ISSN:1001-4055 Vol. 44 No.3 (2023)

Generalized (σ,τ)-Revrse Derivations in non ideal on Prime Rings

Dr K. Subbarayudu¹, Dr A.Sivakameshwara Kumar², G.Ramachandrudu³

Abstract: Let R be a prime ring, I be a non-zero ideal on R, and σ , τ be a automorphisms of R. Suppose that F is a generalized (σ, τ) -reverse derivation on R associated with (σ, τ) -reverse derivation d on R respectively $\sigma(I) \neq 0$ and $\tau(I) \neq 0$. In this paper, we studied the following identities in prime rings: (i) F(xy) + d(x)F(y) = 0; (iii) $F(xy) + d(x)F(y) + \sigma(xy) = 0$; (iii) $F(xy) + d(x)F(y) + \sigma(xy) = 0$; (v)

$$F(xy) + d(y)F(x) = 0;$$
 (vi) $F(xy) + d(y)F(x) + \sigma(xy) = 0;$ (vii)

$$F(xy) + d(y)F(x) + \sigma(yx) = 0; \quad \text{(viii)} \quad F(xy) + d(y)F(x) + \sigma(xoy) = 0; \quad \text{(ix)}$$

$$F(xy) + F(x)F(y) = 0; \quad \text{(x)} \quad F(xy) + F(y)F(x) = 0; \text{ for all } x, y \text{ in some suitable sub sets of } R.$$

Keywords: Prime ring, Derivation, Reverse derivation, Generalized derivation, (σ, τ) -derivation, Generalized (σ, τ) -derivation, (σ, τ) -reverse derivation, Generalized (σ, τ) -reverse derivation.

Introduction:

In 1994, Yenigul and Argac in [8], obtained the some result for α derivation on prime rings. In 1999, Ashraf, Nadeem and Quadri in [3], extended the result for (θ, φ) derivation in pime and semiprime rings. Further Chirag Garg et al. in [5] studied on generalized (α, β) -derivations in prime rings. The notion of reverse derivation has been introduced by Bresar and Vukman in [4] and the reverse derivations on semi prime rings have been studied by Samman and Alyamani in [7]. Aboubakr and Gonzalez in [1] studied the relationship between generalized reverse derivation and generalized derivation on an ideal in semi prime rings, and C. Jaya subbareddy et.al in [6] is proved that in case R is a prime ring with a non-zero right reverse derivation d and U is the left ideal of R then R is commutative. In 2011, the concepts of (θ, φ) -reverse derivation, and generalized (θ, φ) -reverse derivation has been introduced by Anwar Khaleel Faraj in [2]. In this paper, we inspire of Chirag Garg et al. in [5], we proved some results on generalized (σ, τ) -reverse derivations in prime rings.

Preliminaries: Throughout this paper R denote an associative ring with center Z. Recall that a ring R is prime if $xRy = \{0\}$ implies x = 0 or y = 0. For any $x, y \in R$, the symbol [x, y] stands for the commutator xy - yx and the symbol (xoy) denotes the anticommutator xy + yx. An additive mapping $d: R \to R$ is called a derivation if d(xy) = d(x)y + xd(y), for all $x, y \in R$. An additive mapping $d: R \to R$ is called a reverse derivation if d(xy) = d(y)x + yd(x), for all $x, y \in R$. An additive mapping $d: R \to R$ is called a (σ, τ) -derivation if $d(xy) = d(x)\sigma(y) + \tau(x)d(y)$, for all $x, y \in R$. An additive mapping

¹Lecturer in Mathematics, Government Polytechnic, Simhadripuram, kadapa, Andhra Pradesh, India.

², Department of Mathematics, Santhiram Engineering College, Nandyal, AndhraPradesh, India.

³, Department of Mathematics, Ashoka Women's Engineering college, Kurnool AndhraPradesh, India.

ISSN:1001-4055 Vol. 44 No.3 (2023)

 $d: R \to R$ is called a (σ, τ) -reverse derivation if $d(xy) = d(y)\sigma(x) + \tau(y)d(x)$, for all $x, y \in R$. An additive mapping $F: R \to R$ is called a generalized derivation, if there exists a derivation $d: R \to R$ such that F(xy) = F(x)y + xd(y), for all $x, y \in R$. An additive mapping $F: R \to R$ is called a generalized reverse derivation, if there exists a reverse derivation $d: R \to R$ such that F(xy) = F(y)x + yd(x), for all $x, y \in R$. An additive mapping $F: R \to R$ is said to be a generalized (σ, τ) -derivation of R, if there exists a (σ, τ) -derivation $d: R \to R$ such that $F(xy) = F(x)\sigma(y) + \tau(x)d(y)$, for all $x, y \in R$. An additive mapping $F: R \to R$ is said to be a generalized (σ, τ) -reverse derivation of R, if there exists a (σ, τ) -reverse derivation $d: R \to R$ such that $F(xy) = F(y)\sigma(x) + \tau(y)d(x)$, for all $x, y \in R$, where σ and τ be a automorphisms of R.

Throughout this paper, we shall make use of the basic commutator identities:

$$[x, yz] = y[x, z] + [x, y]z$$
, $[xy, z] = [x, z]y + x[y, z]$.

