F}}(\mathcal{T}_i - \operatorname{Int}_{\mathcal{F}}(A))$ while as a fuzzy set A of generalized_{\mathcal{F}} bi-topological space $(X, \mathcal{T}_1, \mathcal{T}_2)$ is called generalized_{\mathcal{F}} (i, j) – α – open set if $A \subseteq \mathcal{T}_j - \operatorname{Int}_{\mathcal{F}}(\mathcal{T}_i - \operatorname{Cl}_{\mathcal{F}}(\mathcal{T}_j - \operatorname{Int}_{\mathcal{F}}(A))$

Definition 2.3: A fuzzy set A of generalized_{\mathcal{F}} -bi-topological space $(X, \mathcal{T}_1, \mathcal{T}_2)$ is called generalized_{\mathcal{F}} (i, j) - pre – open set if $A \subseteq \mathcal{T}_i - Int_{\mathcal{F}}(\mathcal{T}_j - Cl_{\mathcal{F}}(A))$ while as a fuzzy set A of generalized_{\mathcal{F}} -bi-topological space $(X, \mathcal{T}_1, \mathcal{T}_2)$ is called generalized_{\mathcal{F}} (i, j) – β – open set if $A \subseteq \mathcal{T}_i - Cl_{\mathcal{F}}(\mathcal{T}_i - Int_{\mathcal{F}}(\mathcal{T}_i - Cl_{\mathcal{F}}(A)))$.

ISSN: 1001-4055 Vol. 45 No. 2 (2024)

Definition 2.4: A mapping $\mathcal{F}: (X, \mathcal{T}_1, \mathcal{T}_2) \to (Y, \psi_1, \psi_2)$ is said to be pairwise generalized_{\mathcal{F}} – continuous map if $\mathcal{F}: (X, \mathcal{T}_1) \to (Y, \psi_1)$ and $\mathcal{F}: (X, \mathcal{T}_2) \to (Y, \psi_2)$ are generalized_{\mathcal{F}} – continuous maps

Definition 2.5: A mapping $\mathcal{F}: (X, \mathcal{T}_1, \mathcal{T}_2) \to (Y, \psi_1, \psi_2)$ is said to be pairwise generalized_{\mathcal{F}} – semi – continuous map if inverse image of every ψ_i – generalized_{\mathcal{F}} open set in Y is generalized_{\mathcal{F}} (i, j) – semi – open set in X

Definition 2.6: A mapping $\mathcal{F}: (X, \mathcal{T}_1, \mathcal{T}_2) \to (Y, \psi_1, \psi_2)$ is said to be pairwise generalized_{\mathcal{F}} – pre – continuous map if inverse image of every ψ_i – generalized_{\mathcal{F}} open set in Y is generalized_{\mathcal{F}} (i, j) – pre – open set in X

Definition 2.7: A mapping $\mathcal{F}: (X, \mathcal{T}_1, \mathcal{T}_2) \to (Y, \psi_1, \psi_2)$ is said to be pairwise generalized_{\mathcal{F}} – α – continuous map if inverse image of every ψ_i – generalized_{\mathcal{F}} open set in Y is generalized_{\mathcal{F}} (i, j) – α – open set in X

Definition 2.8: A mapping $\mathcal{F}: (X, \mathcal{T}_1, \mathcal{T}_2) \to (Y, \psi_1, \psi_2)$ is said to be pairwise generalized_{\mathcal{F}} – β – continuous map if inverse image of every ψ_i – generalized_{\mathcal{F}} open set in Y is generalized_{\mathcal{F}} (i, j) – β – open set in X

Definition 2.9: Consider the two generalized_{\mathcal{F}} —topological space (X, \mathcal{T}_1) and (Y, \mathcal{T}_2) on X and Y respectively. Then the mapping $\mathcal{F}: (X, \mathcal{T}_1) \to (Y, \mathcal{T}_2)$ is said to be generalized_{\mathcal{F}} — contra continuous map if inverse image of every \mathcal{T}_2 — generalized_{\mathcal{F}} open set in Y is generalized_{\mathcal{F}} \mathcal{T}_1 — closed set in X

