Pairwise Generalized $_{\mathcal{F}}$ —Contra Continuous Maps

¹Dr. Nazir Ahmad Ahengar, ²Dr. Irom Tomba Singh, ³Dr. Harikumar Pallathadka

¹Department of Mathematics, Pimpri Chinchwad University, Pune-412106 India ^{2, 3} Department of Mathematics and Department of Management Sciences, Manipur International University, Manipur-795140, India Email Id: nzrhmd97@gmail.com

Abstract: In this paper the concept of pairwise generalized_{\mathcal{F}} -contra continuous maps in generalized_{\mathcal{F}} -bitopological space has been introduced and several results have been proved by making the use of some counter examples.

Keywords: Generalized_{\mathcal{F}} – bi-topological space, generalized_{\mathcal{F}} contra-continuous maps, generalized_{\mathcal{F}} semicontra continuous maps

1. Introduction

Bin Shahana [3-4] has introduced the concept of fuzzy pre-open sets and fuzzy α -open sets in fuzzy topological space. Thakur [20] has introduced the concept of fuzzy semi pre-open sets in fuzzy topological spaces. Beceren [2] introduced and studied the concept of strongly α -continuous functions, strong semi-continuity and fuzzy pre-continuity and investigate various characterizations. Further the author verified that fuzzy strongly α -continuous map is the stronger form of fuzzy α -continuous map. Csaszar [6] introduced the notions of generalized topological spaces. He also introduced the notions of continuous functions and associated interior and closure operators on generalized neighborhood systems and generalized topological spaces. Palani Cheety [14] introduced the concept of generalized fuzzy topology and investigates various properties. Chang [5] has introduced the concept of fuzzy topological space as a generalization of topological space. Kandil [11] introduced fuzzy bi-topological spaces in 1989. Nazir Ahmad Ahengar, et.al [12] introduced the concept of generalized $_{\mathcal{F}}$ — topology in which they characterise the several results in the context of generalized $_{\mathcal{F}}$ — topology. Further the authors [13] have given the concept of generalized $_{\mathcal{F}}$ — closure and interior.

In this paper we have introduced the concept of pairwise generalized_{\mathcal{F}} contra continuous map and studied its various relationships of these maps. The results have been shown by several counter examples.

Organization: Section 2 deals with the basic concepts and definitions related to generalized_{\mathcal{F}} -bi-topological space. In section 3, we introduce the concept of pairwise generalized_{\mathcal{F}} contra continuous maps and studied various results in this context. Section 4 concludes the paper.

2. Preliminaries

Definition 2.1: Let (X, T_1, T_2) consisting of a universal set X with the generalized_{\mathcal{F}} – \mathcal{T} opologies \mathcal{T}_1 and \mathcal{T}_2 on X is called generalized_{\mathcal{F}} –Bi-topological space

Definition 2.2: A fuzzy set A of generalized_{\mathcal{F}} -bi-topological space $(X, \mathcal{T}_1, \mathcal{T}_2)$ is called generalized_{\mathcal{F}} (i, j) - semi – open set if $A \subseteq \mathcal{T}_i - \text{Cl}_{\mathcal{F}}(\mathcal{T}_i - \text{Int}_{\mathcal{F}}(A))$

Definition 2.3: A fuzzy set A of generalized_{\mathcal{F}} -bi-topological space $(X, \mathcal{T}_1, \mathcal{T}_2)$ is called generalized_{\mathcal{F}} (i, j) - semi – closed set if $A^c = 1 - A$ is generalized_{\mathcal{F}} (i, j) – semi – open set

Definition 2.4: A fuzzy set A of generalized_{\mathcal{F}} -bi-topological space $(X, \mathcal{T}_1, \mathcal{T}_2)$ is called generalized_{\mathcal{F}} (i, j) - pre – open set if $A \subseteq \mathcal{T}_i - \operatorname{Int}_{\mathcal{F}}(\mathcal{T}_i - \operatorname{Cl}_{\mathcal{F}}(A))$

Definition 2.5: A fuzzy set A of generalized_{\mathcal{F}} -bi-topological space $(X, \mathcal{T}_1, \mathcal{T}_2)$ is calledgeneralized_{\mathcal{F}} (i, j) -

ISSN: 1001-4055 Vol. 45 No. 2 (2024)

pre – closed set if $A^c = 1 - A$ isgeneralized_F (i, j) – pre – open set.

Definition 2.6: A fuzzy set A of generalized_{\mathcal{F}} -bi-topological space $(X, \mathcal{T}_1, \mathcal{T}_2)$ is called generalized_{\mathcal{F}} $(i, j) - \beta$ - open set if $A \subseteq \mathcal{T}_j - Cl_{\mathcal{F}}(\mathcal{T}_i - Int_{\mathcal{F}}(\mathcal{T}_i - Cl_{\mathcal{F}}(A)))$.

Definition 2.7: A fuzzy set A of generalized_{\mathcal{F}} -bi-topological space $(X, \mathcal{T}_1, \mathcal{T}_2)$ is called generalized_{\mathcal{F}} $(i, j) - \beta$ - closed set if $A^c = 1 - A$ is generalized_{\mathcal{F}} $(i, j) - \beta$ - open set.