Lemma 1: [3, Lemma 2] Let R be a 2-torsion free prime ring and U be a non-zero square-closed Lie ideal of R. If $[\alpha(x), \beta(y)] = 0$, for all $x, y \in U$, where α, β are automorphisms on R, then $U \subseteq Z$.

Lemma 2: Let R be a prime ring and I a nonzero lie ideal of R. If d is a non zero (σ, τ) - reverse derivation of R such that d(I) = 0, then $I \subseteq Z$.

Proof: We have
$$d(u) = 0$$
, for all $u \in I$. (1)

We replacing u by [u, r] in equation (1), we get

$$d([u,r]) = 0$$

$$d(ur - ru) = 0$$

$$d(ur) - d(ru) = 0$$

$$d(r)\sigma(u) + \tau(r)d(u) - d(u)\sigma(r) - \tau(u)d(r) = 0$$
, for all $u \in I, r \in R$.

Using equation (1) in the above equation, we get

$$d(r)\sigma(u) - \tau(u)d(r) = 0, \text{ for all } u \in I, r \in R.$$
(2)

We replacing r by rv in the above equation, we get

$$d(rv)\sigma(u) - \tau(u)d(rv) = 0$$

$$d(v)\sigma(r)\sigma(u) + \tau(v)d(r)\sigma(u) - \tau(u)d(v)\sigma(r) - \tau(u)\tau(v)d(r) = 0$$
, for all $u, v \in I, r \in R$.

Using equation (i) in the above equation, we get

$$\tau(v)d(r)\sigma(u) - \tau(u)\tau(v)d(r) = 0, \text{ for all } u, v \in I, r \in R.$$
(3)

Left multiplying equation (2) by $\tau(v)$, we get

$$\tau(v)d(r)\sigma(u) - \tau(v)\tau(u)d(r) = 0, \text{ for all } u, v \in I, r \in R. \tag{4}$$

We subtracting equation (4) from equation (3), we get

$$\tau[u, v]d(r) = 0, \text{ for all } u, v \in I, r \in R.$$
(5)

ISSN:1001-4055 Vol. 44 No.3 (2023)

We replacing v by sv, $s \in R$ in equation (5), we get

$$\tau[u, sv]d(r) = 0$$

$$\tau(s)\tau[u,v]d(r) + \tau[u,s]\tau(v)d(r) = 0$$

Using equation (5) in the above equation, we get

$$\tau[u,s]\tau(v)d(r)=0$$
, for all $u,v\in I,r,s\in R$.

We replacing v by tv, $t \in R$ in the above equation, we get

$$\tau[u,s]\tau(tv)d(r)=0$$
, for all $u,v\in I,r,s,t\in R$.

 $\tau[u,s]R\tau(v)d(r)=0$, for all $u,v\in I$, $s\in R$. Since R is a prime ring and I is a nonzero lie ideal of R, we get either $\tau[u,s]=0$ or d(r)=0. If d(r)=0, is contradiction to our assumption. So we get [u,s]=0, for all $u\in I$, $s\in R$. Then $I\subseteq Z$.

Theorem 1: Let R be a prime ring and I be a non-zero ideal on R. Suppose that F is a generalized (σ, τ) -reverse derivation on R associated with (σ, τ) -reverse derivation d on R respectively, $\tau(I) \neq 0$ and $\sigma(I) \neq 0$. If F(xy) + d(x)F(y) = 0, for all $x, y \in I$, then $I \subseteq Z$.

Proof: We have
$$F(xy) + d(x)F(y) = 0$$
, for all $x, y \in I$. (6)

We replacing y by xy in equation (6), we obtain

$$F(xxy) + d(x)F(xy) = 0$$
, for all $x, y \in I$

$$F(xy)\sigma(x) + \tau(xy)d(x) + d(x)(F(y)\sigma(x) + \tau(y)d(x)) = 0$$

$$(F(xy) + d(x)F(y))\sigma(x) + \tau(xy)d(x) + d(x)\tau(y)d(x) = 0$$
, for all $x, y \in I$.

Using equation (6), it reduces to

$$\tau(xy)d(x) + d(x)\tau(y)d(x) = 0, \text{ for all } x, y \in I.$$
(7)

We replacing y by xy in equation (7), we get

$$\tau(xxy)d(x) + d(x)\tau(xy)d(x) = 0, \text{ for all } x, y \in I.$$
(8)

Left multiplying equation (7) by $\tau(x)$, we get

$$\tau(x)\tau(xy)d(x) + \tau(x)d(x)\tau(y)d(x) = 0, \text{ for all } x, y \in I.$$
(9)

We subtracting equation (9) from equation (8), we get

$$d(x)\tau(x)\tau(y)d(x) - \tau(x)d(x)\tau(y)d(x) = 0$$

$$[d(x), \tau(x)]\tau(y)d(x) = 0, \text{ for all } x, y \in I.$$
(10)

We replacing y by sy, $s \in R$ in equation (10), we get

$$[d(x), \tau(x)]\tau(sy)d(x) = 0$$

$$[d(x), \tau(x)]R\tau(y)d(x) = 0, \text{ for all } x, y \in I, s \in R.$$
(11)

ISSN:1001-4055 Vol. 44 No.3 (2023)

Since R is prime, we get either $[d(x), \tau(x)] = 0$, for all $x \in I$ or $\tau(y)d(x) = 0$, for all $x, y \in I$. Since τ is an automorphism of R and $\tau(I) \neq 0$, we have either $[d(x), \tau(x)] = 0$, for all $x \in I$ or d(x) = 0, for all $x \in I$.

