Generalized (σ, τ)-Reverse Derivations in non ideal on Prime Rings

Dr K. Subbarayudu1, Dr A. Sivakameshwara Kumar2, G. Ramachandrudu3

1Lecturer in Mathematics, Government Polytechnic, Simhadripuram, Kadapa, Andhra Pradesh, India.
2Department of Mathematics, Santhiram Engineering College, Nandyal, Andhra Pradesh, India.
3Department of Mathematics, Ashoka Women’s Engineering College, Kurnool, Andhra Pradesh, India.

Abstract: Let R be a prime ring, I be a non-zero ideal on R, and σ, τ be automorphisms of R. Suppose that F is a generalized (σ, τ)-reverse derivation on R associated with (σ, τ)-reverse derivation d on R respectively. In this paper, we studied the following identities in prime rings: (i) $F(xy) + d(x)F(y) = 0$; (ii) $F(xy) + d(x)F(y) + \sigma(xy) = 0$; (iii) $F(xy) + d(x)F(y) + \sigma(xy) = 0$; (iv) $F(xy) + d(x)F(y) + \sigma(xy) = 0$; (v) $F(xy) + d(x)F(y) + \sigma(xy) = 0$; (vi) $F(xy) + d(x)F(y) + \sigma(xy) = 0$; (vii) $F(xy) + d(x)F(y) + \sigma(xy) = 0$; (viii) $F(xy) + d(x)F(y) + \sigma(xy) = 0$; (ix) $F(xy) + F(x)F(y) = 0$; (x) $F(xy) + F(x)F(y) = 0$; for all x, y in some suitable sub sets of R.

Keywords: Prime ring, Derivation, Reverse derivation, Generalized derivation, (σ, τ)-derivation, Generalized (σ, τ)-derivation, (σ, τ)-reverse derivation, Generalized (σ, τ)-reverse derivation.

Introduction:

In 1994, Yenigul and Argac in [8], obtained the some result for α derivation on prime rings. In 1999, Ashraf, Nadeem and Quadri in [3], extended the result for (θ, φ) derivation in prime and semiprime rings. Further Chirag Garg et al. in [5] studied on generalized (σ, τ)-derivations in prime rings. The notion of reverse derivation has been introduced by Bresar and Vukman in [4] and the reverse derivations on semi prime rings have been studied by Samman and Alyamani in [7]. Aboubakr and Gonzalez in [1] studied the relationship between generalized reverse derivation and generalized derivation on an ideal in semi prime rings, and C. Jaya Subbareddy et.al in [6] is proved that in case R is a prime ring with a non-zero right reverse derivation d and U is the left ideal of R then R is commutative. In 2011, the concepts of (θ, φ)-reverse derivation, and generalized (θ, φ)-reverse derivation has been introduced by Anwar Khaleel Faraj in [2]. In this paper, we inspire of Chirag Garg et al. in [5], we proved some results on generalized (σ, τ)-reverse derivations in prime rings.

Preliminaries: Throughout this paper R denote an associative ring with center Z. Recall that a ring R is prime if $xRy = \{0\}$ implies $x = 0$ or $y = 0$. For any $x, y \in R$, the symbol $[x, y]$ stands for the commutator $xy - yx$ and the symbol (xoy) denotes the anticommutator $xy + yx$. An additive mapping $d: R \rightarrow R$ is called a derivation if $d(xy) = d(x)y + xd(y)$ for all $x, y \in R$. An additive mapping $d: R \rightarrow R$ is called a reverse derivation if $d(xy) = d(y)x + yd(x)$ for all $x, y \in R$. An additive mapping $d: R \rightarrow R$ is called a (σ, τ)-derivation if $d(xy) = d(x)\sigma(y) + \tau(x)d(y)$ for all $x, y \in R$. An additive mapping
A derivation $d: R \to R$ is called a (σ, τ)-reverse derivation if $d(xy) = d(x)\sigma(x) + \tau(y)d(x)$, for all $x, y \in R$. An additive mapping $F: R \to R$ is called a generalized derivation, if there exists a derivation $d: R \to R$ such that $F(xy) = F(x)\sigma(y) + xd(y)$, for all $x, y \in R$. An additive mapping $F: R \to R$ is called a generalized reverse derivation, if there exists a reverse derivation $d: R \to R$ such that $F(xy) = F(y)\sigma(x) + \tau(y)d(x)$, for all $x, y \in R$. An additive mapping $F: R \to R$ is said to be a generalized (σ, τ)-derivation of R, if there exist automorphisms σ and τ such that $F(xy) = F(x)\sigma(y) + \tau(y)d(x)$, for all $x, y \in R$.

Throughout this paper, we shall make use of the basic commutator identities:

$[x, yz] = y[x, z] + [x, y]z; \quad [xy, z] = [x, z]y + x[y, z].$

Lemma 1: [3, Lemma 2] Let R be a 2-torsion free prime ring and U be a non-zero square-closed Lie ideal of R. If $[\sigma(x), \beta(y)] = 0$, for all $x, y \in U$, where α, β are automorphisms on R, then $U \subseteq Z$.