Definition 2.8: A fuzzy set A of generalized_{\mathcal{F}} bi-topological space $(X, \mathcal{T}_1, \mathcal{T}_2)$ is called generalized_{\mathcal{F}} $(i, j) - \alpha$ – open set if $A \subseteq \mathcal{T}_j - \operatorname{Int}_{\mathcal{F}}(\mathcal{T}_i - \operatorname{Cl}_{\mathcal{F}}(\mathcal{T}_j - \operatorname{Int}_{\mathcal{F}}(A))$)

Definition 2.9: A mapping $\mathcal{F}: (X, \mathcal{T}_1, \mathcal{T}_2) \to (Y, \psi_1, \psi_2)$ is said to be pairwise generalized_{\mathcal{F}} — continuous map if $\mathcal{F}: (X, \mathcal{T}_1) \to (Y, \psi_1)$ and $\mathcal{F}: (X, \mathcal{T}_2) \to (Y, \psi_2)$ are generalized_{\mathcal{F}} — continuous maps

Definition 2.10: A mapping $\mathcal{F}: (X, \mathcal{T}_1, \mathcal{T}_2) \to (Y, \psi_1, \psi_2)$ is said to be pairwise generalized_{\mathcal{F}} – semi – continuous map if inverse image of every ψ_i – generalized_{\mathcal{F}} open set in Y is generalized_{\mathcal{F}} (i,j) – semi – open set in X

Definition 2.11: A mapping $\mathcal{F}: (X, \mathcal{T}_1, \mathcal{T}_2) \to (Y, \psi_1, \psi_2)$ is said to be pairwise generalized_{\mathcal{F}} – pre – continuous map if inverse image of every ψ_i – generalized_{\mathcal{F}} open set in Y is generalized_{\mathcal{F}} (i, j) – pre – open set in X

Definition 2.12: A mapping $\mathcal{F}: (X, \mathcal{T}_1, \mathcal{T}_2) \to (Y, \psi_1, \psi_2)$ is said to be pairwise generalized_{\mathcal{F}} - irresolute map if inverse image of every generalized_{\mathcal{F}} (i, j) - semi - open set in Y is generalized_{\mathcal{F}} (i, j) - semi - open set in X

Definition 2.13: A mapping $\mathcal{F}: (X, \mathcal{T}_1, \mathcal{T}_2) \to (Y, \psi_1, \psi_2)$ is said to be pairwise generalized_{\mathcal{F}} – α – continuous map if inverse image of every ψ_i – generalized_{\mathcal{F}} open set in Y is generalized_{\mathcal{F}} (i,j) – α – open set in X

Definition 2.14: A mapping $\mathcal{F}: (X, \mathcal{T}_1, \mathcal{T}_2) \to (Y, \psi_1, \psi_2)$ is said to be pairwise generalized_{\mathcal{F}} – β – continuous map if inverse image of every ψ_i – generalized_{\mathcal{F}} open set in Y is generalized_{\mathcal{F}} (i, j) – β – open set in X

3. Pairwise GENERALIZED $_{\mathcal{T}}$ —Contra Continuous Maps

Definition 3.1: Consider the two generalized_{\mathcal{F}} —topological space (X, \mathcal{T}_1) and (Y, \mathcal{T}_2) on X and Y respectively. Then the mapping $\mathcal{F}: (X, \mathcal{T}_1) \to (Y, \mathcal{T}_2)$ is said to be generalized_{\mathcal{F}} — contra continuous map if inverse image of every \mathcal{T}_2 — generalized_{\mathcal{F}} open set in Y is generalized_{\mathcal{F}} \mathcal{T}_1 — closed set in X

Example 3.1: Let $X = \{x_1, x_2\}$ and $Y = \{y_1, y_2\}$. Consider fuzzy sets $A = \{(x_1, 0.7), (x_2, 0.4)\}$, $B = \{(x_1, 0.5), (x_2, 0.6)\}$, $C = \{(x_1, 0.5), (x_2, 0.4)\}$, $D = \{(x_1, 0.3), (x_2, 0.6)\}$ and $E = \{(x_1, 0.7), (x_2, 0.6)\}$ on X. Also $P = \{(y_1, 0.3), (y_2, 0.6)\}$, $Q = \{(y_1, 0.5), (y_2, 0.4)\}$ and $Q = \{(y_1, 0.5), (y_2, 0.6)\}$ on $Q = \{(y_1, 0.5), (y_2, 0.4)\}$ and $Q = \{(y_1, 0.5), (y_2, 0.6)\}$ on $Q = \{(y_1, 0.5), (y_2, 0.4)\}$ and $Q = \{(y_1, 0.5), (y_2, 0.6)\}$ on $Q = \{(y_1, 0.5), (y_2,$

Definition 3.2: Consider the two generalized_{\mathcal{F}} -bi-topological space $(X,\mathcal{T}_1,\mathcal{T}_2)$ and (Y,ψ_1,ψ_2) on X and Y respectively. Then the mapping $\mathcal{F}:(X,\mathcal{T}_1,\mathcal{T}_2)\to (Y,\psi_1,\psi_2)$ is said to be pairwise generalized_{\mathcal{F}} - contra continuous map if $\mathcal{F}:(X,\mathcal{T}_1)\to (Y,\psi_1)$ and $\mathcal{F}:(X,\mathcal{T}_2)\to (Y,\psi_2)$ are generalized_{\mathcal{F}} - contra continuous maps