Definition 2.10: Consider the two generalized_{\mathcal{F}} – topological space (X, \mathcal{T}_1) and (Y, \mathcal{T}_2) on X and Y respectively. Then the mapping $\mathcal{F}: (X, \mathcal{T}_1) \to (Y, \mathcal{T}_2)$ is said to be generalized_{\mathcal{F}} –semi-contra continuous map if inverse image of every generalized_{\mathcal{F}} \mathcal{T}_2 – open set in Y is generalized_{\mathcal{F}} \mathcal{T}_1 –semi-closed in X

Definition 2.11: Consider the two generalized_{\mathcal{F}} – topological space (X, \mathcal{T}_1) and (Y, \mathcal{T}_2) on X and Y respectively. Then the mapping $\mathcal{F}: (X, \mathcal{T}_1) \to (Y, \mathcal{T}_2)$ is said to be generalized_{\mathcal{F}} –pre-contra continuous map if inverse image of every generalized_{\mathcal{F}} \mathcal{T}_2 – open set in Y is generalized_{\mathcal{F}} \mathcal{T}_1 –pre-closed in Y

3. Pairwise GENERALIZED $_{\mathcal{T}}$ – Strongly Contra-Continuous Maps

Definition 3.1: Let (X, \mathcal{T}_1) and (Y, \mathcal{T}_2) be two generalized_{\mathcal{F}} – topological space and $\mathcal{F}: (X, \mathcal{T}_1) \to (Y, \mathcal{T}_2)$. Then \mathcal{F} is said to be generalized_{\mathcal{F}} strongly continuous map if $\mathcal{F}^{-1}(\lambda)$ is generalized_{\mathcal{F}} α -open in (X, \mathcal{T}_1) for each generalized_{\mathcal{F}} semi-open set λ in (Y, \mathcal{T}_2)

Definition 3.2: Let (X, \mathcal{T}_1) and (Y, \mathcal{T}_2) be two generalized_{\mathcal{F}} – topological space and $\mathcal{F}: (X, \mathcal{T}_1) \to (Y, \mathcal{T}_2)$. Then \mathcal{F} is said to be generalized_{\mathcal{F}} strongly contra-continuous map if $\mathcal{F}^{-1}(\lambda)$ is generalized_{\mathcal{F}} semi-open in (X, \mathcal{T}_1) for each generalized_{\mathcal{F}} α -open set λ in (Y, \mathcal{T}_2)

Example 3.1: Let $X = \{x_1, x_2\}$, $Y = \{y_1, y_2\}$ and $A = \{(x_1, 0.1), (x_2, 0.2)\}$, $B = \{(x_1, 0.2), (x_2, 0.1)\}$, $C = \{(x_1, 0.2), (x_2, 0.2)\}$, $D = \{(x_1, 0.8), (x_2, 0.9)\}$, $E = \{(x_1, 0.9), (x_2, 0.8)\}$, $F = \{(x_1, 0.9), (x_2, 0.9)\}$, $G = \{(y_1, 0.7), (y_2, 0.8)\}$, $H = \{(y_1, 0.8), (y_2, 0.7)\}$ and $I = \{(y_1, 0.8), (y_2, 0.8)\}$. Clearly $\mathcal{T}_1 = \{0, A, B, C, D, E, F, 1\}$ and $\mathcal{T}_2 = \{0, G, H, I, 1\}$ are generalized \mathcal{T}_T topological space on sets X and Y respectively. Consider the $\mathcal{T}: (X, \mathcal{T}_1) \to (Y, \mathcal{T}_2)$ defined as $\mathcal{T}(x_1) = y_1$ and $\mathcal{T}(x_2) = y_2$. Therefore $\mathcal{T}^{-1}(G) = \{(x_1, 0.7), (x_2, 0.8)\}$, $\mathcal{T}^{-1}(H) = \{(x_1, 0.8), (x_2, 0.7)\}$ and $\mathcal{T}^{-1}(I) = \{(x_1, 0.8), (x_2, 0.8)\}$. This shows that the inverse image of every generalized \mathcal{T}_T and \mathcal{T}_T are generalized \mathcal{T}_T and \mathcal{T}_T and \mathcal{T}_T and \mathcal{T}_T are generalized \mathcal{T}_T and \mathcal{T}_T and \mathcal{T}_T and \mathcal{T}_T are generalized \mathcal{T}_T and \mathcal{T}_T and \mathcal{T}_T are generalized \mathcal{T}_T and \mathcal{T}_T and \mathcal{T}_T and \mathcal{T}_T and \mathcal{T}_T are generalized \mathcal{T}_T and \mathcal{T}_T and \mathcal{T}_T are generalized \mathcal{T}_T and \mathcal{T}_T and \mathcal{T}_T are generalized \mathcal{T}_T and \mathcal{T}_T are generalized

