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Abstract:- In the realm of maritime warfare, naval mines stand as formidable threats, strategically positioned 

explosives lurking beneath the water's surface, poised to inflict damage upon unsuspecting ships or submarines. 

This proposed model harnesses the power of deep learning methodologies to discern and identify these submerged 

hazards. Leveraging contemporary advancements in deep learning technology, our aim is to construct robust and 

economical models capable of reliably detecting naval mines. Through this study, an array of deep learning models 

is employed to gauge their efficacy, utilizing accuracy as a primary metric for comparison and evaluation. 

Among the models employed were CNN (Convolutional Neural Network), YOLOv5, VGG-19, and a hybrid 

fusion of CNN-VGG-19 and CNN-MobileNet. Remarkably, CNN showcased outstanding performance, achieving 

an impressive accuracy rate of 98%. Additionally, YOLOv5 demonstrated robust performance, closely trailing 

behind with an accuracy score of 97%.Surpassing them all, the hybrid models, specifically the CNN-VGG19 and 

CNN-MobileNet fusion, showcased the highest accuracy, reaching an outstanding 99%. 

Keywords: YOLO, CNN, TensorFlow, Python, VGG-19, Mobilenet. 

 

1. Introduction 

Throughout history, conflicts among nations, groups, and regions have spurred the development of defense 

mechanisms to resolve disputes and safeguard territorial integrity. Ground warfare has witnessed the utilization 

of grenades and artillery, while torpedoes and air-launched missiles have been deployed by nations worldwide. 

Similarly, maritime arenas have seen the employment of submarines, seaplanes, and naval mines in defense 

strategies. Presently, these techniques are commonplace across nations for defense purposes. Naval mines, a type 

of defensive arsenal, have a long history dating back to the 14th century, evolving from early precursors into 

modern forms. Functioning as self-contained explosive devices, naval mines serve both offensive and defensive 

purposes, obstructing hostile vessel movements and safeguarding allied ships, thereby establishing safer maritime 

zones. 

A naval mine serves as an underwater explosive device designed to target and damage ships or submarines. 

Functioning autonomously, it can be deployed for offensive or defensive purposes, safeguarding friendly vessels 

and delineating secure maritime zones. These mines are strategically placed in ocean waters, and upon contact 

with a passing vessel, such as a ship or submarine, they detonate, inflicting damage. The presence of sea mines 

compels opposing forces to navigate cautiously, as they must choose between undertaking resource-intensive 

minesweeping operations, risking casualties by challenging the minefield, or diverting to less fortified waters 

where enemy forces may concentrate. The process of minesweeping entails the removal of naval mines, usually 

conducted through specialized vessels or methodologies designed specifically for capturing mines. 

In contrast to early gunpowder-based mines that relied on manual ignition, modern mines equipped with 

sophisticated electronic fuses and high explosives are considerably more potent. Deployment of sea mines can be 

executed via boats, aircraft, submarines, or even individual swimmers and boaters, offering a diverse range of 

tactics. While international regulations mandate the marking and declaration of mined areas, the precise locations 

of these mines are typically classified. Nonetheless, the presence of mines poses significant challenges to shipping 

and trade, persisting long after conflicts cease unless measures are taken to mitigate their longevity. Therefore, 
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prompt detection and removal of naval mines post-war are imperative. A range of methodologies is utilized with 

the goal of safely removing these hazards from maritime environments. 

"Deep Neural Networks" encompass Artificial Neural Networks (ANN) comprising multiple layers, enabling 

them to handle vast datasets. Widely embraced by Data Scientists across various domains, these networks owe 

their name to the mathematical operations, termed convolutions, conducted between matrices. CNN, a prominent 

variant, comprises distinct layers including convolutional, nonlinearity, pooling, and fully-connected layers. 

Compared to standard feed-forward neural networks with similar-sized layers, CNNs boast significantly fewer 

connections and parameters, rendering them faster and simpler to train. Leveraged in diverse applications like 

image classification datasets (e.g., ImageNet), computer vision, anomaly detection, and NLP, CNNs exhibit 

versatility. In this investigation, the current model is specifically trained for the detection of underwater naval 

mines, employing deep learning techniques to accurately identify and classify naval mine images. 

2. Literature Review 

The authors of this paper [1] conducted a review of the underwater image data acquisition process and operational 

procedures concerning naval mines. Furthermore, they extensively explored a variety of deep learning models for 

identifying, tracking, and detecting objects within sonar data. 

