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Abstract: — Malware poses a significant threat to digital security, as it is designed to access or manipulate 

information from systems without user consent or authorization. As the digital landscape evolves, malware attacks 

by cyber-criminals are becoming increasingly sophisticated and frequent. To effectively counter these threats, this 

paper introduces a novel framework that combines Long-Short Term Memory (LSTM) and Convolutional Neural 

Networks (CNN) for malware detection and classification. The proposed framework leverages the strengths of 

LSTM and CNN neurons to process and learn from locally available data that exhibits malware-like 

characteristics. By abstracting and correlating relevant data, the model is capable of identifying patterns and 

anomalies associated with malware activity. This combination of LSTM's ability to capture temporal 

dependencies and CNN's feature extraction capabilities enhances the accuracy and robustness of malware 

detection. Through rigorous experimentation and evaluation, the framework demonstrates superior performance 

in classifying malware compared to traditional methods. The results suggest that this approach provides a powerful 

tool for identifying and mitigating potential malware threats, contributing to a safer and more secure digital 

environment. 
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1. Introduction 

To detect and classify the malware is quite a cumbersome process. Malware is characterized by different 

characters and features making their grouping in different families of malware [Choudhary et al.]. To safeguard 

our system from this malware, various pattern matching techniques are there. But attackers had tried various 

metamorphism techniques to muddle these pattern matching techniques. This becomes a big challenge to handle 

these metamorphism techniques for detectors. There are various automatic malware generations technique that 

are producing new kinds of malware every second, if the previously generated malwares are detected by our 

conventional detecting system. Due to this problem, it is must to have modern day techniques that not only ranging 

to detect the malware attack on targeted system but analyze that malign data, to combat any future attack of 

evasion. Malware detection techniques are differently grouped. They are classified on the technique and character 

of malware used. Some of them are anomaly feature detection, signature and machine learning-based algorithm 

for malware detection [Tahir et al]. In signature-based technique, samples of malware are taken and a signature 

of it is obtained. This signature is used in the system and if our system found that signature then the malware will 

get detected. In the case of anomaly-based technique, look for the activities that fall outside the working range of 

the computer [Majumdar et al.]. The anomaly-based technique gives false detection many times as any variation 

in computer activities results in malware detection while in signature-based technique, a code metamorphism 

technique can easily confuse the system and malware can enter the system so to overcome these difficulties, the 

machine learning technique in evolved with time. To combat this evasion, traditional techniques are no longer 

effective. So, instead of traditional techniques, a specific technique that evolves from deep learning is used to 

solve this issue in cyberspace. Deep learning is a Machine Learning process that provides specific extraction 
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features i.e. high-level extraction from low-level data. This feature enables developers to get rid of featuring 

engineering parameters manually after analysis done by individuals. In this paper, an attempt has been made to 

develop a model to detect and classify the model that evolves from LSTM (Long Short-Term Memory) based 

deep learning technology.  

1.1 Recurrent Neural Network 

In Neural Networks that are feed on a forwarding basis, samples are treated independently of each other. Due to 

this reason, the feedforward neural network has no practical uses in the case of having samples related to each 

other or depending on each other. Thus, it requires a different type of architecture having memory, as required on 

time-sequential data or time series. RNN uses memory to the network (Mikolov et al.). Figure 1 illustrates the 

RNN. This RNN not only depends on the current input but requires information of previous time steps. That is 

indicated by the feedback loop: 

 

Fig. 1 Working Principle of RNN 

While in the case of a feed-forward network, required set of information moves only in a forward direction, and 

information is available for each subsequent step of time steps in RNN. A Recurrent Neural Network (RNN) is a 

type of neural network designed to handle sequential data, such as time series, speech, or text. Unlike traditional 

feedforward neural networks, which process inputs independently, RNNs maintain an internal state that allows 

them to capture dependencies and patterns across time steps in a sequence. 

 

Fig. 2 Flow diagram of RNN 

Here's an overview of the working principle of RNNs: 

• Input Sequence: An RNN processes a sequence of data one time step at a time. The input at each time step 

can be a single element (e.g., a word in a sentence) or a vector representing multiple features.  
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• Recurrent Connections: At each time step, the RNN maintains a hidden state (also known as memory or 

context) that captures information from previous time steps. This hidden state is updated at each time step 

based on the current input and the previous hidden state.  

• Hidden State Update: The hidden state at each time step is computed using a combination of the input and 

the previous hidden state. Mathematically, this can be represented as:  

 

Where:  

ht is the hidden state at time step t 

ht−1 is the hidden state from the previous time step. o xt is the input at time step t.  

Wh, Wx, and bb are learned parameters (weights and biases).  

σ is a non-linear activation function, such as tanh or ReLU.  