Definition 3.3: Consider the two generalized_{\mathcal{F}} -bi-topological space $(X, \mathcal{T}_1, \mathcal{T}_2)$ and (Y, ψ_1, ψ_2) on X and Y respectively. Then the mapping $\mathcal{F}: (X, \mathcal{T}_1, \mathcal{T}_2) \to (Y, \psi_1, \psi_2)$ is said to be pairwise generalized_{\mathcal{F}} - contra continuous map if $\mathcal{F}: (X, \mathcal{T}_1) \to (Y, \psi_1)$ and $\mathcal{F}: (X, \mathcal{T}_2) \to (Y, \psi_2)$ are generalized_{\mathcal{F}} - contra continuous maps

Definition 3.4: Consider the two generalized_{\mathcal{F}} -bi-topological space $(X, \mathcal{T}_1, \mathcal{T}_2)$ and (Y, ψ_1, ψ_2) on X and Y respectively. Then the mapping $\mathcal{F}: (X, \mathcal{T}_1, \mathcal{T}_2) \to (Y, \psi_1, \psi_2)$ is said to be pairwise generalized_{\mathcal{F}} -strongly contra continuous map if $\mathcal{F}: (X, \mathcal{T}_1) \to (Y, \psi_1)$ and $\mathcal{F}: (X, \mathcal{T}_2) \to (Y, \psi_2)$ are generalized_{\mathcal{F}} strongly contra-

continuous maps

Vol. 45 No. 2 (2024)

Example 3.2: Let $X = \{x_1, x_2\}$ and $Y = \{y_1, y_2\}$.Consider fuzzy sets $A = \{(x_1, 0.7), (x_2, 0.4)\}$, $B = \{(x_1, 0.5), (x_2, 0.6)\}$, $C = \{(x_1, 0.5), (x_2, 0.4)\}$, $D = \{(x_1, 0.3), (x_2, 0.6)\}$, $E = \{(x_1, 0.7), (x_2, 0.6)\}$, $F = \{(x_1, 0.8), (x_2, 0.5)\}$, $G = \{(x_1, 0.4), (x_2, 0.7)\}$, $G = \{(x_1, 0.4), (x_2, 0.7)\}$, $G = \{(x_1, 0.4), (x_2, 0.7)\}$, $G = \{(x_1, 0.4), (x_2, 0.5)\}$, $G = \{(x_1, 0.4), (x_2, 0.7)\}$, $G = \{(x_1, 0.4), (x_2, 0.5)\}$, $G = \{(x_1, 0.4$

Then we define the mappings $\mathcal{F}: (X, \mathcal{T}_1) \to (Y, \psi_1)$ and $\mathcal{F}: (X, \mathcal{T}_2) \to (Y, \psi_2)$ such that $\mathcal{F}(x_1) = y_1$ and $\mathcal{F}(x_2) = y_2$. Thus the inverse image of every generalized $\mathcal{F}(y_1) = y_2 = y_2$. Thus the inverse image of every generalized $\mathcal{F}(y_1) = y_2 = y_2 = y_2 = y_2$. Thus the inverse image of every generalized $\mathcal{F}(y_1) = y_2 = y$

Proposition 3.1: In a generalized_{\mathcal{F}} bi-topological space every pairwise generalized_{\mathcal{F}} —contra continuous map is pairwise generalized_{\mathcal{F}} —strongly contra continuous map

Proof: Let λ and β be generalized_{\mathcal{F}} ψ_1 – open set (generalized_{\mathcal{F}} ψ_1 – α -open set) and generalized_{\mathcal{F}} ψ_2 – open set (generalized_{\mathcal{F}} ψ_2 – α -open set) respectively in Y. Since \mathcal{F} : $(X, \mathcal{T}_1, \mathcal{T}_2) \to (Y, \psi_1, \psi_2)$ is pairwise generalized_{\mathcal{F}} – contra continuous map, we have $\mathcal{F}^{-1}(\lambda)$ and $\mathcal{F}^{-1}(\beta)$ are generalized_{\mathcal{F}} \mathcal{T}_1 –closed and generalized_{\mathcal{F}} \mathcal{T}_2 –closed sets in X and hence generalized_{\mathcal{F}} \mathcal{T}_1 –semi-open and generalized_{\mathcal{F}} \mathcal{T}_2 –semi-open in X., therefore \mathcal{F} : $(X, \mathcal{T}_1, \mathcal{T}_2) \to (Y, \psi_1, \psi_2)$ is pairwise generalized_{\mathcal{F}} –strongly-contra continuous map