In this paper [2], the authors employed the FRCNN (Fast Region Convolutional Neural Network) model to 

distinguish objects as either mines or non-mines. They utilized a cloud platform to oversee mine detection, 

ensuring real-time monitoring. Any alterations detected were promptly reflected in an Android application for 

immediate observation and response. 

In their paper [3], the authors provided a comprehensive overview of techniques crucial for detecting and 

classifying underwater mines in side-scan sonar imagery. Their thorough examination encompassed more than 30 

research papers, concentrating on image processing tools and methodologies aimed at object detection and 

classification. 

In their paper [4], the authors addressed the issue of limited data availability in underwater image processing by 

emphasizing synthetic dataset generation. They employed deep learning methodologies to create a model capable 

of autonomously detecting and classifying underwater mine images. These images, generated by Synthetic 

Aperture Sonar (SAS), offer a solution to the demand for automated detection and classification of underwater 

mines. 

In this paper [5], the authors conducted a thorough review of image enhancement techniques aimed at improving 

the quality of underwater images. They specifically explored methods such as Color Stretching, USM filters, and 

others. Their focus encompassed a comparative analysis of various image enhancement techniques as well as 

noise removal methods, all geared towards enhancing image quality to facilitate better prediction models. 

In this research [6], the authors introduced a method capable of automatically labeling image datasets and 

determining the presence of naval mines within them. They conducted investigations using four distinct CNN 

architectures: ResNet50, VGG-16, InceptionV3, and Xception. The accuracy rates for these architectures were 

found to be 77%, 68%, 82%, and 86%, respectively. While Xception exhibited the highest accuracy during 

training, it displayed signs of overfitting on the test dataset. Consequently, the InceptionV3 algorithm emerged as 

the most effective for naval mine detection. ResNet50 also performed well, particularly following InceptionV3. 

Conversely, VGG-16 demonstrated poorer performance with a 68% accuracy rate. 

In this study [7], Feature Extraction techniques like Histogram of Oriented Gradient (HOG) and Canny edge 

detection were utilized for underwater mine detection. Prior to applying the detection algorithms, the data 

underwent preprocessing to enhance results. The accuracy rates achieved were 95.83% for HOG and 94.44% for 

Canny edge detection. 

In this paper [8], the authors provided insights into various naval mines utilized by different countries, including 

Brazil's MCF-100, Spain's Mila-6B Sea Mine, Iraq's SIGEEL/400 and MDM series, Germany's SM G2 mine, 
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United States MK-52, and Italian Manta Mine. Additionally, the paper explored the significance of explosives in 

detonation, discussing types such as HBX-1, H-6, TNT, and HBX-3. 

In this paper [9], the authors conducted a comparative analysis of various techniques aimed at enhancing the 

quality of images. They evaluated the efficacy of these techniques using metrics such as SNR, PSNR, MSE, and 

SSIM. The simulation results indicated that the CLAHE filter outperformed others in terms of SNR and PSNR, 

while Homomorphic and Wavelet techniques yielded similar results in terms of MSE and SSIM. The study also 

included graphical representations, generated using GNU plot, depicting the metrics SNR, PSNR, MSE, and SSIM 

for ten randomly selected images. 

In their study [10], the authors presented an innovative model leveraging deep CNN-based feature extraction with 

reduced parameters, facilitating swift object identification in just 28 milliseconds. Their methodology focused on 

categorizing vehicle images into five distinct groups. By employing the AdaBoost algorithm alongside deep 

Convolutional Neural Networks (CNNs), the proposed approach achieved an impressive classification accuracy 

of 99.5% on the test dataset. Compared to traditional algorithms, this model showcased superior performance. 

Moreover, its minimized parameter count translates to significantly reduced storage requirements compared to 

other CNN models. 

In the paper [11], a comprehensive examination of recent advancements in deep learning models for underwater 

image analysis is provided. The authors systematically categorized various techniques based on feature extraction 

methods, deep learning architectures, and object detection approaches. The analysis was structured around specific 

objects targeted for detection, highlighting the features and deep learning architectures utilized. The study 

concluded that substantial potential exists for automating the analysis of digital seabed images using deep 

convolutional neural networks, particularly in the detection and monitoring of seagrass. 