• • Output: The RNN can produce an output at each time step based on the hidden state. This output may be 

a prediction, a classification, or some other form of result depending on the task. Mathematically, the output 

can be represented as:  

 

Where:  

yt is the output at time step t.  

Wy and by are learned parameters.  

The softmax function is used for classification tasks.  

• Training: RNNs are trained using backpropagation through time (BPTT), an extension of the standard 

backpropagation algorithm. This process involves computing the gradients of the loss function with respect 

to the model's parameters and updating them using an optimization algorithm like stochastic gradient 

descent.  

• Challenges: While RNNs are powerful for handling sequential data, they face challenges such as vanishing 

and exploding gradients, which can affect learning and lead to poor performance on long sequences. Long 

Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) architectures are variations of RNNs that 

address these issues and improve the network's ability to capture long-term dependencies. Overall, RNNs 

are a versatile class of neural networks that excel at processing and learning from sequences of data, making 

them well-suited for tasks such as natural language processing, speech recognition, and time series 

forecasting. 

a. Long Short-Term Memory  

The basic Recurrent Neural Network (RNN) model is known to suffer from the vanishing gradient problem during 

backpropagation, which can hinder the network's ability to learn long-range dependencies and lead to significant 

memory utilization. To address these challenges, more complex RNN models with specific gating mechanisms 

have been developed. Among these, the Long Short-Term Memory (LSTM) model is the most renowned gated 

architecture. LSTM mitigates the vanishing gradient problem by decoupling the network's memory from its 

output, allowing for better handling of long-term dependencies. Additionally, LSTM employs additive updates to 

the memory state, rather than multiplicative ones, thereby providing more stable learning dynamics. Bidirectional 

LSTMs are an extension of the standard LSTM model that processes data in both forward and backward directions. 

This bidirectional processing enables the network to capture context from both past and future inputs, enhancing 

its performance on various sequential data tasks. Overall, these advanced RNN models provide more robust 

solutions for learning from sequential data, offering improved performance and efficiency. 
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b. Conventional Neural Network (CNN)  

Overview: Convolutional Neural Networks (CNNs) are a type of deep learning model designed to efficiently 

handle data with a local structure, such as images. CNNs have been particularly successful in image classification 

and other computer vision tasks.  

• Convolutional Layers: CNNs contain convolutional layers, which apply a series of filters to the input data. 

These filters detect specific features, such as edges or patterns, within the data.  

• Deeper Layers: As the network goes deeper, the layers detect more complex and abstract features.  

• Pooling Layers: Pooling layers (e.g., max pooling) reduce the dimensionality of the data and the 

computational load, which helps prevent overfitting and improves generalization.  

1.4 TensorFlow Layers  

• Overview: TensorFlow is a popular deep learning framework that provides various tools and layers to build 

neural networks.  

• Layer Types: Different layer types in TensorFlow, such as Dense, Dropout, LSTM, and Embedding layers, 

allow for creating diverse and complex neural network architectures.  

1.5 Input Layers  

Purpose: The input layer is the starting point of a neural network, where the initial data enters the network. 

1.6 Dropout Layer  

• Function: Dropout is a regularization technique that randomly disables a proportion of neuron connections 

during training.  

• Purpose: This technique helps reduce overfitting and improves the generalization of the model.  

1.7 LSTM Layer  

• Overview: The Long Short-Term Memory (LSTM) layer is a recurrent neural network (RNN) variant 

designed to capture long-term dependencies in sequential data.  

• Function: LSTM layers handle forward and backward propagation in a single layer, making them efficient 

for tasks such as time series analysis and natural language processing.  

1.8 Bidirectional Layer  

• • Purpose: Bidirectional layers allow RNNs to process data in both forward and backward directions.  

• • Function: This bidirectional processing improves the network's ability to capture context from both past 

and future inputs in sequential data tasks.  

1.9 Dense Layer  

• Function: Dense layers, also known as fully connected layers, connect each neuron to every neuron in the 

previous and next layer.  

• Purpose: These layers perform complex transformations and are commonly used in neural networks.  

1.10 Embedding Layer  

• Function: Embedding layers map positive integer indices (e.g., words in a vocabulary) to dense vectors of 

floating-point values.  

• Purpose: This layer is widely used in natural language processing tasks to convert discrete data (e.g., words) 

into dense representations.  

1.11 CONV 1D Layer  

• Overview: CONV 1D layers apply one-dimensional convolutional filters to sequential data.  
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• Purpose: This layer is useful for tasks such as processing time series data or natural language processing, 

where data can be represented as sequences. 

 

2. Objectives 

The primary objective of the research is to Model hyperparameter tuning reveals best-practice parameters, and 

the ensemble confusion matrix delves into classification efficacy.  