Remark 3.1: The converse of Proposition 3.1 is not true in general as shown in Example 3.3

 $\begin{array}{lll} \textbf{Example 3.3:} & \text{Let } X = \{x_1, x_2\} \text{ and } Y = \{y_1, y_2\} \text{ .Consider fuzzy sets } A = \{(x_1, 0.7), (x_2, 0.4)\} \;, \; B = \{(x_1, 0.5), (x_2, 0.6)\} \;, \; C = \{(x_1, 0.5), (x_2, 0.4)\} \;, \; D = \{(x_1, 0.4), (x_2, 0.6)\} \;, \; E = \{(x_1, 0.7), (x_2, 0.6)\} \;, \; F = \{(x_1, 0.8), (x_2, 0.5)\} \;, \; G = \{(x_1, 0.4), (x_2, 0.7)\} \;, \; H = \{(x_1, 0.4), (x_2, 0.5)\} \;, \; I = \{(x_1, 0.8), (x_2, 0.7)\} \; \text{and } J = \{(x_1, 0.3), (x_2, 0.5)\} \;\; \text{on} \quad X. \quad \text{Again} \quad P = \{(y_1, 0.3), (y_2, 0.6)\} \;, \; Q = \{(y_1, 0.5), (y_2, 0.4)\} \;, \; R = \{(y_1, 0.5), (y_2, 0.6)\} \;, \; S = \{(y_1, 0.4), (y_2, 0.6)\} \;, \; T = \{(y_1, 0.2), (y_2, 0.5)\} \;, \; U = \{(y_1, 0.6), (y_2, 0.3)\} \;, \; V = \{(y_1, 0.6), (y_2, 0.5)\} \; \text{and } W = \{(y_1, 0.3), (y_2, 0.5)\} \;\; \text{on} \quad Y. \;\; \text{Let } \mathcal{T}_1 = \{0, A, B, C, D, E, 1\} \;, \; \mathcal{T}_2 = \{0, F, G, H, I, J, 1\} \;, \; \psi_1 = \{0, P, Q, R, S, 1\} \;\; \text{and} \; \psi_2 = \{0, T, U, V, W, 1\} \;\; \text{be the generalized}_{\mathcal{F}} - \; \text{topologies defined on } X \;\; \text{and} \;\; Y. \end{array}$

Now we define the mappings $\mathcal{F}: (X, \mathcal{T}_1) \to (Y, \psi_1)$ and $\mathcal{F}: (X, \mathcal{T}_2) \to (Y, \psi_2)$ such that $\mathcal{F}(x_1) = y_1$ and $\mathcal{F}(x_2) = y_2$. Therefore $\mathcal{F}^{-1}(0) = 1'$, $\mathcal{F}^{-1}(1) = 0'$, $\mathcal{F}^{-1}(P) = \{(x_1, 0.3), (x_2, 0.6)\}$, $\mathcal{F}^{-1}(Q) = \{(x_1, 0.5), (x_2, 0.4)\}$, $\mathcal{F}^{-1}(R) = \{(x_1, 0.5), (x_2, 0.6)\}$, $\mathcal{F}^{-1}(S) = \{(x_1, 0.4), (x_2, 0.6)\}$, $\mathcal{F}^{-1}(T) = \{(x_1, 0.2), (x_2, 0.5)\}$, $\mathcal{F}^{-1}(U) = \{(x_1, 0.6), (x_2, 0.3)\}$, $\mathcal{F}^{-1}(V) = \{(x_1, 0.6), (x_2, 0.5)\}$ and $\mathcal{F}^{-1}(W) = \{(x_1, 0.3), (x_2, 0.5)\}$. This shows that the inverse image of every generalized \mathcal{F} $\psi_1 - \alpha$ open set and generalized \mathcal{F} $\psi_2 - \alpha$ open set in Y is generalized \mathcal{F} $\psi_1 - \alpha$ open set and generalized \mathcal{F} $\psi_2 - \alpha$ open set in Y is and $\mathcal{F}: (X, \mathcal{T}_2) \to (Y, \psi_2)$ are generalized \mathcal{F} -strongly contra continuous maps but not generalized \mathcal{F} - contra continuous map because $\mathcal{F}^{-1}(S) = \{(x_1, 0.4), (x_2, 0.6)\}$ and $\mathcal{F}^{-1}(W) = \{(x_1, 0.3), (x_2, 0.5)\}$, where $\{(x_1, 0.4), (x_2, 0.6)\}$ and $\{(x_1, 0.3), (x_2, 0.5)\}$ are generalized \mathcal{F} \mathcal{T}_1 - semi-open and generalized \mathcal{F} \mathcal{T}_2 -semi-open but not generalized \mathcal{F} \mathcal{T}_1 -closed and generalized \mathcal{F} \mathcal{T}_2 -closed in X