Example 3.2: Let $X = \{x_1, x_2\}$ and $Y = \{y_1, y_2\}$. Consider fuzzy sets $A = \{(x_1, 0.7), (x_2, 0.4)\}$, $B = \{(x_1, 0.5), (x_2, 0.6)\}$, $C = \{(x_1, 0.5), (x_2, 0.4)\}$, $D = \{(x_1, 0.3), (x_2, 0.6)\}$, $E = \{(x_1, 0.7), (x_2, 0.6)\}$, $E = \{(x_1, 0.8), (x_2, 0.5)\}$, $E = \{(x_1, 0.4), (x_2, 0.7)\}$, $E = \{(x_1, 0.4$

Vol. 45 No. 2 (2024)

 $\{(x_1,0.8),(x_2,0.3)\} \quad \text{on} \quad X. \quad \text{Again} \quad P = \{(y_1,0.3),(y_2,0.6)\} \quad , \quad Q = \{(y_1,0.5),(y_2,0.4)\} \quad , \quad R = \{(y_1,0.5),(y_2,0.6)\}, S = \{(y_1,0.2),(y_2,0.5)\}, T = \{(y_1,0.6),(y_2,0.3)\} \text{ and } U = \{(y_1,0.6),(y_2,0.5)\} \text{ on } Y. \\ \text{Let } \mathcal{T}_1 = \{0,A,B,C,D,E,1\} \quad , \quad \mathcal{T}_2 = \{0,F,G,H,I,J,1\} \quad , \quad \psi_1 = \{0,P,Q,R,1\} \quad \text{and} \quad \psi_2 = \{0,S,T,U,1\} \quad \text{be the generalized}_{\mathcal{F}} - \text{topologies defined on } X \quad \text{and } Y. \quad \text{Then we define the mappings } \mathcal{F}\colon (X,\mathcal{T}_1) \to (Y,\psi_1) \quad \text{and } \mathcal{F}\colon (X,\mathcal{T}_2) \to (Y,\psi_2) \quad \text{such that } \mathcal{F}(x_1) = y_1 \quad \text{and } \mathcal{F}(x_2) = y_2 \quad \text{Therefore } \mathcal{F}^{-1}(0) = 1', \, \mathcal{F}^{-1}(1) = 0', \, \mathcal{F}^{-1}(P) = \{(x_1,0.3),(x_2,0.6)\} = A', \quad \mathcal{F}^{-1}(Q) = \{(x_1,0.5),(x_2,0.4)\} = B', \quad \mathcal{F}^{-1}(R) = \{(x_1,0.5),(x_2,0.6)\} = C', \\ \mathcal{F}^{-1}(S) = \{(x_1,0.2),(x_2,0.5)\} = F', \quad \mathcal{F}^{-1}(T) = \{(x_1,0.6),(x_2,0.3)\} = G' \quad \text{and} \quad \mathcal{F}^{-1}(U) = \{(x_1,0.6),(x_2,0.5)\} = H'. \quad \text{This shows that the inverse image of every generalized}_{\mathcal{F}} \psi_1 - \text{open set and generalized}_{\mathcal{F}} \psi_2 - \text{open set in } Y \quad \text{is generalized}_{\mathcal{F}} \mathcal{T}_1 - \text{closed set and generalized}_{\mathcal{F}} \mathcal{T}_2 - \text{closed set in } X \quad \text{respectively.} \quad \text{Hence} \quad \mathcal{F}\colon (X,\mathcal{T}_1) \to (Y,\psi_1) \quad \text{and} \quad \mathcal{F}\colon (X,\mathcal{T}_2) \to (Y,\psi_2) \quad \text{are} \quad \text{generalized}_{\mathcal{F}} - \text{contra continuous maps}. \quad \text{Thus the mapping } \mathcal{F}\colon (X,\mathcal{T}_1,\mathcal{T}_2) \to (Y,\psi_1,\psi_2) \quad \text{is pairwise generalized}_{\mathcal{F}} - \text{contra continuous map} \quad \text{continuous map} \quad \text{contra continuous map} \quad \text{contra continuous} \quad \text{contra contra cont$

Definition 3.3: Consider the two generalized_{\mathcal{F}} —topological space (X, \mathcal{T}_1) and (Y, \mathcal{T}_2) on X and Y respectively. Then the mapping $\mathcal{F}: (X, \mathcal{T}_1) \to (Y, \mathcal{T}_2)$ is said to be generalized_{\mathcal{F}} —semi-contra continuous map if inverse image of every generalized_{\mathcal{F}} \mathcal{T}_1 —open set in Y is generalized_{\mathcal{F}} \mathcal{T}_1 —semi-closed in Y

Example 3.3: Let $X = \{x_1, x_2\}$ and $Y = \{y_1, y_2\}$. Consider fuzzy sets $A = \{(x_1, 0.7), (x_2, 0.4)\}$, $B = \{(x_1, 0.5), (x_2, 0.6)\}$, $C = \{(x_1, 0.5), (x_2, 0.4)\}$, $D = \{(x_1, 0.3), (x_2, 0.6)\}$ and $E = \{(x_1, 0.7), (x_2, 0.6)\}$ on X. Also $P = \{(y_1, 0.3), (y_2, 0.6)\}$, $Q = \{(y_1, 0.5), (y_2, 0.4)\}$ and $Q = \{(y_1, 0.5), (y_2, 0.6)\}$ on $Q = \{(y_1, 0.5), (y_2, 0.4)\}$ and $Q = \{(y_1, 0.5), (y_2, 0.6)\}$ on $Q = \{(y_1, 0.5), (y_2, 0.4)\}$ and $Q = \{(y_1, 0.5), (y_2, 0.6)\}$ on $Q = \{(y_1, 0.5), (y_2,$