Lemma 2: Let R be a prime ring and I a nonzero lie ideal of R. If d is a non zero (σ, τ)-reverse derivation of R such that $d(I) = 0$, then $I \subseteq Z$.

Proof: We have $d(1) = 0$, for all $u \in I$. (1)

We replacing u by $[u, r]$ in equation (1), we get

$d([u, r]) = 0$

$d(u - r) = 0$

$d(r)\sigma(u) + \tau(r)d(u) - d(u)\sigma(r) - \tau(u)d(r) = 0$, for all $u \in I, r \in R$.

Using equation (1) in the above equation, we get

$d(r)\sigma(u) - \tau(u)d(r) = 0$, for all $u \in I, r \in R$. (2)

We replacing r by $r\nu$ in the above equation, we get

$d(r\nu)\sigma(u) - \tau(u)d(r\nu) = 0$

$d(v)\sigma(r)\sigma(u) + \tau(v)d(r)\sigma(u) - \tau(u)d(v)\sigma(r) - \tau(u)\tau(v)d(r) = 0$, for all $u, v \in I, r \in R$.

Using equation (1) in the above equation, we get

$\tau(v)d(r)\sigma(u) - \tau(u)\tau(v)d(r) = 0$, for all $u, v \in I, r \in R$. (3)

Left multiplying equation (2) by $\tau(v)$, we get

$\tau(v)d(r)\sigma(u) - \tau(u)\tau(v)d(r) = 0$, for all $u, v \in I, r \in R$. (4)

We subtracting equation (4) from equation (3), we get

$\tau[u, v]d(r) = 0$, for all $u, v \in I, r \in R$. (5)
We replacing \(v \) by \(sv, s \in R \) in equation (5), we get
\[
\tau[u, sv]d(r) = 0
\]
\[
\tau(s)\tau[u, v]d(r) + \tau[u, s]\tau(v)d(r) = 0
\]
Using equation (5) in the above equation, we get
\[
\tau[u, s]\tau(v)d(r) = 0, \text{ for all } u, v \in l, r, s \in R.
\]
We replacing \(v \) by \(tv, t \in R \) in the above equation, we get
\[
\tau[u, s]\tau(tv)d(r) = 0, \text{ for all } u, v \in l, r, s, t \in R.
\]
\[
\tau[u, s]R\tau(tv)d(r) = 0, \text{ for all } u, v \in l, s \in R. \text{ Since } R \text{ is a prime ring and } I \text{ is a nonzero lie ideal of } R.
\]
we get either \(\tau[u, s] = 0 \) or \(d(r) = 0 \). If \(d(r) = 0 \), is contradiction to our assumption. So we get \([u, s] = 0 \), for all \(u \in l, s \in R \). Then \(I \subseteq Z \).

Theorem 1: Let \(R \) be a prime ring and \(I \) be a non-zero ideal on \(R \). Suppose that \(F \) is a generalized \((\sigma, \tau) \)-reverse derivation on \(R \) with \(\sigma(I) \neq 0 \) and \(\sigma(\tau) \neq 0 \). If \(F(xy) + d(x)F(y) = 0 \), for all \(x, y \in I \), then \(I \subseteq Z \).

Proof: We have \(F(xy) + d(x)F(y) = 0 \), for all \(x, y \in I \). (6)

We replacing \(y \) by \(xy \) in equation (6), we obtain
\[
F(xxy) + d(x)F(xy) = 0, \text{ for all } x, y \in I
\]
\[
F(xy)\sigma(x) + \tau(xy)d(x) + d(x)(F(y)\sigma(x) + \tau(y)d(x)) = 0
\]
\[
(F(xy) + d(x)F(y))\sigma(x) + \tau(xy)d(x) + d(x)(\tau(y)d(x) = 0, \text{ for all } x, y \in I.
\]
Using equation (6), it reduces to
\[
\tau(xy)d(x) + d(x)\tau(y)d(x) = 0, \text{ for all } x, y \in I. \quad (7)
\]

We replacing \(y \) by \(xy \) in equation (7), we get
\[
\tau(xxy)d(x) + d(x)\tau(xy)d(x) = 0, \text{ for all } x, y \in I. \quad (8)
\]
Left multiplying equation (7) by \(\tau(x) \), we get
\[
\tau(x)\tau(xy)d(x) + \tau(x)d(x)\tau(y)d(x) = 0, \text{ for all } x, y \in I. \quad (9)
\]
We subtracting equation (9) from equation (8), we get
\[
d(x)\tau(x)\tau(y)d(x) - \tau(x)d(x)\tau(y)d(x) = 0
\]
\[
[d(x), \tau(x)]\tau(y)d(x) = 0, \text{ for all } x, y \in I. \quad (10)
\]
We replacing \(y \) by \(sy, s \in R \) in equation (10), we get
\[
[d(x), \tau(x)]\tau(sy)d(x) = 0
\]
\[
[d(x), \tau(x)]R\tau(y)d(x) = 0, \text{ for all } x, y \in I, s \in R. \quad (11)
\]
Since R is prime, we get either $[d(x), \tau(x)] = 0$, for all $x \in I$ or $\tau(y)d(x) = 0$, for all $x, y \in I$. Since τ is an automorphism of R and $\tau(I) \neq 0$, we have either $[d(x), \tau(x)] = 0$, for all $x \in I$ or $d(x) = 0$, for all $x \in I$