Now let $A = \{x \in I/[d(x), \tau(x)] = 0\}$ and $B = \{x \in I/d(x) = 0\}$. Clearly, A and B are additive proper subgroups of I whose union is I. Since a group cannot be the set theoretic union of two proper subgroups. Hence either A = I or B = I.

If B = I, then d(x) = 0, for all $x \in I$, by lemma 2 implies that $I \subseteq Z$.

On the other hand if A = I, then $[d(x), \tau(x)] = 0$, for all $x \in I$.

If
$$[d(x), \tau(x)] = 0$$
, for all $x \in I$. (12)

We replacing x by x + y in equation (12), we get

$$[d(x+y), \tau(x+y)] = 0$$

$$[d(x), \tau(x)] + [d(x), \tau(y)] + [d(y), \tau(x)] + [d(y), \tau(y)] = 0$$
, for all $x, y \in I$.

Using equation (12) in the above equation, we get

$$[d(x), \tau(y)] + [d(y), \tau(x)] = 0$$
, for all $x, y \in I$. (13)

We replacing y by yx in equation (13), we get

$$[d(x), \tau(yx)] + [d(yx), \tau(x)] = 0$$

$$[d(x), \tau(y)]\tau(x) + \tau(y)[d(x), \tau(x)] + [d(x)\sigma(y) + \tau(x)d(y), \tau(x)] = 0$$

$$[d(x), \tau(y)]\tau(x) + \tau(y)[d(x), \tau(x)] + [d(x)\sigma(y), \tau(x)] + [\tau(x)d(y), \tau(x)] = 0$$

$$\begin{split} &[d(x),\tau(y)]\tau(x) + \tau(y)[d(x),\tau(x)] + [d(x),\tau(x)]\sigma(y) + d(x)[\sigma(y),\tau(x)] + \\ &\tau(x)[d(y),\tau(x)] + [\tau(x),\tau(x)]d(y) = 0 \\ &, \text{for all } x,y \in I. \end{split}$$

Using equation (12) in the above equation, we get

$$[d(x), \tau(y)]\tau(x) + d(x)[\sigma(y), \tau(x)] + \tau(x)[d(y), \tau(x)] = 0, \text{ for all } x, y \in I.$$
(14)

Right multiplying equation (13) by $\tau(x)$, we get

$$[d(x), \tau(y)]\tau(x) + [d(y), \tau(x)]\tau(x) = 0$$
, for all $x, y \in I$. (15)

We subtracting equation (15) from equation (14), we get

$$d(x)[\sigma(y), \tau(x)] + \tau(x)[d(y), \tau(x)] - [d(y), \tau(x)]\tau(x) = 0$$
, for all $x, y \in I$.

We replacing d(y) by $\tau(x)$ in the above equation, we get

$$d(x)[\sigma(y),\tau(x)] = 0, \text{ for all } x, y \in I.$$
(16)

We replacing y by ys in equation (16), we get

ISSN:1001-4055 Vol. 44 No.3 (2023)

$$d(x)[\sigma(ys),\tau(x)] = 0$$

$$d(x)[\sigma(y),\tau(x)]\sigma(s) + d(x)\sigma(y)[\sigma(s),\tau(x)] = 0$$
, for all $x,y,s \in I$.

Using equation (16) in the above equation, we get

$$d(x)\sigma(y)[\sigma(s),\tau(x)] = 0$$
, for all $x, y, s \in I$.

We replacing y by yv, $v \in R$ in the above equation, we get

$$d(x)\sigma(yv)[\sigma(s),\tau(x)] = 0$$
, for all $x, y, s \in I, v \in R$.

$$d(x)\sigma(y)R[\sigma(s),\tau(x)] = 0$$
, for all $x, y, s \in I$.

Since R is prime, we get either $d(x)\sigma(y)=0$, for all $x,y\in I$ or $[\sigma(s),\tau(x)]=0$, for all $x,s\in I$. Since σ is an automorphism of R and $\sigma(I)\neq 0$, we have either $[\sigma(x),\tau(y)]=0$, for all $x,y\in I$ or d(x)=0, for all $x\in I$. If d(x)=0, for all $x\in I$, by lemma 2 implies that $I\subseteq Z$. If $[\sigma(x),\tau(y)]=0$, for all $x,y\in I$, by lemma 1 implies that $I\subseteq Z$.

Theorem 2: Let R be a prime ring and I be a non-zero ideal on R. Suppose that F is a generalized (σ, τ) -reverse derivation on R associated with (σ, τ) -reverse derivation d on R respectively, $\tau(I) \neq 0$ and $\sigma(I) \neq 0$. If $G(xy) + d(x)F(y) + \sigma(xy) = 0$, for all $x, y \in I$, then $I \subseteq Z$.

Proof: We replacing F by $F + \sigma$ in theorem 1, we get the required result.