Definition 3.4: Consider the two generalized_{\mathcal{F}} -bi-topological space $(X, \mathcal{T}_1, \mathcal{T}_2)$ and (Y, ψ_1, ψ_2) on X and Y respectively. Then the mapping $\mathcal{F}: (X, \mathcal{T}_1, \mathcal{T}_2) \to (Y, \psi_1, \psi_2)$ is said to be pairwise generalized_{\mathcal{F}} -semi-contra continuous map if $\mathcal{F}: (X, \mathcal{T}_1) \to (Y, \psi_1)$ and $\mathcal{F}: (X, \mathcal{T}_2) \to (Y, \psi_2)$ are generalized_{\mathcal{F}} -semi-contra continuous maps

Example 3.4: In Example 3.2, the inverse image of every generalized_{\mathcal{F}} ψ_1 – open set and generalized_{\mathcal{F}} ψ_2 – open set in Y is generalized_{\mathcal{F}} \mathcal{T}_1 –semi-closed set and generalized_{\mathcal{F}} \mathcal{T}_2 –semi-closed set in X respectively. Hence $\mathcal{F}: (X, \mathcal{T}_1) \to (Y, \psi_1)$ and $\mathcal{F}: (X, \mathcal{T}_2) \to (Y, \psi_2)$ are generalized_{\mathcal{F}} –semi-contra continuous maps. Thus the mapping $\mathcal{F}: (X, \mathcal{T}_1, \mathcal{T}_2) \to (Y, \psi_1, \psi_2)$ is pairwise generalized_{\mathcal{F}} –semi-contra continuous map

Proposition 3.1: Every pairwise generalized_{\mathcal{F}} – contra continuous map in generalized_{\mathcal{F}} – bitopological space is pairwise generalized_{\mathcal{F}} – semi-contra continuous map

Proof: Let λ and β be generalized \mathcal{F} ψ_1 -open set and generalized \mathcal{F} ψ_2 -open set respectively in Y. Since $\mathcal{F}: (X, \mathcal{T}_1, \mathcal{T}_2) \to (Y, \psi_1, \psi_2)$ is pairwise generalized \mathcal{F} -contra continuous map, we have $\mathcal{F}^{-1}(\lambda)$ and $\mathcal{F}^{-1}(\beta)$ are generalized \mathcal{F} \mathcal{T}_1 -closed and generalized \mathcal{F} \mathcal{T}_2 -semi-closed sets in X and hence generalized \mathcal{F} \mathcal{T}_1 -semi-closed and generalized \mathcal{F} \mathcal{T}_2 -semi-closed in X. Hence we observe that $\mathcal{F}^{-1}(\lambda)$ and $\mathcal{F}^{-1}(\beta)$ are generalized \mathcal{F} \mathcal{T}_1 -semi-closed and generalized \mathcal{F} \mathcal{T}_2 - semi-closed sets in X for every generalized \mathcal{F} ψ_1 - open set and generalized \mathcal{F} ψ_2 -open set in Y, therefore $\mathcal{F}: (X, \mathcal{T}_1, \mathcal{T}_2) \to (Y, \psi_1, \psi_2)$ is pairwise generalized \mathcal{F} - semi-contra continuous map

Remark 3.1: The converse of Proposition 3.1 is not true in general as shown in Example 3.5

Example 3.5: Let $X = \{x_1, x_2\}$ and $Y = \{y_1, y_2\}$. Consider fuzzy sets $A = \{(x_1, 0.7), (x_2, 0.4)\}$, $B = \{(x_1, 0.5), (x_2, 0.6)\}$, $C = \{(x_1, 0.5), (x_2, 0.4)\}$, $D = \{(x_1, 0.3), (x_2, 0.6)\}$, $E = \{(x_1, 0.7), (x_2, 0.6)\}$, $F = \{(x_1, 0.8), (x_2, 0.5)\}$, $G = \{(x_1, 0.4), (x_2, 0.7)\}$, $G = \{(x_1, 0.4$

ISSN: 1001-4055 Vol. 45 No. 2 (2024)

 $\psi_1 = \{0, P, Q, R, S, 1\}$ and $\psi_2 = \{0, T, U, V, W, 1\}$ be the generalized \mathcal{F} — topologies defined on X and Y.

Now we define the mappings $\mathcal{F}: (X, \mathcal{T}_1) \to (Y, \psi_1)$ and $\mathcal{F}: (X, \mathcal{T}_2) \to (Y, \psi_2)$ such that $\mathcal{F}(x_1) = y_1$ and $\mathcal{F}(x_2) = y_2$. Therefore $\mathcal{F}^{-1}(0) = 1'$, $\mathcal{F}^{-1}(1) = 0'$, $\mathcal{F}^{-1}(P) = \{(x_1, 0.3), (x_2, 0.6)\}$, $\mathcal{F}^{-1}(Q) = \{(x_1, 0.5), (x_2, 0.4)\}$, $\mathcal{F}^{-1}(R) = \{(x_1, 0.5), (x_2, 0.6)\}$, $\mathcal{F}^{-1}(S) = \{(x_1, 0.4), (x_2, 0.6)\}$, $\mathcal{F}^{-1}(T) = \{(x_1, 0.2), (x_2, 0.5)\}$, $\mathcal{F}^{-1}(U) = \{(x_1, 0.6), (x_2, 0.3)\}$, $\mathcal{F}^{-1}(V) = \{(x_1, 0.6), (x_2, 0.5)\}$ and $\mathcal{F}^{-1}(W) = \{(x_1, 0.3), (x_2, 0.5)\}$. This shows that the inverse image of every generalized \mathcal{F} \mathcal{F}_1 open set and generalized \mathcal{F} \mathcal{F}_2 open set in \mathcal{F} is generalized \mathcal{F} \mathcal{F}_1 open set and generalized \mathcal{F} \mathcal{F}_2 open set in \mathcal{F} is generalized \mathcal{F} \mathcal{F}_1 open set and \mathcal{F} is generalized \mathcal{F} \mathcal{F}_2 open set in \mathcal{F} is generalized \mathcal{F} \mathcal{F}_2 open set in \mathcal{F} is generalized \mathcal{F} \mathcal{F}_2 open set in \mathcal{F} is generalized \mathcal{F} open set in \mathcal{F}_1 open set in \mathcal{F}_2 open set in \mathcal{F}_3 is generalized \mathcal{F}_3 open set in \mathcal{F}_3 open se