Now let $A = \{x \in I/ [d(x), \tau(x)] = 0\}$ and $B = \{x \in I/ d(x) = 0\}$. Clearly, A and B are additive proper subgroups of I whose union is I. Since a group cannot be the set theoretic union of two proper subgroups. Hence either $A = I$ or $B = I$.

If $B = I$, then $d(x) = 0$, for all $x \in I$, by lemma 2 implies that $I \subseteq Z$.

On the other hand if $A = I$, then $[d(x), \tau(x)] = 0$, for all $x \in I$.

If $[d(x), \tau(x)] = 0$, for all $x \in I$. (12)

We replacing x by $x + y$ in equation (12), we get

$$[d(x + y), \tau(x + y)] = 0$$

$$[d(x), \tau(x)] + [d(x), \tau(y)] + [d(y), \tau(x)] + [d(y), \tau(y)] = 0, \text{ for all } x, y \in I.$$

Using equation (12) in the above equation, we get

$$[d(x), \tau(y)] + [d(y), \tau(x)] = 0, \text{ for all } x, y \in I.$$

We replacing y by yx in equation (13), we get

$$[d(x), \tau(yx)] + [d(yx), \tau(x)] = 0$$

$$[d(x), \tau(y)][\tau(x) + \tau(y)[d(x), \tau(x)] + [d(x), \tau(y)] + [\tau(x), \tau(x)] = 0$$

$$[d(x), \tau(y)][\tau(x) + \tau(y)[d(x), \tau(x)] + [d(x), \tau(y)] + [\tau(x), \tau(x)] = 0$$

$$[d(x), \tau(y)]\tau(x) + \tau(y)[d(x), \tau(x)] + [d(x), \tau(x)]\tau(x) + [\tau(x), \tau(x)]\tau(x) = 0$$

$$[d(x), \tau(y)]\tau(x) + \tau(y)[d(x), \tau(x)] + [d(x), \tau(x)]\tau(x) + [\tau(x), \tau(x)]\tau(x) = 0$$

$$, \text{ for all } x, y \in I.$$

Using equation (12) in the above equation, we get

$$[d(x), \tau(y)]\tau(x) + d(x)[\tau(y), \tau(x)] + \tau(x)[d(y), \tau(x)] = 0, \text{ for all } x, y \in I.$$

Right multiplying equation (13) by $\tau(x)$, we get

$$[d(x), \tau(y)]\tau(x) + [d(y), \tau(x)]\tau(x) = 0, \text{ for all } x, y \in I.$$

We subtracting equation (15) from equation (14), we get

$$d(x)[\tau(y), \tau(x)] + \tau(x)[d(y), \tau(x)] - [d(y), \tau(x)]\tau(x) = 0, \text{ for all } x, y \in I.$$

We replacing $d(y)$ by $\tau(x)$ in the above equation, we get

$$d(x)[\tau(y), \tau(x)] = 0, \text{ for all } x, y \in I.$$

We replacing y by ys in equation (16), we get
Using equation (16) in the above equation, we get
\[d(x)\sigma(y)\sigma(s), \tau(x)] = 0, \text{ for all } x, y, s \in I. \]

We replacing \(y \) by \(yv, v \in R \) in the above equation, we get
\[d(x)\sigma(yv)\sigma(s), \tau(x)] = 0, \text{ for all } x, y, s \in I, v \in R. \]

\[d(x)\sigma(y)R[\sigma(s), \tau(x)] = 0, \text{ for all } x, y, s \in I. \]

Since \(R \) is prime, we get either \(d(x)\sigma(y) = 0, \text{ for all } x, y \in I \) or \([\sigma(s), \tau(x)] = 0, \text{ for all } x, s \in I. \)

Since \(\sigma \) is an automorphism of \(R \) and \(\sigma(I) \neq 0 \), we have either \([\sigma(x), \tau(y)] = 0, \text{ for all } x, y \in I \) or \(d(x) = 0, \text{ for all } x \in I. \)

If \(d(x) = 0, \text{ for all } x \in I \), by lemma 2 implies that \(I \subseteq Z \). If \([\sigma(x), \tau(y)] = 0, \text{ for all } x, y \in I \), by lemma 1 implies that \(I \subseteq Z \).

Theorem 2: Let \(R \) be a prime ring and \(I \) be a non-zero ideal on \(R \). Suppose that \(F \) is a generalized \((\sigma, \tau)\)-reverse derivation on \(R \) associated with \((\sigma, \tau)\)-reverse derivation \(d \) on \(R \) respectively, \(\sigma(I) \neq 0 \). If \(G(xy) + d(x)F(y) + \sigma(xy) = 0, \text{ for all } x, y \in I, \) then \(I \subseteq Z \).