Theorem 3: Let R be a prime ring and I be a non-zero ideal on R. Suppose that F is a generalized (σ, τ) -reverse derivation on R associated with (σ, τ) -reverse derivation d on R respectively, $\tau(I) \neq 0$ and $\sigma(I) \neq 0$. If $F(xy) + d(x)F(y) + \sigma(yx) = 0$, for all $x, y \in I$, then $I \subseteq Z$.

Proof: We have
$$F(xy) + d(x)F(y) + \sigma(yx) = 0$$
, for all $x, y \in I$. (17)

We replacing y by xy in equation (17), we obtain

$$F(xxy) + d(x)F(xy) + \sigma(xyx) = 0$$
, for all $x, y \in I$

$$F(xy)\sigma(x) + \tau(xy)d(x) + d(x)(F(y)\sigma(x) + \tau(y)d(x)) + \sigma(xyx) = 0$$

$$(F(xy) + d(x)F(y))\sigma(x) + \tau(xy)d(x) + d(x)\tau(y)d(x) + \sigma(xyx) = 0$$
, for all $x, y \in I$.

Using equation (17), it reduces to

$$\tau(xy)d(x) + d(x)\tau(y)d(x) + \sigma(xyx) - \sigma(yx)\sigma(x) = 0$$

$$\tau(xy)d(x) + d(x)\tau(y)d(x) + \sigma[x,y]\sigma(x) = 0, \text{ for all } x, y \in I.$$
(18)

We replacing y by xy in equation (18), we get

$$\tau(xxy)d(x) + d(x)\tau(xy)d(x) + \sigma[x,xy]\sigma(x) = 0$$

$$\tau(xxy)d(x) + d(x)\tau(xy)d(x) + \sigma(x)\sigma[x,y]\sigma(x) = 0, \text{ for all } x,y \in I.$$
(19)

Left multiplying equation (18) by $\tau(x)$, we get

ISSN:1001-4055 Vol. 44 No.3 (2023)

$$\tau(x)\tau(xy)d(x) + \tau(x)d(x)\tau(y)d(x) + \tau(x)\sigma[x,y]\sigma(x) = 0, \text{ for all } x,y,z \in I. \tag{20}$$

We subtracting equation (20) from equation (19), we get

$$d(x)\tau(x)\tau(y)d(x) - \tau(x)d(x)\tau(y)d(x) + \sigma(x)\sigma[x,y]\sigma(x) - \tau(x)\sigma[x,y]\sigma(x) = 0$$

$$[d(x), \tau(x)]\tau(y)d(x) + (\sigma(x) - \tau(x))\sigma[x, y]\sigma(x) = 0, \text{ for all } x, y \in I.$$

We replacing $\tau(x)$ by $\sigma(x)$ in the above equation, we get

$$[d(x), \sigma(x)]\tau(y)d(x) = 0, \text{ for all } x, y \in I.$$
(21)

We replacing $\sigma(x)$ by $\tau(x)$ and y by sy, $s \in R$ in equation (21), we get

$$[d(x), \tau(x)]\tau(sy)d(x) = 0$$

$$[d(x), \tau(x)]R\tau(y)d(x) = 0, \text{ for all } x, y \in I, s \in R.$$
(22)

The equation (22) is same as equation (11) in theorem 1. Thus, by same argument of theorem 1, we can conclude the result $I \subseteq Z$.

Theorem 4: Let R be a prime ring and I be a non-zero ideal on R. Suppose that F is a generalized (σ, τ) -reverse derivation on R associated with (σ, τ) -reverse derivation d on R respectively, $\tau(I) \neq 0$ and $\sigma(I) \neq 0$. If $F(xy) + d(x)F(y) + \sigma(xoy) = 0$, for all $x, y \in I$, then $I \subseteq Z$.

Proof: We replacing F by $F + \sigma$ in theorem 3, we get the required result.

Theorem 5: Let R be a prime ring and I be a non-zero ideal on R. Suppose that F is a generalized (σ, τ) -reverse derivation on R associated with (σ, τ) -reverse derivation d on R respectively, $\tau(I) \neq 0$ and $\sigma(I) \neq 0$. If F(xy) + d(y)F(x) = 0, for all $x, y \in I$, then $I \subseteq Z$.

Proof: We have
$$F(xy) + d(y)F(x) = 0$$
, for all $x, y \in I$. (23)

We replacing x by xw in equation (23), we obtain

$$F(xwy) + d(y)F(xw) = 0$$

$$F(wy)\sigma(x) + \tau(wy)d(x) + d(y)(F(w)\sigma(x) + \tau(w)d(x)) = 0$$

$$(F(wy) + d(y)F(w))\sigma(x) + \tau(wy)d(x) + d(y)\tau(w)d(x) = 0, \text{ for all } x, y, w \in I.$$

Using equation (23), it reduces to

$$\tau(wy)g(x) + d(y)\tau(w)d(x) = 0, \text{ for all } x, y, w \in I.$$
(24)

We replacing y by zy in equation (24), we get

$$\tau(wzy)d(x) + d(zy)\tau(w)d(x) = 0$$

$$\tau(wzy)d(x) + d(y)\sigma(z)\tau(w)d(x) + \tau(y)d(z)\tau(w)d(x) = 0, \text{ for all } x, y, z, w \in I.$$
 (25)