Definition 3.5: Consider the two generalized_{\mathcal{F}} -bi-topological space $(X, \mathcal{T}_1, \mathcal{T}_2)$ and (Y, ψ_1, ψ_2) on X and Y respectively. Then the mapping $\mathcal{F}: (X, \mathcal{T}_1, \mathcal{T}_2) \to (Y, \psi_1, \psi_2)$ is said to be pairwise generalized_{\mathcal{F}} - α -contra continuous map if $\mathcal{F}: (X, \mathcal{T}_1) \to (Y, \psi_1)$ and $\mathcal{F}: (X, \mathcal{T}_2) \to (Y, \psi_2)$ are generalized_{\mathcal{F}} - α -contra continuous maps

Example 3.6: In Example 3.2, the inverse image of every generalized $_{\mathcal{F}} \psi_1$ — open set and generalized $_{\mathcal{F}} \psi_2$ — open set in Y is generalized $_{\mathcal{F}} \mathcal{T}_1 - \alpha$ -closed set and generalized $_{\mathcal{F}} \mathcal{T}_2 - \alpha$ -closed set in X respectively. Hence $\mathcal{F}: (X, \mathcal{T}_1) \to (Y, \psi_1)$ and $\mathcal{F}: (X, \mathcal{T}_2) \to (Y, \psi_2)$ are generalized $_{\mathcal{F}} - \alpha$ -contra continuous maps. Thus the mapping $\mathcal{F}: (X, \mathcal{T}_1, \mathcal{T}_2) \to (Y, \psi_1, \psi_2)$ is pairwise generalized $_{\mathcal{F}} - \alpha$ -contra continuous map

Proposition 3.2: Every pairwise generalized_{\mathcal{F}} – contra continuous map in generalized_{\mathcal{F}} – bitopological space is pairwise generalized_{\mathcal{F}} – α -contra continuous map

Proof: Same as in Proposition 3.1

Remark 3.2: The converse of Proposition 3.2 is not true in general as shown in Example 3.7

Example 3.7: In Example 3.5, $\mathcal{F}: (X, \mathcal{T}_1) \to (Y, \psi_1)$ and $\mathcal{F}: (X, \mathcal{T}_2) \to (Y, \psi_2)$ are generalized_{\mathcal{F}} — α -contra continuous maps but not generalized_{\mathcal{F}} — contra continuous map because $\mathcal{F}^{-1}(S) = \{(x_1, 0.4), (x_2, 0.6)\}$ and $\mathcal{F}^{-1}(W) = \{(x_1, 0.3), (x_2, 0.5)\}$, where $\{(x_1, 0.4), (x_2, 0.6)\}$ and $\{(x_1, 0.3), (x_2, 0.5)\}$ are generalized_{\mathcal{F}} \mathcal{F}_1 — α -closed and generalized_{\mathcal{F}} \mathcal{F}_2 — α -closed but not generalized_{\mathcal{F}} \mathcal{F}_1 —closed and generalized_{\mathcal{F}} \mathcal{F}_2 —closed in X

Definition 3.6: Consider the two generalized_{\mathcal{F}} —topological space (X, \mathcal{T}_1) and (Y, \mathcal{T}_2) on X and Y respectively. Then the mapping $\mathcal{F}: (X, \mathcal{T}_1) \to (Y, \mathcal{T}_2)$ is said to be generalized_{\mathcal{F}} —pre-contra continuous map if inverse image of every generalized_{\mathcal{F}} \mathcal{T}_2 — open set in Y is generalized_{\mathcal{F}} \mathcal{T}_1 —pre-closed in X

Example 3.8: In Example 3.3, the inverse image of every generalized_{\mathcal{F}} \mathcal{T}_2 – open set in Y is generalized_{\mathcal{F}} \mathcal{T}_1 –pre-closed in X. Hence \mathcal{F} : $(X, \mathcal{T}_1) \to (Y, \mathcal{T}_2)$ is generalized_{\mathcal{F}} –pre-contra continuous map

Definition 3.7: Consider the two generalized_{\mathcal{F}} -bi-topological space $(X, \mathcal{T}_1, \mathcal{T}_2)$ and (Y, ψ_1, ψ_2) on X and Y respectively. Then the mapping $\mathcal{F}: (X, \mathcal{T}_1, \mathcal{T}_2) \to (Y, \psi_1, \psi_2)$ is said to be pairwise generalized_{\mathcal{F}} -pre-contra continuous map if $\mathcal{F}: (X, \mathcal{T}_1) \to (Y, \psi_1)$ and $\mathcal{F}: (X, \mathcal{T}_2) \to (Y, \psi_2)$ are generalized_{\mathcal{F}} -pre-contra continuous maps