Proof: We replacing \(F \) by \(F + \sigma \) in theorem 1, we get the required result.

Theorem 3: Let \(R \) be a prime ring and \(I \) be a non-zero ideal on \(R \). Suppose that \(F \) is a generalized \((\sigma, \tau)\)-reverse derivation on \(R \) associated with \((\sigma, \tau)\)-reverse derivation \(d \) on \(R \) respectively, \(\sigma(I) \neq 0 \). If \(F(xy) + d(x)F(y) + \sigma(xy) = 0, \text{ for all } x, y \in I, \) then \(I \subseteq Z \).

Proof: We have \(F(xy) + d(x)F(y) + \sigma(xy) = 0, \text{ for all } x, y \in I. \)

We replacing \(y \) by \(xy \) in equation (17), we obtain
\[F(xyy) + d(x)F(xy) + \sigma(xyy) = 0, \text{ for all } x, y \in I \]
\[F(xy)s + \tau(xy)d(x) + d(xy)(F(y)s + \tau(y)d(x)) + \sigma(xyy) = 0 \]
\[(F(xy) + d(x)F(y))\sigma(x) + \tau(xy)d(x) + d(xy)\tau(y)d(x) + \sigma(xyy) = 0, \text{ for all } x, y \in I. \]

Using equation (17), it reduces to
\[\tau(xy)d(x) + d(x)\tau(y)d(x) + \sigma(xyy) - \sigma(yxx)\sigma(x) = 0 \]
\[\tau(xy)d(x) + d(x)\tau(y)d(x) + \sigma[x, y]\sigma(x) = 0, \text{ for all } x, y \in I. \]

We replacing \(y \) by \(xy \) in equation (18), we get
\[\tau(xxy)d(x) + d(x)\tau(xy)yd(x) + \sigma[x, xy]\sigma(x) = 0 \]
\[\tau(xxy)d(x) + d(x)\tau(xy)d(x) + \sigma(x)\sigma[x, y]\sigma(x) = 0, \text{ for all } x, y \in I. \]
\(\tau(x) \tau(x y) d(x) + \tau(x) d(x) \tau(y) d(x) + \tau(x) \sigma[x, y] \sigma(x) = 0 \), for all \(x, y, z \in I \). \((20) \)

We subtracting equation (20) from equation (19), we get
\[
d(x) \tau(x) \tau(y) d(x) - \tau(x) d(x) \tau(y) d(x) + \sigma(x) \sigma[x, y] \sigma(x) - \tau(x) \sigma[x, y] \sigma(x) = 0
\]
\[
[d(x), \tau(x)] \tau(y) d(x) + (\sigma(x) - \tau(x)) \sigma[x, y] \sigma(x) = 0 \), for all \(x, y \in I \).
\]

We replacing \(\tau(x) \) by \(\sigma(x) \) in the above equation, we get
\[
[d(x), \sigma(x)] \tau(y) d(x) = 0 \), for all \(x, y \in I \).
\((21) \)

We replacing \(\sigma(x) \) by \(\tau(x) \) and \(y \) by \(sy \), \(s \in R \) in equation (21), we get
\[
[d(x), \tau(x)] \tau(sy) d(x) = 0
\]
\[
[d(x), \tau(x)] R \tau(y) d(x) = 0 \), for all \(x, y \in I, s \in R \).
\((22) \)

The equation (22) is same as equation (11) in theorem 1. Thus, by same argument of theorem 1, we can conclude the result \(I \subseteq Z \).

Theorem 4: Let \(R \) be a prime ring and \(I \) be a non-zero ideal on \(R \). Suppose that \(F \) is a generalized \((\sigma, \tau) \)-reverse derivation on \(R \) associated with \((\sigma, \tau) \)-reverse derivation \(d \) on \(R \) respectively, \(\tau(I) \neq 0 \) and \(\sigma(I) \neq 0 \). If \(F(xy) + d(x) F(y) + \sigma(x \sigma y) = 0 \), for all \(x, y \in I \), then \(I \subseteq Z \).

Proof: We replacing \(F \) by \(F + \sigma \) in theorem 3, we get the required result.

Theorem 5: Let \(R \) be a prime ring and \(I \) be a non-zero ideal on \(R \). Suppose that \(F \) is a generalized \((\sigma, \tau) \)-reverse derivation on \(R \) associated with \((\sigma, \tau) \)-reverse derivation \(d \) on \(R \) respectively, \(\tau(I) \neq 0 \) and \(\sigma(I) \neq 0 \). If \(F(xy) + d(x) F(y) = 0 \), for all \(x, y \in I \), then \(I \subseteq Z \).