We replacing y by z in equation (24), we get

$$\tau(wz)d(x) + d(z)\tau(w)d(x) = 0, \text{ for all } x, z, w \in I.$$
(26)

ISSN:1001-4055 Vol. 44 No.3 (2023)

Left multiplying equation (26) by $\tau(y)$, we get

$$\tau(y)\tau(wz)d(x) + \tau(y)d(z)\tau(w)d(x) = 0, \text{ for all } x, y, z \in I.$$
(27)

We subtracting equation (27) from equation (25), we get

$$(\tau(wzy) - \tau(ywz))d(x) + d(y)\sigma(z)\tau(w)d(x) = 0$$

$$\tau[wz,y]d(x) + d(y)\sigma(z)\tau(w)d(x) = 0$$

$$\tau([w,y]z + w[z,y])d(x) + d(y)\sigma(z)\tau(w)d(x) = 0, \text{ for all } x, y, z, w \in I.$$

We replacing z by y and w by y in the above equation, we get

$$d(y)\sigma(y)\tau(y)d(x) = 0, \text{ for all } x, y \in I.$$
(28)

We replacing x by sx in equation (28), we get

$$d(y)\sigma(y)\tau(y)d(sx) = 0$$

$$d(y)\sigma(y)\tau(y)d(x)\sigma(s) + d(y)\sigma(y)\tau(y)\tau(x)d(s) = 0$$
, for all $x, y, s \in I$.

Using equation (28) in the above equation, we get

$$d(y)\sigma(y)\tau(y)\tau(x)d(s) = 0$$
, for all $x, y, s \in I$.

We replacing x by rx, $r \in R$ in the above equation, we get

$$d(v)\sigma(v)\tau(v)\tau(rx)d(s) = 0$$

$$d(y)\sigma(y)\tau(y)R\tau(x)d(s) = 0$$
, for all $x, y, s \in I$.

Since R is prime, we get either $d(y)\sigma(y)\tau(y)=0$, for all $y\in I$ or $\tau(x)d(s)=0$, for all $x,s\in I$. Since τ is an automorphism of R and $\tau(I)\neq 0$, we have either $d(x)\sigma(x)=0$, for all $x\in I$ or d(x)=0, for all $x\in I$. If d(x)=0, for all $x\in I$, by lemma 2 implies that $I\subseteq Z$.

If $d(x)\sigma(x) = 0$, for all $x \in I$. Since σ is an automorphism of R and $\sigma(I) \neq 0$ then d(x) = 0, for all $x \in I$, by lemma 2 implies that $I \subseteq Z$.

Theorem 6: Let R be a prime ring and I be a non-zero ideal on R. Suppose that F is a generalized (σ, τ) -reverse derivation on R associated with (σ, τ) -reverse derivation d on R respectively, $\tau(I) \neq 0$ and $\sigma(I) \neq 0$. If $F(xy) + d(y)F(x) + \sigma(xy) = 0$, for all $x, y \in I$, then $I \subseteq Z$.

Proof: We replacing F by $F + \sigma$ in theorem 5, we get the required result.

Theorem 7: Let R be a prime ring and I be a non-zero ideal on R. Suppose that F is a generalized (σ, τ) -reverse derivation on R associated with (σ, τ) -reverse derivation d on R respectively, $\tau(I) \neq 0$ and $\sigma(I) \neq 0$. If $F(xy) + d(y)F(x) + \sigma(yx) = 0$, for all $x, y \in I$, then $I \subseteq Z$.

Proof: We have
$$F(xy) + d(y)F(x) + \sigma(yx) = 0$$
, for all $x, y \in I$. (29)

We replacing x by xw in equation (29), we obtain

ISSN:1001-4055 Vol. 44 No.3 (2023)

$$F(xwy) + d(y)F(xw) + \sigma(yxw) = 0$$
, for all $x, y, w \in I$

$$F(wy)\sigma(x) + \tau(wy)d(x) + d(y)(F(w)\sigma(x) + \tau(w)d(x)) + \sigma(yxw) = 0$$

$$(F(wy) + d(y)F(w))\sigma(x) + \tau(wy)d(x) + d(y)\tau(w)d(x) + \sigma(yxw) = 0$$

Using equation (29), it reduces to

$$\tau(wy)d(x) + d(y)\tau(w)d(x) + \sigma(yxw) - \sigma(ywx) = 0$$

$$\tau(wy)d(x) + d(y)\tau(w)d(x) + \sigma(y)\sigma[x,w] = 0, \text{ for all } x, y, w \in I.$$
(30)

We replacing y by zy in equation (30), we get

$$\tau(wzy)d(x) + d(zy)\tau(w)d(x) + \sigma(zy)\sigma[x,w] = 0, \text{ for all } x, y, z, w \in I.$$

$$\tau(wzy)d(x) + d(y)\sigma(z)\tau(w)d(x) + \tau(y)d(z)\tau(w)d(x) + \sigma(zy)\sigma[x,w] = 0, \quad \text{for} \quad \text{all}$$

$$x, y, z, w \in I. \quad (31)$$

We replacing y by z in equation (30), we get

$$\tau(wz)d(x) + d(z)\tau(w)d(x) + \sigma(z)\sigma[x, w] = 0, \text{ for all } x, z, w \in I.$$
(32)