Definition 3.5: Consider the two generalized_{\mathcal{F}} -bi-topological space $(X, \mathcal{T}_1, \mathcal{T}_2)$ and (Y, ψ_1, ψ_2) on X and Y respectively. Then the mapping $\mathcal{F}: (X, \mathcal{T}_1, \mathcal{T}_2) \to (Y, \psi_1, \psi_2)$ is said to be pairwise generalized_{\mathcal{F}} -semi-contra continuous map (pairwise generalized_{\mathcal{F}} - α -contra continuous map) if $\mathcal{F}: (X, \mathcal{T}_1) \to (Y, \psi_1)$ and $\mathcal{F}: (X, \mathcal{T}_2) \to (Y, \psi_2)$ are generalized_{\mathcal{F}} - semi-contra continuous maps (generalized_{\mathcal{F}} - α -contra continuous maps)

Remark 3.2: In a generalized_{\mathcal{F}} bi-topological space the concepts of pairwise generalized_{\mathcal{F}} – semi-contra continuous map (pairwise generalized_{\mathcal{F}} – α -contra continuous maps) and pairwise generalized_{\mathcal{F}} – strongly contra continuous maps are independent as shown in Example 3.4 and Example 3.5

Vol. 45 No. 2 (2024)

Example 3.4: In Example 3.3, the mapping $\mathcal{F}: (X, \mathcal{T}_1, \mathcal{T}_2) \to (Y, \psi_1, \psi_2)$ is pairwise generalized \mathcal{F} -strongly contra continuous map but not pairwise generalized \mathcal{F} -semi-contra continuous map (pairwise generalized \mathcal{F} - α -contra continuous map) because . $\mathcal{F}^{-1}(S) = \{(x_1, 0.4), (x_2, 0.6)\}$, and $\mathcal{F}^{-1}(W) = \{(x_1, 0.3), (x_2, 0.5)\}$, where $\{(x_1, 0.4), (x_2, 0.6)\}$ and $\{(x_1, 0.3), (x_2, 0.5)\}$ are generalized \mathcal{F} \mathcal{F}_1 - semi-open (generalized \mathcal{F} \mathcal{F}_2 - semi-open (generalized \mathcal{F} \mathcal{F}_2 - closed and generalized \mathcal{F} \mathcal{F}_2 -closed in X

Example 3.5: Let $X = \{x_1, x_2\}$ and $Y = \{y_1, y_2\}$. Consider fuzzy sets $A = \{(x_1, 0.7), (x_2, 0.4)\}$, $B = \{(x_1, 0.5), (x_2, 0.6)\}$, $C = \{(x_1, 0.5), (x_2, 0.4)\}$, $D = \{(x_1, 0.3), (x_2, 0.6)\}$, $E = \{(x_1, 0.7), (x_2, 0.6)\}$, $F = \{(x_1, 0.8), (x_2, 0.5)\}$, $G = \{(x_1, 0.4), (x_2, 0.7)\}$, $H = \{(x_1, 0.4), (x_2, 0.5)\}$, $I = \{(x_1, 0.8), (x_2, 0.7)\}$ and $J = \{(x_1, 0.8), (x_2, 0.3)\}$ on X. Again $M = \{(y_1, 0.3), (y_2, 0.6)\}$, $N = \{(y_1, 0.5), (y_2, 0.4)\}$, $P = \{(y_1, 0.5), (y_2, 0.6)\}$, $Q = \{(y_1, 0.4), (y_2, 0.4)\}$,