Proof: We have \(F(xy) + d(y) F(x) = 0 \), for all \(x, y \in I \).
\((23) \)

We replacing \(x \) by \(xw \) in equation (23), we obtain
\[
F(xwy) + d(y) F(xw) = 0
\]
\[
F(wy) \sigma(x) + \tau(wy) d(x) + d(y) (F(w) \sigma(x) + \tau(w) d(x)) = 0
\]
\[
(F(wy) + d(y) F(w)) \sigma(x) + \tau(wy) d(x) + d(y) \tau(w) d(x) = 0 \), for all \(x, y, w \in I \).

Using equation (23), it reduces to
\[
\tau(wy) g(x) + d(y) \tau(w) d(x) = 0 \), for all \(x, y, w \in I \).
\((24) \)

We replacing \(y \) by \(zy \) in equation (24), we get
\[
\tau(wzy) d(x) + d(zy) \tau(w) d(x) = 0
\]
\[
\tau(wzy) d(x) + d(y) \sigma(z) \tau(w) d(x) + \tau(y) d(z) \tau(w) d(x) = 0 \), for all \(x, y, z, w \in I \).
\((25) \)

We replacing \(y \) by \(z \) in equation (24), we get
\[
\tau(wz) d(x) + d(z) \tau(w) d(x) = 0 \), for all \(x, z, w \in I \).
\((26) \)
Left multiplying equation (26) by \(\tau(y) \), we get

\[
\tau(y)\tau(wz)d(x) + \tau(y)d(z)\tau(w)d(x) = 0 \quad \text{for all} \ x, y, z \in I. \quad (27)
\]

We subtracting equation (27) from equation (25), we get

\[
\begin{align*}
\tau(wzy) - \tau(zyw)d(x) + d(y)\sigma(z)\tau(w)d(x) &= 0 \\
\tau(wz, y)d(x) + d(y)\sigma(z)\tau(w)d(x) &= 0
\end{align*}
\]

for all \(x, y, z, w \in I \).

We replacing \(z \) by \(y \) and \(w \) by \(y \) in the above equation, we get

\[
d(y)\sigma(y)\tau(y)d(x) = 0 \quad \text{for all} \ x, y \in I. \quad (28)
\]

We replacing \(x \) by \(s x \) in equation (28), we get

\[
d(y)\sigma(y)\tau(y)d(sx) = 0
\]

\[
d(y)\sigma(y)\tau(y)d(x)\sigma(s) + d(y)\sigma(y)\tau(y)\tau(x)d(s) = 0 \quad \text{for all} \ x, y, s \in I.
\]

Using equation (28) in the above equation, we get

\[
d(y)\sigma(y)\tau(y)d(s) = 0 \quad \text{for all} \ x, y, s \in I.
\]

We replacing \(x \) by \(r x, r \in R \) in the above equation, we get

\[
d(y)\sigma(y)\tau(y)\tau(rx)d(s) = 0
\]

\[
d(y)\sigma(y)\tau(y)R\tau(x)d(s) = 0 \quad \text{for all} \ x, y, s \in I.
\]

Since \(R \) is prime, we get either \(d(y)\sigma(y)\tau(y) = 0 \), for all \(y \in I \) or \(\tau(x)d(s) = 0 \), for all \(x, s \in I \).

Since \(\tau \) is an automorphism of \(R \) and \(\tau(I) \neq 0 \), we have either \(d(x)\sigma(x) = 0 \), for all \(x \in I \) or \(d(x) = 0 \), for all \(x \in I \). If \(d(x) = 0 \), for all \(x \in I \), by lemma 2 implies that \(I \subseteq Z \).

If \(d(x)\sigma(x) = 0 \), for all \(x \in I \). Since \(\sigma \) is an automorphism of \(R \) and \(\sigma(I) \neq 0 \) then \(d(x) = 0 \), for all \(x \in I \), by lemma 2 implies that \(I \subseteq Z \).

Theorem 6: Let \(R \) be a prime ring and \(I \) be a non-zero ideal on \(R \). Suppose that \(F \) is a generalized \((\sigma, \tau)\)-reverse derivation on \(R \) associated with \((\sigma, \tau)\)-reverse derivation \(d \) on \(R \) respectively, \(\tau(I) \neq 0 \) and \(\sigma(I) \neq 0 \). If \(F(xy) + d(y)F(x) + \sigma(xy) = 0 \), for all \(x, y \in I \), then \(I \subseteq Z \).

Proof: We replacing \(F \) by \(F + \sigma \) in theorem 5, we get the required result.

Theorem 7: Let \(R \) be a prime ring and \(I \) be a non-zero ideal on \(R \). Suppose that \(F \) is a generalized \((\sigma, \tau)\)-reverse derivation on \(R \) associated with \((\sigma, \tau)\)-reverse derivation \(d \) on \(R \) respectively, \(\tau(I) \neq 0 \) and \(\sigma(I) \neq 0 \). If \(F(xy) + d(y)F(x) + \sigma(yx) = 0 \), for all \(x, y \in I \), then \(I \subseteq Z \).

Proof: We have \(F(xy) + d(y)F(x) + \sigma(yx) = 0 \), for all \(x, y \in I \).