Left multiplying equation (32) by $\tau(y)$, we get

$$\tau(y)\tau(wz)d(x) + \tau(y)d(z)\tau(w)d(x) + \tau(y)\sigma(z)\sigma[x,w] = 0, \text{ for all } x, y, z, w \in I.$$
 (33)

We subtracting equation (33) from equation (31), we get

$$(\tau(wzy) - \tau(ywz))d(x) + d(y)\sigma(z)\tau(w)d(x) + \sigma(zy)\sigma[x,w] - \tau(y)\sigma(z)\sigma[x,w] = 0$$

$$\tau[wz,y]d(x) + d(y)\sigma(z)\tau(w)d(x) + \sigma(zy)\sigma[x,w] - \tau(y)\sigma(z)\sigma[x,w] == 0$$

$$\tau([w,y]z + w[z,y])d(x) + d(y)\sigma(z)\tau(w)d(x) + \sigma(zy)\sigma[x,w] - \tau(y)\sigma(z)\sigma[x,w] = 0, \text{ for all } x,y,z,w \in I.$$

We replacing \mathbf{z} by \mathbf{y} and \mathbf{w} by \mathbf{y} in the above equation, we get

$$d(y)\sigma(y)\tau(y)d(x) + \sigma(yy)\sigma[x,y] - \tau(y)\sigma(y)\sigma[x,y] = 0, \text{ for all } x,y \in I.$$

We replacing $\tau(y)$ by $\sigma(y)$ in the above equation, we get

$$d(y)\sigma(y)\sigma(y)d(x) + \sigma(yy)\sigma[x,y] - \sigma(y)\sigma(y)\sigma[x,y] = 0, \text{ for all } x,y \in I.$$

$$d(y)\sigma(y)\sigma(y)d(x) = 0, \text{ for all } x, y \in I.$$
(34)

The equation (34) is same similar equation (28) in theorem 5. Thus, by same argument of theorem 5, we can conclude the result $I \subseteq Z$.

Theorem 8: Let R be a prime ring and I be a non-zero ideal on R. Suppose that F is a generalized (σ, τ) -reverse derivation on R associated with (σ, τ) -reverse derivation d on R respectively, $\tau(I) \neq 0$ and $\sigma(I) \neq 0$. If $F(xy) + d(y)F(x) + \sigma(xoy) = 0$, for all $x, y \in I$, then $I \subseteq Z$.

Proof: We replacing F by $F + \sigma$ in theorem 7, we get the required result.

ISSN:1001-4055 Vol. 44 No.3 (2023)

Theorem 9: Let R be a prime ring and I be a non-zero ideal on R. Suppose that F is a generalized (σ, τ) -reverse derivation on R associated with (σ, τ) -reverse derivation d on R respectively, $\tau(I) \neq 0$ and $\sigma(I) \neq 0$. If F(xy) + F(x)F(y) = 0, for all $x, y \in I$, then $I \subseteq Z$.

Proof: We have
$$F(xy) + F(x)F(y) = 0$$
, for all $x, y \in I$. (35)

We replacing y by xy in equation (35), we obtain

$$F(xxy) + F(x)F(xy) = 0$$
, for all $x, y \in I$

$$F(xy)\sigma(x) + \tau(xy)d(x) + F(x)(F(y)\sigma(x) + \tau(y)d(x)) = 0$$

$$(F(xy) + F(x)F(y))\sigma(z) + \tau(xy)d(x) + F(x)\tau(y)d(x) = 0, \text{ for all } x, y \in I.$$

Using equation (35), it reduces to

$$\tau(xy)d(x) + F(x)\tau(y)d(x) = 0, \text{ for all } x, y \in I.$$
(36)

We replacing y by wy in equation (36), we get

$$\tau(xwy)d(x) + F(x)\tau(wy)d(x) = 0, \text{ for all } x, y, w \in I.$$
(37)

Left multiplying equation (36) by $\tau(w)$, we get

$$\tau(w)\tau(xy)d(x) + \tau(w)F(x)\tau(y)d(x) = 0, \text{ for all } x, y, z, w \in I.$$
(38)

We subtracting equation (38) from equation (37), we get

$$\tau(xwy)g(x) - \tau(wxy)g(x) + F(x)\tau(w)\tau(y)d(x) - \tau(w)F(x)\tau(y)d(x) = 0$$

$$(\tau(xwy) - \tau(wxy))g(x) + [F(x), \tau(w)]\tau(y)d(x) = 0, \text{ for all } x, y, w \in I.$$
(39)

We replacing w by x and y by sy, $s \in R$ in equation (39), we get

$$[F(x),\tau(x)]\tau(sy)d(x)=0$$

$$[F(x),\tau(x)]R\tau(y)d(x) = 0, \text{ for all } x,y \in I, s \in R. \tag{40}$$

Since R is prime, we get either $[F(x), \tau(x)] = 0$, for all $x \in I$ or $\tau(y)d(x) = 0$, for all $x, y \in I$. Since τ is an automorphism of R and $\tau(I) \neq 0$, we have either $[F(x), \tau(x)] = 0$, for all $x \in I$ or d(x) = 0, for all $x \in I$.