Deep learning is evolved from the traditional Machine Learning process. It has attracted the attention of 

researchers as it is a hotspot in the cyber safety industry. Deep learning has achieved many recognized applications 

in the industry. Athiwaratkun et al. have reviewed various models of malware classifications. In these models, 

one model is found to have two-stage classifiers. In this model, the initial stage layer is either LSTM or GRU and 

the one stage is single layer MLP. Another model found in his review has a single stage of nine CNN layers. When 

these models are trained evaluated systematically then it has an accuracy of up to 80%. Zhang et al. in their work 

have adopted a novel deep learning model that contains both CNN and LSTM layers. For training these models, 

an API call sequence is being used. The CNN of this model has filters of increasing size, with an output of each 

filter is working as input to the LSTM layer. The output of this LSTM layer is used as input for the dropout layer 

with final fully connected layers for classifications. The outcome obtained from the dense layer is the required 

prediction of the given model. This model has an accuracy of about 100%. Mishra et al. Use the BiLSTM model 

for classifying the various malware in a given cloud system. It has CNN layers and it is trained on-call sequence. 

The authors have achieved an accuracy of up to the 90%. They also found that putting BiLSTM on single-layer 

LSTM results in the worst accuracies in all possible cases studied by them. Lu et al. have proposed a work that 

uses opcodes obtained by disassembled executables. They also used the technique of embedding the word as a 

feature engineering step. Natural Language Processing applications also deploy techniques of word embedding. 

The result obtained from word embedding is used as input for LSTM layers. For detection purposes, this model 

has achieved an AUC of 0.99 while in the case of classification AUS is 0.987. A brief comparison of various 

malware detection techniques based on opcodes has been discussed in table 1. In table 1, the various author used 

different kinds of algorithms on windows and IoT. The result obtained in terms of accuracy, recall % and Precision 

& has been discussed below. 

Table 1. Comparative study of various op-code based techniques 

 

These findings show a range of performance across different algorithms and datasets:  

• Santos et al. achieved a high accuracy of 95.91% on a Windows dataset, with recall and precision rates of 

77.70% and 86.25% respectively.  

• LSTM+CNN+MF [Yan et al.] showed exceptional performance with an accuracy of 99.88% and a recall 

rate of 99.14% on a Windows dataset. Precision data is not specified.  

• Hashemi et al. obtained an accuracy of 96.87% with recall and precision rates of 81.55% and 91.09% 

respectively on a Windows dataset.  

• Azmoodeh et al. worked with ARM-based IoT datasets and achieved an accuracy of 91.91%, a high recall 

rate of 94.20%, and a precision rate of 83.33%. 

Overall, these findings highlight the varying performance of different algorithms and approaches across different 

types of datasets, illustrating the potential for further improvements in malware detection methods. 

3. Methods 
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The Embedded Long Short-Term Memory (LSTM) model is used to classify malware based on data from the 

works of Prajapati et al. and Nappa et al., encompassing data from 20 families of malware. Deep learning models 

often require frequent tuning of data, and in this approach, the embedded and dense layers are randomly initialized 

at each instance of training. This results in variations in accuracy each time the model is trained. The embedded 

layer is positioned between the input layer and the LSTM layer in the architecture, as depicted in figure 3. 

 

Fig.3 Architecture of Embedded LSTM Model 

The methodology can be implemented with the following set of algorithms:  

Algorithm 1: Predict  

Steps: 

1. Import necessary libraries.  

2. Load and visualize the dataset.  

3. Preprocess the dataset.  

4. Prepare the dataset for LSTM.  

5. Build and train the LSTM model.  

6. Make predictions and evaluat the model  

The above algorithm uses LSTM for prediction using loading, preprocessing, building and training the dataset 

using a given training dataset.  

Algorithm 2. CNNLSTM  

Steps:  

1. Input training_x, training_y  
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2. Initialize hyper parameters  

3. Normalize inputs using Max-Min normalization  

4. Apply dropout with dropout rate  

5. Apply LSTM with specified epochs and batchsize  

6. Apply dopout with same dropout rate as in step 4  

7. Apply neural network with linear activation function  

8. Call Predict This algorithm uses our proposed model according to the various set of steps used and calls 

Algorithm 1 for prediction. 

4. Simulation & Results 

The proposed work have used X-IIoTID and UNSW-NBI5 dataset used by multiple researchers in the field. 

Table-2: Features of the UNSW-NB15 dataset. 

 

4.1 Performance Measures  

Different performance measurement metrices like precision, recall, F-Score and accuracy were used in the work. 