We replacing \(x \) by \(xw \) in equation (29), we obtain
Using equation (29), it reduces to
\[\tau(\text{r}(w)d(x) + d(y)\tau(w)d(x) + \sigma(\text{r}(z)) = 0, \text{ for all } \alpha, \beta, \gamma. \] (30)

We replacing \(y \) by \(z \) and \(w \) by \(y \) in equation (30), we get
\[\tau(\text{r}(w)d(x) + d(y)\tau(w)d(x) + \sigma(z)\sigma[x, w] = 0, \text{ for all } x, y, w \in I. \] (31)

We replacing \(y \) by \(z \) in equation (30), we get
\[\tau(\text{r}(w)d(x) + d(z)\tau(w)d(x) + \sigma(z)\sigma[x, w] = 0, \text{ for all } x, z, w \in I. \] (32)

Left multiplying equation (32) by \(\tau(y) \), we get
\[\tau(y)\tau(\text{r}(w)d(x) + d(z)\tau(w)d(x) + \tau(\text{r}(z))\sigma[x, w] = 0, \text{ for all } x, y, z, w \in I. \] (33)

We subtracting equation (33) from equation (31), we get
\[\tau(\text{r}(w)d(x) + d(z)\tau(w)d(x) + d(y)\sigma(z)\tau(w)d(x) + d(y)\sigma(z)\sigma[x, w] - \tau(\text{r}(z))\sigma[x, w] = 0 \]
\[\tau(\text{r}(w)d(x) + d(z)\tau(w)d(x) + d(y)\sigma(z)\tau(w)d(x) + d(y)\sigma(z)\sigma[x, w] - \tau(z)\sigma[x, w] = 0, \text{ for all } x, y, z, w \in I. \]

We replacing \(z \) by \(y \) and \(w \) by \(y \) in the above equation, we get
\[d(y)\sigma(x)y\tau(y)d(x) + d(y)\sigma(x)\sigma[x, y] - \tau(y)\sigma(y)d(x) = 0, \text{ for all } x, y \in I. \]

We replacing \(\tau(y) \) by \(\sigma(y) \) in the above equation, we get
\[d(y)\sigma(y)d(x) + d(y)\sigma(y)d(x) - \sigma(y)d(x) = 0, \text{ for all } x, y \in I. \] (34)

The equation (34) is same similar equation (28) in theorem 5. Thus, by same argument of theorem 5, we can conclude the result \(I \subseteq Z \).

Theorem 8: Let \(R \) be a prime ring and \(I \) be a non-zero ideal on \(R \). Suppose that \(F \) is a generalized \((\sigma, \tau)\)-reverse derivation on \(R \) associated with \((\sigma, \tau)\)-reverse derivation \(\text{d} \) on \(R \) respectively, \(\tau(I) \neq 0 \) and \(\sigma(I) \neq 0 \). If \(F(xy) + d(y)F(x) + \sigma(xo) = 0, \text{ for all } x, y \in I \), then \(I \subseteq Z \).

Proof: We replacing \(F \) by \(F + \sigma \) in theorem 7, we get the required result.
Theorem 9: Let \(R \) be a prime ring and \(I \) be a non-zero ideal on \(R \). Suppose that \(F \) is a generalized \((\sigma,\tau)\)-reverse derivation on \(R \) associated with \((\sigma,\tau)\)-reverse derivation \(d \) on \(R \) respectively, \(\tau(I) \neq 0 \) and \(\sigma(I) \neq 0 \). If \(F(xy) + F(x)F(y) = 0 \), for all \(x, y \in I \). then \(I \subseteq Z \).

Proof: We have \(F(xy) + F(x)F(y) = 0 \), for all \(x, y \in I \). (35)

We replacing \(y \) by \(xy \) in equation (35), we obtain

\[F(xxy) + F(x)F(xy) = 0, \text{ for all } x, y \in I \]

\[F(xy)\sigma(x) + \tau(xy)d(x) + F(x)(F(y)\sigma(x) + \tau(y)d(x)) = 0 \]

\[(F(xy) + F(x)F(y))\sigma(z) + \tau(xy)d(x) + F(x)\tau(y)d(x) = 0, \text{ for all } x, y \in I. \]

Using equation (35), it reduces to

\[\tau(xy)d(x) + F(x)\tau(y)d(x) = 0, \text{ for all } x, y \in I. \] (36)

We replacing \(y \) by \(wy \) in equation (36), we get

\[\tau(xwy)d(x) + F(x)\tau(wy)d(x) = 0, \text{ for all } x, y, w \in I. \] (37)

Left multiplying equation (36) by \(\tau(w) \), we get

\[\tau(w)\tau(xy)d(x) + \tau(w)F(x)\tau(y)d(x) = 0, \text{ for all } x, y, z, w \in I. \] (38)