Now let $A = \{x \in I/[F(x), \tau(x)] = 0\}$ and $B = \{x \in I/d(x) = 0\}$. Clearly, A and B are additive proper subgroups of I whose union is I. Since a group cannot be the set theoretic union of two proper subgroups. Hence either A = I or B = I.

If B = I, then d(x) = 0, for all $x \in I$, by lemma 2 implies that $I \subseteq Z$.

On the other hand if A = I, then $[F(x), \tau(x)] = 0$, for all $x \in I$.

If
$$[F(x), \tau(x)] = 0$$
, for all $x \in I$. (41)

We replacing x by x + y in equation (12), we get

ISSN:1001-4055 Vol. 44 No.3 (2023)

$$[F(x+y), \tau(x+y)] = 0$$

$$[F(x), \tau(x)] + [F(x), \tau(y)] + [F(y), \tau(x)] + [F(y), \tau(y)] = 0$$
, for all $x, y \in I$.

Using equation (41) in the above equation, we get

$$[F(x), \tau(y)] + [F(y), \tau(x)] = 0$$
, for all $x, y \in I$. (42)

We replacing y by yx in equation (42), we get

$$[F(x),\tau(yx)] + [F(yx),\tau(x)] = 0$$

$$[F(x), \tau(y)]\tau(x) + \tau(y)[F(x), \tau(x)] + [F(x)\sigma(y) + \tau(x)d(y), \tau(x)] = 0$$

$$[F(x), \tau(y)]\tau(x) + \tau(y)[F(x), \tau(x)] + [F(x)\sigma(y), \tau(x)] + [\tau(x)d(y), \tau(x)] = 0$$

$$\begin{split} & [F(x),\tau(y)]\tau(x) + \tau(y)[F(x),\tau(x)] + [F(x),\tau(x)]\sigma(y) + F(x)[\sigma(y),\tau(x)] + \\ & \tau(x)[d(y),\tau(x)] + [\tau(x),\tau(x)]d(y) = 0 \\ &, \text{for all } x,y \in I. \end{split}$$

Using equation (41) in the above equation, we get

$$[F(x), \tau(y)]\tau(x) + F(x)[\sigma(y), \tau(x)] + \tau(x)[d(y), \tau(x)] = 0$$
, for all $x, y \in I$.

We replacing $\sigma(y)$ by $\tau(x)$ in the above equation, we get

$$[F(x),\tau(y)]\tau(x)+\tau(x)[d(y),\tau(x)]=0, \text{ for all } x,y\in I.$$

We replacing y by x in the above equation, we get

$$[F(x), \tau(x)]\tau(x) + \tau(x)[d(x), \tau(x)] = 0$$
, for all $x, y \in I$.

Using equation (41) in the above equation, we get

$$\tau(x)[d(x),\tau(x)] = 0$$
, for all $x, y \in I$.

Since τ is an automorphism of R and $\tau(I) \neq 0$, we get $[d(x), \tau(x)] = 0$, for all $x, y \in I$. (43)

The equation (43) is same as equation (12) in theorem 1. Thus, by same argument of theorem 1, we can conclude the result $I \subseteq Z$.

Theorem 10: Let R be a prime ring and I be a non-zero ideal on R. Suppose that F is a generalized (σ, τ) -reverse derivation on R associated with (σ, τ) -reverse derivation d on R respectively, $\tau(I) \neq 0$ and $\sigma(I) \neq 0$. If F(xy) + F(y)F(x) = 0, for all $x, y \in I$, then $I \subseteq Z$.

Proof: We have
$$F(xy) + F(y)F(x) = 0$$
, for all $x, y \in I$. (44)

We replacing \mathbf{x} by $\mathbf{x}\mathbf{w}$ in equation (44), we obtain

$$F(xwy) + F(y)F(xw) = 0$$

$$F(wy)\sigma(x) + \tau(wy)d(x) + F(y)(F(w)\sigma(x) + \tau(w)d(x)) = 0$$

$$(F(wy) + F(y)F(w))\sigma(x) + \tau(wy)d(x) + F(y)\tau(w)d(x) = 0, \text{ for all } x, y, w \in I.$$

Using equation (44), it reduces to

ISSN:1001-4055 Vol. 44 No.3 (2023)

$$\tau(wy)d(x) + F(y)\tau(w)d(x) = 0, \text{ for all } x, y, w \in I.$$
(45)

We replacing y by zy in equation (45), we get

$$\tau(wzy)d(x) + F(zy)\tau(w)d(x) = 0$$

$$\tau(wzy)d(x) + F(y)\sigma(z)\tau(w)d(x) + \tau(y)d(z)\tau(w)d(x) = 0, \text{ for all } x, y, z, w \in I.$$
 (46)

We replacing y by z in equation (45), we get

$$\tau(wz)d(x) + F(z)\tau(w)d(x) = 0, \text{ for all } x, z, w \in I. \tag{47}$$

Left multiplying equation (47) by $\tau(y)$, we get

$$\tau(y)\tau(wz)d(x) + \tau(y)F(z)\tau(w)d(x) = 0, \text{ for all } x, y, z, w \in I.$$
(48)