Now we define the mappings $\mathcal{F}: (X, \mathcal{T}_1) \to (Y, \psi_1)$ and $\mathcal{F}: (X, \mathcal{T}_2) \to (Y, \psi_2)$ such that $\mathcal{F}(x_1) = y_1$ and $\mathcal{F}(x_2) = y_2$. Therefore $\mathcal{F}^{-1}(0) = 1'$, $\mathcal{F}^{-1}(1) = 0'$, $\mathcal{F}^{-1}(M) = \{(x_1, 0.3), (x_2, 0.6)\}$, $\mathcal{F}^{-1}(N) = \{(x_1, 0.5), (x_2, 0.4)\}$, $\mathcal{F}^{-1}(P) = \{(x_1, 0.5), (x_2, 0.6)\}$, $\mathcal{F}^{-1}(Q) = \{(x_1, 0.4), (x_2, 0.4)\}$, $\mathcal{F}^{-1}(R) = \{(x_1, 0.4), (x_2, 0.6)\}$, $\mathcal{F}^{-1}(S) = \{(x_1, 0.2), (x_2, 0.5)\}$, $\mathcal{F}^{-1}(T) = \{(x_1, 0.6), (x_2, 0.3)\}$, $\mathcal{F}^{-1}(U) = \{(x_1, 0.6), (x_2, 0.5)\}$, $\mathcal{F}^{-1}(V) = \{(x_1, 0.3), (x_2, 0.3)\}$ and $\mathcal{F}^{-1}(W) = \{(x_1, 0.3), (x_2, 0.5)\}$. This shows that the inverse image of every generalized \mathcal{F} ψ_1 — open set and generalized \mathcal{F} ψ_2 — open set in \mathcal{F} is generalized \mathcal{F} \mathcal{F}_1 — \mathcal{F}_1 — semi-closed (generalized \mathcal{F}_2 — \mathcal{F}_2 — \mathcal{F}_3 — closed) and generalized \mathcal{F}_3 — \mathcal{F}_3 — \mathcal{F}_3 — closed) in \mathcal{F}_3 respectively. Hence $\mathcal{F}: (X, \mathcal{F}_1) \to (Y, \psi_1)$ and $\mathcal{F}: (X, \mathcal{F}_2) \to (Y, \psi_2)$ are generalized \mathcal{F}_3 — semi-contra continuous map (generalized \mathcal{F}_3 — \mathcal{F}_3 — contra continuous map because \mathcal{F}_3 — \mathcal{F}_3 — semi-closed (generalized \mathcal{F}_3 — semi-open in $\mathcal{F}: (X, \mathcal{F}_1, \mathcal{F}_2) \to (Y, \psi_1, \psi_2)$ is pairwise generalized \mathcal{F}_3 — semi-contra continuous map (pairwise generalized \mathcal{F}_3 — semi-contra continuou

Definition 3.6: Consider the two generalized_{\mathcal{F}} -bi-topological space $(X, \mathcal{T}_1, \mathcal{T}_2)$ and (Y, ψ_1, ψ_2) on X and Y respectively. Then the mapping $\mathcal{F}: (X, \mathcal{T}_1, \mathcal{T}_2) \to (Y, \psi_1, \psi_2)$ is said to be pairwise generalized_{\mathcal{F}} - pre-contra continuous map (pairwise generalized_{\mathcal{F}} - β -contra continuous map) if $\mathcal{F}: (X, \mathcal{T}_1) \to (Y, \psi_1)$ and $\mathcal{F}: (X, \mathcal{T}_2) \to (Y, \psi_2)$ are generalized_{\mathcal{F}} - pre-contra continuous maps (generalized_{\mathcal{F}} - β -contra continuous maps)

Remark 3.3: In a generalized_{\mathcal{F}} bi-topological space the concepts of pairwise generalized_{\mathcal{F}} – pre-contra continuous map (pairwise generalized_{\mathcal{F}} – β -contra continuous maps) and pairwise generalized_{\mathcal{F}} – strongly contra continuous maps are independent as shown in Example 3.6 and Example 3.7