In their paper [12], the authors conducted an analysis of the technical challenges encountered in underwater target 

recognition methods employing Autonomous Underwater Vehicles (AUVs). The article extensively discusses 

various deep learning approaches for analyzing underwater images and briefly outlines the fundamental principles 

underpinning different underwater target recognition methods. 

In this paper [13], the authors investigated recent techniques employed for underwater object detection, 

conducting a thorough and comprehensive comparative analysis. 

In their paper [14], the authors conducted a review of recent advancements in underwater marine object detection, 

elucidating the strengths and weaknesses of current solutions for each challenge. They meticulously analyzed the 

most commonly used benchmark datasets, offering critical insights. The paper also presented comparative studies 

with prior reviews, particularly focusing on artificial intelligence-based approaches, and discussed future trends 

in this dynamic field. 

In this study [15], the authors trained and tested six different deep-learning CNN detectors for object detection. 

Five of these detectors were based on the You Only Look Once (YOLO) architectures (YOLOv4, YOLOv4-Tiny, 

CSP-YOLOv4, YOLOv4@Resnet, YOLOv4@DenseNet), while one utilized the Faster Region-based CNN 

(RCNN) architecture. Evaluation metrics such as detection accuracy, mean average precision (mAP), and 

processing speed were employed to assess the model's performance on a custom dataset comprising underwater 

pipeline images. The findings revealed that YOLOv4 outperformed other models in underwater pipeline object 

detection, achieving an mAP of 94.21% and demonstrating the capability to detect objects in real-time. 

In their paper [16], the authors introduced the Underwater-YCC optimization algorithm, which is based on You 

Only Look Once (YOLO) v7, aiming to enhance the accuracy of detecting small targets underwater. Their 

proposed algorithm incorporates the Convolutional Block Attention Module (CBAM) to extract fine-grained 

semantic information, determined through multiple experiments to optimize positioning. Additionally, they 

integrated the Conv2Former as the Neck component to address underwater blurred images effectively. Finally, 

they implemented Wise-IoU, a technique proven to enhance detection accuracy by assigning varying weights 

between high- and low-quality images. Experimentation on the URPC2020 dataset revealed that the Underwater-

YCC algorithm achieves a mean Average Precision (mAP) of up to 87.16% in complex underwater environments. 
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In this study [17], a novel model for small object detection using neural network architecture was introduced. 

Named Sample-Weighted Hyper Network (SWIPENet), the proposed method leverages the Invert Multi-Class 

Adaboost (IMA) algorithm for noise removal. Demonstrating superior performance compared to several state-of-

the-art object detection approaches, SWIPENet presents a promising solution for accurate small object detection. 

In this paper [18], a thorough review of deep-learning-based object recognition for both surface and underwater 

targets was conducted. To ensure a comprehensive overview, the authors initially summarized key concepts and 

typical architectures within a unified framework. They meticulously gathered popular benchmark datasets for 

marine object recognition and provided a comprehensive analysis of deep learning methodologies through 

extensive comparisons. Additionally, the paper delved into experimental results and discussed future trends in 

marine object recognition in depth. 

In this paper [19], the authors conducted an in-depth survey on several deep learning models, including Fast 

RCNN, Faster RCNN, and the original YOLOV3, to ascertain their effectiveness in detecting underwater objects. 

Achieving a detection speed of approximately 50 FPS (Frames per Second) and a mean Average Precision (mAP) 

of about 90%, the study demonstrated promising results. The implemented program was integrated into an 

underwater robot, and real-time detection results indicated accurate and swift detection and classification 

capabilities, facilitating efficient underwater operations for the robot. 

In this paper [20], a thorough examination of underwater object detection techniques was presented, encompassing 

current research challenges, future development trajectories, and potential applications. The study delved into the 

interconnection between underwater image enhancement and object detection, scrutinizing potential 

implementation strategies for integrating underwater image enhancement into object detection tasks to amplify 

their effectiveness. 

3. The Proposed System Architecture 

The system architecture is structured according to the order of execution requirements, as depicted in Fig-1. This 

design fosters a highly modular structure, comprising augmentation, annotation, model training, and evaluation 

metrics stages. 

 

Fig-1 The Proposed System Architecture 

As illustrated in Fig.1, the implementation process initiates by acquiring Underwater Naval mine images from 

various online sources, crucial for enhancing the accuracy of neural network models. Image augmentation, a 
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widely-used technique, is employed to expand the dataset, utilizing augmentation libraries such as Augmentor, 

OpenCV, Scikit-image, and imgaug.  