We subtracting equation (38) from equation (37), we get

\[\tau(xwy)g(x) - \tau(wxy)g(x) + F(x)\tau(w)\tau(y)d(x) - \tau(w)F(x)\tau(y)d(x) = 0 \]

\[(\tau(xwy) - \tau(wxy))g(x) + [F(x),\tau(w)]\tau(y)d(x) = 0, \text{ for all } x, y, w \in I. \] (39)

We replacing \(w \) by \(x \) and \(y \) by \(sy \), \(s \in R \) in equation (39), we get

\[[F(x),\tau(x)]\tau(sy)d(x) = 0 \]

\[[F(x),\tau(x)]\tau(ry)d(x) = 0, \text{ for all } x, y \in I, s \in R. \] (40)

Since \(R \) is prime, we get either \([F(x),\tau(x)] = 0 \), for all \(x \in I \) or \(\tau(y)d(x) = 0 \), for all \(x, y \in I \). Since \(\tau \) is an automorphism of \(R \) and \(\tau(I) \neq 0 \), we have either \([F(x),\tau(x)] = 0 \), for all \(x \in I \) or \(d(x) = 0 \), for all \(x \in I \).

Now let \(A = \{x \in I/\tau(x) = 0\} \) and \(B = \{x \in I/d(x) = 0\} \). Clearly, \(A \) and \(B \) are additive proper subgroups of \(I \) whose union is \(I \). Since a group cannot be the set theoretic union of two proper subgroups. Hence either \(A = I \) or \(B = I \).

If \(B = I \), then \(d(x) = 0 \), for all \(x \in I \). by lemma 2 implies that \(I \subseteq Z \).

On the other hand if \(A = I \), then \([F(x),\tau(x)] = 0 \), for all \(x \in I \).

If \([F(x),\tau(x)] = 0 \), for all \(x \in I \). (41)

We replacing \(x \) by \(x + y \) in equation (12), we get
\[[F(x + y), \tau(x + y)] = 0 \]
\[[F(x), \tau(x)] + [F(x), \tau(y)] + [F(y), \tau(x)] + [F(y), \tau(y)] = 0, \text{ for all } x, y \in I. \]

Using equation (41) in the above equation, we get
\[[F(x), \tau(y)] + [F(y), \tau(x)] = 0, \text{ for all } x, y \in I. \quad (42) \]

We replacing \(y \) by \(xy \) in equation (42), we get
\[[F(x), \tau(y)] + [F(yx), \tau(x)] = 0 \]
\[[F(x), \tau(y)] \tau(x) + \tau(y)[F(x), \tau(x)] + [F(x)\sigma(y) + \tau(x)d(y), \tau(x)] = 0 \]
\[[F(x), \tau(y)] \tau(x) + \tau(y)[F(x), \tau(x)] + [F(x)\sigma(y), \tau(x)] + [\tau(x)d(y), \tau(x)] = 0 \]
\[[F(x), \tau(y)] \tau(x) + \tau(y)[F(x), \tau(x)] + [F(x), \tau(x)\sigma(y) + F(x)\sigma(y), \tau(x)] + \tau(x)[d(y), \tau(x)] + [\tau(x), \tau(x)]d(y) = 0 \]
\[, \text{ for all } x, y \in I. \]

Using equation (41) in the above equation, we get
\[[F(x), \tau(y)] \tau(x) + F(x)[\sigma(y), \tau(x)] + \tau(x)[d(y), \tau(x)] = 0, \text{ for all } x, y \in I. \]

We replacing \(\sigma(y) \) by \(\tau(x) \) in the above equation, we get
\[[F(x), \tau(y)] \tau(x) + \tau(x)[d(y), \tau(x)] = 0, \text{ for all } x, y \in I. \]

We replacing \(y \) by \(x \) in the above equation, we get
\[[F(x), \tau(x)] \tau(x) + \tau(x)[d(x), \tau(x)] = 0, \text{ for all } x, y \in I. \]

Using equation (41) in the above equation, we get
\[\tau(x)[d(x), \tau(x)] = 0, \text{ for all } x, y \in I. \]

Since \(\tau \) is an automorphism of \(R \) and \(\tau(I) \neq 0 \), we get \([d(x), \tau(x)] = 0, \text{ for all } x, y \in I. \) (43)

The equation (43) is same as equation (12) in theorem 1. Thus, by same argument of theorem 1, we can conclude the result \(I \subseteq Z. \)

Theorem 10: Let \(R \) be a prime ring and \(I \) be a non-zero ideal on \(R \). Suppose that \(F \) is a generalized \((\sigma, \tau)\)-reverse derivation on \(R \) associated with \((\sigma, \tau)\)-reverse derivation \(d \) on \(R \) respectively, \(\tau(I) \neq 0 \) and \(\sigma(I) \neq 0 \). If \(F(xy) + F(y)F(x) = 0, \text{ for all } x, y \in I \), then \(I \subseteq Z. \)

Proof: We have \(F(xy) + F(y)F(x) = 0, \text{ for all } x, y \in I. \) (44)