Example 3.6: In Example 3.3, the mapping $\mathcal{F}: (X, \mathcal{T}_1, \mathcal{T}_2) \to (Y, \psi_1, \psi_2)$ is pairwise generalized $_{\mathcal{F}}$ -strongly contra continuous map but not pairwise generalized $_{\mathcal{F}}$ -pre-contra continuous map (pairwise generalized $_{\mathcal{F}}$ - β -contra continuous map) because . $\mathcal{F}^{-1}(S) = \{(x_1, 0.4), (x_2, 0.6)\}$, and $\mathcal{F}^{-1}(W) = \{(x_1, 0.3), (x_2, 0.5)\}$, where $\{(x_1, 0.4), (x_2, 0.6)\}$ and $\{(x_1, 0.3), (x_2, 0.5)\}$ are generalized $_{\mathcal{F}}$ \mathcal{T}_1 -pre-open (generalized $_{\mathcal{F}}$ \mathcal{T}_1 - β -open) and generalized $_{\mathcal{F}}$ \mathcal{T}_2 - pre-open (generalized $_{\mathcal{F}}$ \mathcal{T}_1 - closed and generalized $_{\mathcal{F}}$ \mathcal{T}_2 -closed in X

Example 3.7: Let $X = \{x_1, x_2\}$ and $Y = \{y_1, y_2\}$. Consider fuzzy sets $A = \{(x_1, 0.7), (x_2, 0.4)\}$, $B = \{(x_1, 0.5), (x_2, 0.6)\}$, $C = \{(x_1, 0.5), (x_2, 0.4)\}$, $D = \{(x_1, 0.3), (x_2, 0.6)\}$, $E = \{(x_1, 0.7), (x_2, 0.6)\}$, $F = \{(x_1, 0.8), (x_2, 0.5)\}$, $G = \{(x_1, 0.4), (x_2, 0.7)\}$, $G = \{(x_1, 0.4), (x_2, 0.5)\}$, $G = \{(x_1, 0.4$

ISSN: 1001-4055 Vol. 45 No. 2 (2024)

 $\psi_1 = \{0, M, N, P, Q, 1\}$ and $\psi_2 = \{0, R, S, T, U, 1\}$ be the generalized \mathcal{F} — topologies defined on X and Y.

Now we define the mappings $\mathcal{F}: (X, \mathcal{T}_1) \to (Y, \psi_1)$ and $\mathcal{F}: (X, \mathcal{T}_2) \to (Y, \psi_2)$ such that $\mathcal{F}(x_1) = y_1$ and $\mathcal{F}(x_2) = y_2$. Therefore $\mathcal{F}^{-1}(0) = 1'$, $\mathcal{F}^{-1}(1) = 0'$, $\mathcal{F}^{-1}(M) = \{(x_1, 0.3), (x_2, 0.6)\}$, $\mathcal{F}^{-1}(N) = \{(x_1, 0.5), (x_2, 0.4)\}$, $\mathcal{F}^{-1}(P) = \{(x_1, 0.5), (x_2, 0.6)\}$, $\mathcal{F}^{-1}(Q) = \{(x_1, 0.3), (x_2, 0.3)\}$, $\mathcal{F}^{-1}(R) = \{(x_1, 0.2), (x_2, 0.5)\}$, $\mathcal{F}^{-1}(S) = \{(x_1, 0.6), (x_2, 0.3)\}$, $\mathcal{F}^{-1}(T) = \{(x_1, 0.6), (x_2, 0.5)\}$ and $\mathcal{F}^{-1}(U) = \{(x_1, 0.2), (x_2, 0.2)\}$. This shows that the inverse image of every generalized \mathcal{F} ψ_1 open set and generalized \mathcal{F} ψ_2 open set in \mathcal{F} is generalized \mathcal{F} \mathcal{F}_1 open set and generalized \mathcal{F} \mathcal{F}_2 open set in \mathcal{F} is generalized \mathcal{F} \mathcal{F}_2 open set in \mathcal{F} is generalized \mathcal{F} \mathcal{F}_2 open set in \mathcal{F} is generalized \mathcal{F} open set in \mathcal{F} is generalized \mathcal{F} open set of \mathcal{F} is generalized \mathcal{F} open set of \mathcal{F} in \mathcal{F} in \mathcal{F} in \mathcal{F} is generalized \mathcal{F} open set on \mathcal{F} in \mathcal{F} in \mathcal{F} in \mathcal{F} is generalized \mathcal{F} open set on \mathcal{F} in \mathcal{F} i