Example 3.9: In Example 3.2, the inverse image of every generalized $_{\mathcal{F}} \psi_1$ — open set and generalized $_{\mathcal{F}} \psi_2$ — open set in Y is generalized $_{\mathcal{F}} \mathcal{T}_1$ —pre-closed set and generalized $_{\mathcal{F}} \mathcal{T}_2$ —pre-closed set in X respectively. Hence $\mathcal{F}: (X, \mathcal{T}_1) \to (Y, \psi_1)$ and $\mathcal{F}: (X, \mathcal{T}_2) \to (Y, \psi_2)$ are generalized $_{\mathcal{F}}$ — pre-contra continuous maps. Thus the mapping $\mathcal{F}: (X, \mathcal{T}_1, \mathcal{T}_2) \to (Y, \psi_1, \psi_2)$ is pairwise generalized $_{\mathcal{F}}$ —pre-contra continuous map

Proposition 3.3: Every pairwise generalized_{\mathcal{F}} – contra continuous map in generalized_{\mathcal{F}} – bitopological space is pairwise generalized_{\mathcal{F}} – pre-contra continuous map

Proof: Let λ and β be generalized_{\mathcal{F}} \psi_1 - open set and generalized_{\mathcal{F}} \psi_2 - open set respectively in Y. Since $\mathcal{F}: (X, \mathcal{T}_1, \mathcal{T}_2) \to (Y, \psi_1, \psi_2)$ is pairwise generalized_{\mathcal{F}} -contra continuous map, we have $\mathcal{F}^{-1}(\lambda)$ and $\mathcal{F}^{-1}(\beta)$ are generalized_{\mathcal{F}} \mathcal{T}_1 - closed and generalized_{\mathcal{F}} \mathcal{T}_2 - closed sets in X and hence generalized_{\mathcal{F}} \mathcal{T}_1 - pre-closed and generalized_{\mathcal{F}} \mathcal{T}_2 - pre-closed in X. Hence we observe that $\mathcal{F}^{-1}(\lambda)$ and $\mathcal{F}^{-1}(\beta)$ are generalized_{\mathcal{F}} \mathcal{T}_1 - pre-closed and generalized_{\mathcal{F}} \mathcal{T}_2 - pre-closed sets in X for every generalized_\mathcal{F} \psi_1 - open set and

ISSN: 1001-4055 Vol. 45 No. 2 (2024)

generalized_{\mathcal{F}} ψ_2 -open set in Y, therefore \mathcal{F} : $(X, \mathcal{T}_1, \mathcal{T}_2) \to (Y, \psi_1, \psi_2)$ is pairwise generalized_{\mathcal{F}} - pre-contra continuous map

Remark 3.3: The converse of Proposition 3.3 is not true in general as shown in Example 3.10

 $\begin{array}{lll} \textbf{Example} & \textbf{3.10:} & \text{Let } X = \{x_1, x_2\} & \text{and } Y = \{y_1, y_2\} & \text{.Consider fuzzy sets } A = \{(x_1, 0.7), (x_2, 0.4)\} \;, \; B = \{(x_1, 0.5), (x_2, 0.6)\} \;, \; C = \{(x_1, 0.5), (x_2, 0.4)\} \;, \; D = \{(x_1, 0.3), (x_2, 0.6)\} \;, \; E = \{(x_1, 0.7), (x_2, 0.6)\} \;, \; F = \{(x_1, 0.8), (x_2, 0.5)\} \;, \; G = \{(x_1, 0.4), (x_2, 0.7)\} \;, \; H = \{(x_1, 0.4), (x_2, 0.5)\} \;, \; I = \{(x_1, 0.8), (x_2, 0.7)\} \;\, \text{and } J = \{(x_1, 0.8), (x_2, 0.3)\} \;\, \text{on} \;\; X. \quad \text{Again} \quad P = \{(y_1, 0.3), (y_2, 0.6)\} \;\,, \; \; Q = \{(y_1, 0.5), (y_2, 0.4)\} \;\,, \; \; R = \{(y_1, 0.5), (y_2, 0.6)\} \;, \; S = \{(y_1, 0.3), (y_2, 0.3)\} \;\,, \; T = \{(y_1, 0.2), (y_2, 0.5)\} \;, \; U = \{(y_1, 0.6), (y_2, 0.3)\} \;\,, \; V = \{(y_1, 0.6), (y_2, 0.5)\} \;\, \text{and} \; W = \{(y_1, 0.2), (y_2, 0.2)\} \;\, \text{on} \;\; Y. \;\, \text{Let} \;\, \mathcal{T}_1 = \{0, A, B, C, D, E, 1\} \;\,, \; \mathcal{T}_2 = \{0, F, G, H, I, J, 1\} \;\,, \; \psi_1 = \{0, P, Q, R, S, 1\} \;\, \text{and} \;\, \psi_2 = \{0, T, U, V, W, 1\} \;\, \text{be the generalized}_{\mathcal{F}} - \;\, \text{topologies defined on } X \;\, \text{and } Y. \end{array}$