FP represents number of traffic, TP represents number of attacks, TN measures number of traffic measured 

successfully. FN represents the number of attacks misclassified as normal traffic.  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  (𝑇𝑃 +  𝑇𝑁) / (𝑇𝑃 +  𝑇𝑁 +  𝐹𝑃 +  𝐹𝑁)     (1) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  𝑇𝑃 / (𝑇𝑃 +  𝐹𝑃)        (2) 

𝑅𝑒𝑐𝑎𝑙𝑙 =  𝑇𝑃 / (𝑇𝑃 +  𝐹𝑁)        (3) 

 𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 ∗ (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙)/ (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙)    (4) 

4.2 Results 

The following results were obtained as a part of binary amd multi-clss classified for LSTM model, CNN model 

and our proposed CNN+LSTM model.  
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Table 3: Results using CNN model 

 

Analysis of table 3 represents:  

• Accuracy Metrics: The CNN model exhibits consistent accuracy across training, validation, and testing 

sets for both binary and multi-class classification tasks.  

• Loss Metrics: The CNN model's training loss is much higher for the binary classifier compared to the 

multi-class classifier. However, the loss metrics show significant improvement in the validation and testing 

stages, particularly in binary classification. This suggests that the model is overfitting during training but 

performs better with unseen data.  

• Performance: The model generally performs well, with consistent accuracy and loss across different 

datasets, particularly in testing.  

While the CNN model offers strong performance, particularly in terms of testing accuracy and loss, the high 

training loss in binary classification suggests there may be room for further optimization or regularization 

techniques to reduce overfitting during training. 

Table 4: Results using with LSTM model 

 

Analysis from table 4 illustrates:  

• • The LSTM model shows consistent accuracy across training, validation, and testing datasets for both 

binary and multi-class classification tasks.  

• • The training, validation, and testing accuracies are relatively close, indicating the model generalizes well 

and avoids overfitting.  

• • Loss metrics suggest that while the training loss is quite high, the testing loss is much lower, indicating 

that the model performs better on new, unseen data.  

• • The LSTM model performs well overall, though there may be opportunities for further improvements, 

particularly in reducing training loss. 

 

 

 

 



Tuijin Jishu/Journal of Propulsion Technology 

ISSN: 1001-4055 

Vol. 45 No. 2 (2024) 

__________________________________________________________________________________ 

3538 

Table 5: Results using with CNN+LSTM model 

 

Analysis of table 5 presents:  

• The model shows consistently high accuracy across training, validation, and testing datasets for both binary 

and multi-class classification tasks.  

• The loss metrics are slightly higher for testing datasets compared to training and validation, suggesting 

some overfitting or slight generalization issues.  

• Overall, the model performs well, with high accuracy and low loss, making it suitable for the tasks at hand.  

Table 6: Analysis of Performance by comparing proposed models with exsting research works on UNSW- 

NB15 dataset. 

 

The study shown in table 6, presents an analysis of performance by comparing proposed models with existing 

research works on the UNSW-NB15 dataset. This dataset is commonly used for cybersecurity research, 

particularly for intrusion detection systems. Various models were evaluated in both binary and multi-class 

classification tasks. The existing research works compared include DM, GE, DNN, and DEL models, with the 

following classification results:  

• DM achieved an accuracy of 80.72% for binary classification and 72.26% for multi-class classification.  

• GE attained 86.64% and 78.32% for binary and multi-class classification, respectively.  

• DNN reached 87.62% for binary classification and 85.38% for multi-class classification.  

• DEL performed at 90.90% for binary classification and 88.90% for multi-class classification. The proposed 

models introduced in the study include:  

• CNN, which achieved an accuracy of 90.09% in binary classification and 90.10% in multi-class 

classification.  
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• LSTM, which outperformed other models, achieving 97.14% and 97.10% accuracy in binary and multi-

class classification, respectively.  

• CNN + MTM, which achieved an accuracy of 93.28% in binary classification and 92.90% in multi-class 

classification. The results demonstrate that the proposed LSTM model significantly outperforms both 

existing models and other proposed models in both binary and multi-class classification tasks. These 

findings highlight the effectiveness and potential of advanced deep learning techniques in cybersecurity 

applications. 

5. Discussion 

This work presents an innovative approach to enhancing the Long Short-Term Memory (LSTM) model by 

integrating an embedding layer. The model employs a hybrid CNN-LSTM technique, implemented using 

TensorFlow, and is tested on a standardized system. By incorporating the embedding layer, this approach 

overcomes key challenges associated with manual data feature engineering. The model leverages the capabilities 

of CNN to extract spatially local correlations and the strengths of LSTM to learn from API calls, resulting in 

improved accuracy in detection classification tasks. Further evaluation can be conducted by constructing 

alternative models, including LSTM without embedding, Bidirectional LSTM (BiLSTM) with embedding, and 

BiLSTM without embedding. This study demonstrates the potential for combining CNN and LSTM in a unified 

model to achieve superior performance in complex classification scenarios. 
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