4. Conclusion

In this paper we have introduced the concept of pairwise generalized_{\mathcal{F}} strongly contra maps in generalized_{\mathcal{F}} bitopological spaces and establish its relationships with other maps like pairwise generalized_{\mathcal{F}} contra continuous maps, pairwise generalized_{\mathcal{F}} -semi-contra continuous maps (pairwise generalized_{\mathcal{F}} - α -contra continuous maps) and pairwise generalized_{\mathcal{F}} -pre-contra continuous maps (pairwise generalized_{\mathcal{F}} - β -contra continuous maps). The results have been supported by some suitable counter examples. We conclude the results in this paper given below:

Pairwise generalized_{\mathcal{F}} -contra continuous map $\Rightarrow \notin$ pairwise generalized_{\mathcal{F}} -strongly contra continuous map

Pairwise $generalized_{\mathcal{F}}$ —semi-contra continuous map \Leftrightarrow pairwise $generalized_{\mathcal{F}}$ —strongly contra continuous maps

Pairwise generalized_F – α -contra continuous maps \Leftrightarrow pairwise generalized_F –strongly contra continuous maps

Pairwise generalized_F -pre-contra continuous map \Leftrightarrow pairwise generalized_F -strongly contra continuous maps

Pairwise generalized_F – β -contra continuous maps) \Leftrightarrow pairwise generalized_F –strongly contra continuous maps

References

- [1] Azad, K.K., On fuzzy semi continuity, fuzzy almost continuity and fuzzy weak continuity, J. Math. Anal. Appl. 82 14-32, (1981).
- [2] Beceren, Y., On strongly α-continuous functions, Far East J. Math. Sci. (FJMS), Special Volume, Part I-12, 51-58, (2000).
- [3] Bin Shahana, A.S., On fuzzy strong semi-continuity and fuzzy precontinuity, Fuzzy Sets and Systems 44 303-308, (1991).
- [4] Bin Shahana, A.S., Mappings in fuzzy topological spaces, Fuzzy Sets and Systems 61, 209-213, (1994).
- [5] Chang, C.L., Fuzzy topological spaces, J.Math. Anal. Appl.24, 182-190, (1968).
- [6] Csaszar, A., Generalized open sets in generalized topologies, Acta MathematicaHungaria 96, 351-357, (2002).
- [7] Donchev J., Contra Continuous Functions and Strongly S-Closed Spaces, Internat. J. Math. & Math. Sci. 19(2), 303-310, (1996)
- [8] Kandil A., Biproximities and fuzzy bi-topological spaces, Simon Stevin 63(1989), 45-46.
- [9] Nazir Ahmad Ahengar, Irom Tomba Singh and Harikumar Pallathadka "Generalized_{\mathcal{F}} Closure and Interior" Neuroquantology, 20(19) pp 4667-4670, November 2022

- [10] Nazir Ahmad Ahengar, Irom Tomba Singh and Harikumar Pallathadka "Generalized_{\mathcal{F}} Topology" Neuroquantology, 20(22) pp 4281-4284, December 2022
- [11] Palani Cheety G. Generalizaed Fuzzy Topology, Italian J. Pure Appl. Math., 24,91-96, (2008)
- [12] Palaniappan N. Fuzzy Topology, Narosa Publishing House, New Delhi. (2002)
- [13] Roy B Sen R; On a type decomposition of continuity African Mathematical Union and Springer Verlag Berlin Heidelberg (2013)
- [14] Shrivastava, M., Maitra, J.K., and Shukla, M., A note on fuzzy α-continuous maps, Vikram Mathematical Journal 29, (2008).
- [15] Sujeet Chaturvedi, J.K.Maitra and Nazir Ahmad Ahengar, Fuzzy Strongly α-Continuous Maps on generalized Topological Spaces, Journal of Emerging Technologies and Inovative Research (JETIR), 5(8), 312-315, 2018.
- [16] Swaminathan, A., and Vadivel, A., Somewhat Fuzzy Completely Pre-irresolute and somewhat fuzzy completely continuous mappings, The Journals of fuzzy mathematics, v.27, No. 3, 2019,687-696.
- [17] Thakur, S.S. and Singh, S., On fuzzy semi-preopen sets and fuzzy semi-precontinuity, Fuzzy Sets and System, 98, 383-392, (1998).
- [18] Thangraj G., Balasubrmanian G., On somewhat fuzzy continuous functions Journal of fuzzy mathematics 11(13), 725-736,2003
- [19] Zadeh, L.A., Fuzzy sets, Inform. and Control 8, 338-353, (1965).