Now we define the mappings $\mathcal{F}: (X, \mathcal{T}_1) \to (Y, \psi_1)$ and $\mathcal{F}: (X, \mathcal{T}_2) \to (Y, \psi_2)$ such that $\mathcal{F}(x_1) = y_1$ and $\mathcal{F}(x_2) = y_2$. Therefore $\mathcal{F}^{-1}(0) = 1'$, $\mathcal{F}^{-1}(1) = 0'$, $\mathcal{F}^{-1}(P) = \{(x_1, 0.3), (x_2, 0.6)\}$, $\mathcal{F}^{-1}(Q) = \{(x_1, 0.5), (x_2, 0.4)\}$, $\mathcal{F}^{-1}(R) = \{(x_1, 0.5), (x_2, 0.6)\}$, $\mathcal{F}^{-1}(S) = \{(x_1, 0.3), (x_2, 0.3)\}$, $\mathcal{F}^{-1}(T) = \{(x_1, 0.2), (x_2, 0.5)\}$, $\mathcal{F}^{-1}(U) = \{(x_1, 0.6), (x_2, 0.3)\}$, $\mathcal{F}^{-1}(V) = \{(x_1, 0.6), (x_2, 0.5)\}$ and $\mathcal{F}^{-1}(W) = \{(x_1, 0.2), (x_2, 0.2)\}$. This shows that the inverse image of every generalized \mathcal{F} \mathcal{F}_1 open set and generalized \mathcal{F} \mathcal{F}_2 open set in \mathcal{F}_1 is generalized \mathcal{F}_2 \mathcal{F}_3 open set and generalized \mathcal{F}_3 . Hence \mathcal{F}_1 : \mathcal{F}_2 open set in \mathcal{F}_3 is generalized \mathcal{F}_3 open set and generalized \mathcal{F}_3 open set in \mathcal{F}_3 is generalized \mathcal{F}_3 open set and generalized \mathcal{F}_3 open set in \mathcal{F}_3 is generalized \mathcal{F}_3 open set and generalized \mathcal{F}_3 open set in \mathcal{F}_3 is generalized \mathcal{F}_3 open set in \mathcal{F}_3 is generalized \mathcal{F}_3 open set and generalized \mathcal{F}_3 open set in \mathcal{F}_3 open set in \mathcal{F}_3 is generalized \mathcal{F}_3 open set and generalized \mathcal{F}_3 open set in \mathcal{F}_3 open set in \mathcal{F}_3 is generalized \mathcal{F}_3 open set and generalized \mathcal{F}_3 open set in \mathcal{F}_3 o

Definition 3.8: Consider the two generalized_{\mathcal{F}} -bi-topological space $(X, \mathcal{T}_1, \mathcal{T}_2)$ and (Y, ψ_1, ψ_2) on X and Y respectively. Then the mapping $\mathcal{F}: (X, \mathcal{T}_1, \mathcal{T}_2) \to (Y, \psi_1, \psi_2)$ is said to be pairwise generalized_{\mathcal{F}} - β -contra continuous map if $\mathcal{F}: (X, \mathcal{T}_1) \to (Y, \psi_1)$ and $\mathcal{F}: (X, \mathcal{T}_2) \to (Y, \psi_2)$ are generalized_{\mathcal{F}} - β -contra continuous maps

Example 3.11: In Example 3.2, the inverse image of every generalized $_{\mathcal{F}} \psi_1$ – open set and generalized $_{\mathcal{F}} \psi_2$ – open set in Y is generalized $_{\mathcal{F}} \mathcal{T}_1$ – β -closed set and generalized $_{\mathcal{F}} \mathcal{T}_2$ – β -closed set in X respectively. Hence $\mathcal{F}: (X, \mathcal{T}_1) \to (Y, \psi_1)$ and $\mathcal{F}: (X, \mathcal{T}_2) \to (Y, \psi_2)$ are generalized $_{\mathcal{F}} - \beta$ -contra continuous maps. Thus the mapping $\mathcal{F}: (X, \mathcal{T}_1, \mathcal{T}_2) \to (Y, \psi_1, \psi_2)$ is pairwise generalized $_{\mathcal{F}} - \beta$ -contra continuous map

Proposition 3.4: Every pairwise generalized_{\mathcal{F}} – contra continuous map in generalized_{\mathcal{F}} – bitopological space is pairwise generalized_{\mathcal{F}} – β -contra continuous map

Proof: Same as in Proposition 3.3

Remark 3.4: The converse of Proposition 3.4 is not true in general as shown in Example 3.12

Example 3.12: In Example 3.10, $\mathcal{F}: (X, \mathcal{T}_1) \to (Y, \psi_1)$ and $\mathcal{F}: (X, \mathcal{T}_2) \to (Y, \psi_2)$ are generalized_{\mathcal{F}} — β -contra continuous maps but not generalized_{\mathcal{F}} — contra continuous map because $\mathcal{F}^{-1}(S) = \{(x_1, 0.3), (x_2, 0.3)\}$ and $\mathcal{F}^{-1}(W) = \{(x_1, 0.2), (x_2, 0.2)\}$, where $\{(x_1, 0.3), (x_2, 0.3)\}$ and $\{(x_1, 0.2), (x_2, 0.2)\}$ are generalized_{\mathcal{F}} \mathcal{F}_1 — β -closed and generalized_{\mathcal{F}} \mathcal{F}_2 — β -closed but not generalized_{\mathcal{F}} \mathcal{F}_1 —closed and generalized_{\mathcal{F}} \mathcal{F}_2 —closed in X