We subtracting equation (48) from equation (46), we get

$$(\tau(wzy) - \tau(ywz))d(x) + F(y)\sigma(z)\tau(w)d(x) + \tau(y)d(z)\tau(w)d(x) - \tau(y)F(z)\tau(w)d(x) = 0$$

$$\tau[wz, y]d(x) + (F(y)\sigma(z) + \tau(y)d(z))\tau(w)d(x) - \tau(y)F(z)\tau(w)d(x) = 0$$

$$\tau([w, y]z + w[z, y])d(x) + (F(zy) - \tau(y)F(z))\tau(w)d(x) = 0, \text{ for all } x, y, z, w \in I.$$

We replacing z by y and w by y in the above equation, we get

$$(F(yy) - \tau(y)F(y))\tau(y)d(x) = 0, \text{ for all } x, y \in I.$$
(49)

We replacing x by sx, $s \in R$ in equation (49), we get

$$(F(yy) - \tau(y)F(y))\tau(y)d(sx) = 0$$

$$(F(yy) - \tau(y)F(y))\tau(y)d(x)\sigma(s) + (F(yy) - \tau(y)F(y))\tau(y)\tau(x)d(s) = 0$$
, for all $x, y, s \in I$.

Using equation (49) in the above equation, we get

$$(F(yy) - \tau(y)F(y))\tau(y)\tau(x)d(s) = 0, \text{ for all } x, y, s \in I.$$

We replacing x by rx, $r \in R$ in the above equation, we get

$$(F(yy) - \tau(y)F(y))\tau(y)\tau(rx)d(s) = 0$$
, for all $x, y, s \in I$.

$$(F(yy) - \tau(y)F(y))\tau(y)R\tau(x)d(s) = 0, \text{ for all } x, y, s \in I.$$

Since R is prime, we get either $(F(yy) - \tau(y)F(y))\tau(y) = 0$, for all $y \in I$ or $\tau(x)d(s) = 0$, for all $x, s \in I$. Since τ is an automorphism of R and $\tau(I) \neq 0$, we have either $(F(yy) - \tau(y)F(y)) = 0$, for all $y \in I$ or d(x) = 0, for all $x \in I$.

ISSN:1001-4055 Vol. 44 No.3 (2023)

Now let $A = \{x \in I/(F(x^2) - \tau(x)F(x)) = 0\}$ and $B = \{x \in I/d(x) = 0\}$. Clearly, A and B are additive proper subgroups of I whose union is I. Since a group cannot be the set theoretic union of two proper subgroups. Hence either A = I or B = I.

If B = I, then d(x) = 0, for all $x \in I$, by lemma 2 implies that $I \subseteq Z$.

On the other hand if
$$A = I$$
, then $F(x^2) - \tau(x)F(x) = 0$, for all $x \in I$. (50)

We replacing y by xx in equation (44), we get

$$G(xxx) = -F(xx)F(x), \text{ for all } x \in I.$$
(51)

We replacing x by xx and y by x in equation (44), we get

$$G(xxx) = -F(x)F(xx), \text{ for all } x \in I.$$
(52)

From equation (51) and equation (52), we get

$$F(x)F(x^2) = F(x^2)F(x)$$
, for all $x \in I$.

Using equation (50), it reduces to

$$F(x)\tau(x)F(x) = \tau(x)F(x)F(x)$$

$$(F(x)\tau(x) - \tau(x)F(x))F(x) = 0$$

We conclude that
$$[F(x), \tau(x)] = 0$$
, for all $x \in I$. (53)

The equation (53) is same as equation (41) in theorem 9. Thus, by same argument of theorem 9, we can conclude the result $I \subseteq Z$.

References

- [1] Aboubakr, A., and Gonzalez, S: "Generalized reverse derivation on semi prime rings", Siberian mathematical journal, Vol. 56, No. 2, (2015), 199-205.
- [2] Anwar Khaleel Faraj: "On Generalizd (θ, ϕ) -Reverse Derivations of Prime rings", Iraqi Journal of Science, Vol.52, No.2, (2011), 218-224.
- [3] Ashraf, M., Nadeem, R. and Quadri, M.A: "On (σ, τ) -derivations in certain classes of rings". Rad. Mat., 9(2), (1999), 187-192.
- [4] Bresar, M., and Vukman, J: "On some additive mappings in rings with involution", A equations math., 38, (1989), 178-185.
- [5] Charg, G., Sharma, R. K.: "On generalized (α, β) derivations in prime rings", Rend. Circ. Mat. Palermo, doi: 10.1007/s12215-015-0227-5(2015), 1-10.
- [6] Jaya Subba Reddy, C., and Hemavathi, K: "Right reverse derivations on prime rings", International Journal of Research in Engineering & Technology, 2 (3), (2014), 141-144.
- [7] Samman,M., and Alyamani,N: "Derivations and reverse derivations in semi prime rings", International Mathematical Forum, 2 (39), (2007), 1895-1902.
- [8] Yenigul and Argac: "On prime and semiprime rings with α-derivations". Turkish J.Math., 18, (1994), 280-284