We replacing \(x \) by \(xy \) in equation (44), we obtain
\[F(xyw) + F(y)F(xw) = 0 \]
\[F(wy)\sigma(x) + \tau(wy)d(x) + F(y)[F(w)\sigma(x) + \tau(w)d(x)] = 0 \]
\[(F(wy) + F(y)F(w))\sigma(x) + \tau(wy)d(x) + F(y)\tau(w)d(x) = 0, \text{ for all } x, y, w \in I. \]

Using equation (44), it reduces to
\[\tau(wy)d(x) + F(y)\tau(w)d(x) = 0, \text{ for all } x, y, w \in I. \]
(45)

We replacing \(y \) by \(zy \) in equation (45), we get
\[\tau(wzy)d(x) + F(zy)\tau(w)d(x) = 0 \]
\[\tau(wzy)d(x) + F(y)\sigma(z)\tau(w)d(x) + \tau(y)d(z)\tau(w)d(x) = 0, \text{ for all } x, y, z, w \in I. \]
(46)

We replacing \(y \) by \(z \) in equation (45), we get
\[\tau(wz)d(x) + F(z)\tau(w)d(x) = 0, \text{ for all } x, z, w \in I. \]
(47)

Left multiplying equation (47) by \(\tau(y) \), we get
\[\tau(y)\tau(wz)d(x) + \tau(y)F(z)\tau(w)d(x) = 0, \text{ for all } x, y, z, w \in I. \]
(48)

We subtracting equation (48) from equation (46), we get
\[(\tau(wzy) - \tau(ywz))d(x) + F(y)\sigma(z)\tau(w)d(x) + \tau(y)d(z)\tau(w)d(x) - \tau(y)F(z)\tau(w)d(x) = 0 \]
\[\tau[wz,y]d(x) + (F(y)\sigma(z) + \tau(y)d(z))\tau(w)d(x) - \tau(y)F(z)\tau(w)d(x) = 0 \]
\[\tau(\{w, y\}z + w[z, y])d(x) + (F(zy) - \tau(y)F(z))\tau(w)d(x) = 0, \text{ for all } x, y, z, w \in I. \]

We replacing \(z \) by \(y \) and \(w \) by \(y \) in the above equation, we get
\[(F(yy) - \tau(y)F(y))\tau(y)d(x) = 0, \text{ for all } x, y \in I. \]
(49)

We replacing \(x \) by \(sx, s \in R \) in equation (49), we get
\[(F(yy) - \tau(y)F(y))\tau(x)d(s) = 0 \]
\[(F(yy) - \tau(y)F(y))\tau(x)\sigma(s) + (F(yy) - \tau(y)F(y))\tau(y)\tau(x)d(s) = 0, \text{ for all } x, y, s \in I. \]

Using equation (49) in the above equation, we get
\[(F(yy) - \tau(y)F(y))\tau(x)d(s) = 0, \text{ for all } x, y, s \in I. \]

We replacing \(x \) by \(rx, r \in R \) in the above equation, we get
\[(F(yy) - \tau(y)F(y))\tau(x)\tau(s) = 0, \text{ for all } x, y, s \in I. \]
\[(F(yy) - \tau(y)F(y))\tau(x)d(s) = 0, \text{ for all } x, y, s \in I. \]

Since \(R \) is prime, we get either \((F(yy) - \tau(y)F(y))\tau(y) \) or \(\tau(x)d(s) = 0 \) for all \(x, s \in I \). Since \(\tau \) is an automorphism of \(R \) and \(\tau(I) \neq 0 \), we have either \((F(yy) - \tau(y)F(y)) = 0 \) for all \(y \in I \) or \(\tau(x)d(s) = 0 \) for all \(x \in I \).
Now let $A = \{ x \in I / [F(x^2) - \tau(x)F(x)] = 0 \}$ and $B = \{ x \in I / d(x) = 0 \}$. Clearly, A and B are additive proper subgroups of I whose union is I. Since a group cannot be the set theoretic union of two proper subgroups. Hence either $A = I$ or $B = I$.

If $B = I$, then $d(x) = 0$, for all $x \in I$, by lemma 2 implies that $I \subseteq Z$.

On the other hand if $A = I$, then $F(x^2) - \tau(x)F(x) = 0$, for all $x \in I$. (50)

We replacing y by xx in equation (44), we get

$$G(xxx) = -F(xx)F(x), \text{ for all } x \in I.$$ (51)

We replacing x by xx and y by x in equation (44), we get

$$G(xxx) = -F(x)F(xx), \text{ for all } x \in I.$$ (52)

From equation (51) and equation (52), we get

$$F(x)F(x^2) = F(x^2)F(x), \text{ for all } x \in I.$$ (50)

Using equation (50), it reduces to

$$F(x)\tau(x)F(x) = \tau(x)F(x)F(x)$$

$$\left(F(x)\tau(x) - \tau(x)F(x)\right)F(x) = 0$$

We conclude that $[F(x), \tau(x)] = 0$, for all $x \in I$. (53)

The equation (53) is same as equation (41) in theorem 9. Thus, by same argument of theorem 9, we can conclude the result $I \subseteq Z$.

References

2098