4. Conclusion

In this paper we have introduced the concept of pairwise $\operatorname{generalized}_{\mathcal{F}}$ - contra continuous maps in $\operatorname{generalized}_{\mathcal{F}}$ bi-topological spaces and defined several maps like pairwise $\operatorname{generalized}_{\mathcal{F}}$ semi-contra-continuous maps (pairwise $\operatorname{generalized}_{\mathcal{F}}$ α -contra-continuous maps) and pairwise $\operatorname{generalized}_{\mathcal{F}}$ pre-contra-continuous maps (pairwise $\operatorname{generalized}_{\mathcal{F}}$ β -contra-continuous maps) and find the relationships of these maps with $\operatorname{generalized}_{\mathcal{F}}$ contra-continuous maps in $\operatorname{generalized}_{\mathcal{F}}$ bitopological spaces. The results have been supported by some suitable counter examples. We conclude the results in this paper given below:

 $Pairwise generalized_{\mathcal{F}}-contra\ continuous\ map\Rightarrow \Leftrightarrow pairwise\ generalized_{\mathcal{F}}-semi\text{-}contra\ continuous\ map$

 $Pairwise generalized_{\mathcal{F}} - contra\ continuous\ map \Rightarrow \notin pairwise\ generalized_{\mathcal{F}} - \alpha$ -contra continuous map

 $Pairwise generalized_{\mathcal{F}}-contra\ continuous\ map\ \Rightarrow \notin\ pairwise\ generalized_{\mathcal{F}}-pre-contra\ continuous\ map$

 $\textit{Pairwise generalized}_{\mathcal{F}} - \textit{contra continuous map} \Rightarrow \notin \textit{pairwise generalized}_{\mathcal{F}} - \beta \cdot \textit{contra continuous map}$

References

- [1] Azad, K.K., On fuzzy semi continuity, fuzzy almost continuity and fuzzy weak continuity, J. Math. Anal. Appl. 82 14-32, (1981).
- [2] Beceren, Y., On strongly α-continuous functions, Far East J. Math. Sci. (FJMS), Special Volume, Part I-12, 51-58, (2000).
- [3] Bin Shahana, A.S., On fuzzy strong semi-continuity and fuzzy precontinuity, Fuzzy Sets and Systems 44 303-308, (1991).
- [4] Bin Shahana, A.S., Mappings in fuzzy topological spaces, Fuzzy Sets and Systems 61, 209-213, (1994).
- [5] Chang, C.L., Fuzzy topological spaces, J.Math. Anal. Appl.24, 182-190, (1968).
- [6] Csaszar, A., Generalized open sets in generalized topologies, Acta MathematicaHungaria 96, 351-357, (2002).
- [7] Donchev J., Contra Continuous Functions and Strongly S-Closed Spaces, Internat. J. Math. & Math. Sci. 19(2), 303-310, (1996)
- [8] Gentry K.R., Hoyle Hughes B. III. Greensboro somewhat continuous functions, Czechoslovak Mathematical Journal, 21(96) 1971.
- [9] Im, Young Bin, Lee, Joo Sung and Cho, Yung Duk, Somewhat fuzzy precontinuous mappings, Appl. Math. and Informatics, 30(2012), 685-691.
- [10] Im, Young Bin, Lee, Joo Sung and Cho, Yung Duk, Somewhat fuzzy irresolute continuous mappings, International Journal of Fuzzy Logic and Intelligent Systems, 12(2012), 319-323.
- [11] Kandil A., Biproximities and fuzzy bi-topological spaces, Simon Stevin 63(1989), 45-46.
- [12] Nazir Ahmad Ahengar, Irom Tomba Singh and Harikumar Pallathadka "Generalized_{\mathcal{F}} Closure and Interior" Neuroquantology, 20(19) pp 4667-4670, November 2022
- [13] Nazir Ahmad Ahengar, Irom Tomba Singh and Harikumar Pallathadka "Generalized $_{\mathcal{F}}$ Topology" Neuroquantology, 20(22) pp 4281-4284, December 2022
- [14] Palani Cheety G. Generalizaed Fuzzy Topology, Italian J. Pure Appl. Math., 24,91-96, (2008)
- [15] Palaniappan N. Fuzzy Topology, Narosa Publishing House, New Delhi. (2002)
- [16] Roy B Sen R; On a type decomposition of continuity African Mathematical Union and Springer Verlag Berlin Heidelberg (2013)
- [17] Shrivastava, M., Maitra, J.K., and Shukla, M., A note on fuzzy α-continuous maps, Vikram Mathematical Journal 29, (2008).
- [18] Sujeet Chaturvedi, J.K.Maitra and Nazir Ahmad Ahengar, Fuzzy Strongly α -Continuous Maps on generalized Topological Spaces, Journal of Emerging Technologies and Inovative Research (JETIR), 5(8), 312-315, 2018.
- [19] Swaminathan, A., and Vadivel, A., Somewhat Fuzzy Completely Pre-irresolute and somewhat fuzzy completely continuous mappings, The Journals of fuzzy mathematics, v.27, No. 3, 2019,687-696.
- [20] Thakur, S.S. and Singh, S., On fuzzy semi-preopen sets and fuzzy semi-precontinuity, Fuzzy Sets and System, 98, 383-392, (1998).
- [21] Thangraj G., Balasubrmanian G., On somewhat fuzzy continuous functions Journal of fuzzy mathematics 11(13), 725-736,2003
- [22] Uma M.K., RojaE., Balasuramanian G., On somewhat pair-wise fuzzy continuous functions, East Asian Math. J.23(2007)83-101.
- [23] Zadeh, L.A., Fuzzy sets, Inform. and Control 8, 338-353, (1965).