Next, the Annotation module utilizes the makessense.ai tool to annotate the image dataset with bounding boxes 

and export the annotations into YOLO format for YOLOv5 model training. Subsequently, a program is utilized 

to divide the dataset into training and validation sets with an 80:20 ratio. Further augmentation, scaling, and 

resizing of images are performed in the Enhanced Images module to ensure uniformity in size for model training. 

For models like CNN, VGG-19, and hybrid models CNN-MobileNet and CNN-VGG19, the dataset does not 

undergo annotation, as the CNN model does not predict bounding boxes. However, for the YOLOv5 model, the 

mine dataset is both enhanced and annotated using the makesense.ai tool to enable bounding box detection and 

multiple classification. 

The Evaluation Metrics module assesses various metrics such as Loss, F1-score, Precision, Accuracy, and Recall 

for each model to determine the best model for detecting and classifying mines. The proposed system architecture 

provides a detailed representation of these processes. 

Additionally, sample input and output images for the Scikit-image, Augmentor, Imgaug, OpenCV, and 

Torchvision packages are depicted in figures 2, 3, 4, 5, and 6 respectively. 

 

In this proposed model architecture, we conducted a comparative analysis of four different neural networks: CNN, 

VGG19, YOLOV5, and Hybrid models. Our objective was to evaluate the performance of these models based on 

various evaluation metrics, including accuracy and mean average precision (mAP). 

The mAP is a crucial metric calculated by determining the Average Precision (AP) for each class and then 

averaging over all classes. It accounts for the trade-off between precision and recall while considering false 

positives (FP) and false negatives (FN). This characteristic makes mAP a suitable metric for a wide range of 

detection applications. 
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To compare the training profiles of the test cases and analyze the metrics obtained, we calculated them from the 

generated confusion matrix using the following equations (1, 2, 3, 4, and 5): 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 +  𝐹𝑃
      − − − − − − − − − − − − − − − − − − − − − − − − − − − −𝐸𝑞 1 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 +  𝑇𝑁

𝑇𝑃 +  𝑇𝑁 +  𝐹𝑃 +  𝐹𝑁
  − − − − − − − − − − − − − − − − − − − − − − − 𝐸𝑞 2 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 +  𝐹𝑁   
       − − −  − − − − − − − − − − − − − − − − − − − − − − − − − − 𝐸𝑞 3 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

𝑇𝑁 +  𝐹𝑃
   − − − − − − − − − − − − − − − − − − − − − − − − − − − − − 𝐸𝑞 4 

𝐹1 𝑠𝑐𝑜𝑟𝑒 =  
2 ∗  𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗  𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑅𝑒𝑐𝑎𝑙𝑙
   − − − − − − − − − − − − − − − − − − − − − − − 𝐸𝑞 5 

Deep Learning Models 

In this implementation, we utilized three distinct CNN models—CNN, VGG-19, and MobileNet. We gathered a 

comprehensive dataset comprising 13 different types of naval mine images sourced from various online platforms, 

including both authentic and synthetic underwater naval mine images generated through augmentation libraries. 

The dataset encompasses a total of 3441 photos, representing the diverse range of mine types. Of these, 2941 data 

points were earmarked for training the models, while the remaining 668 were set aside for testing purposes. The 

dataset was meticulously partitioned into an 80:20 test-train split, with an additional control dataset included for 

validation. 

For the VGG-19 and MobileNet algorithms, we leveraged weights sourced from the ImageNet database, 

incorporating pre-trained models that have been extensively trained on millions of images. These pre-trained 

weights were seamlessly integrated into the models during the training process, enhancing their performance and 

robustness. A batch size of thirty-two was deemed suitable for training the dataset, with the training process 

spanning thirty epochs. The categorical cross-entropy loss function was employed, while the Adam optimizer was 

utilized to address noise issues. The rectified linear unit (relu) activation function was applied in the hidden layers. 

To prevent overfitting, dropout layers with a rate of 0.5 were added. Additionally, the outputs were normalized 

using the Softmax activation algorithm. Each model underwent training and was subsequently saved. 

The CNN Model's layer configuration is depicted in Fig-7, while the overall CNN architecture is illustrated in 

Fig-8. 
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The CNN model is structured with three primary layers: convolutional layers, pooling layers, and fully-connected 

layers. Alongside these core layers, two additional parameters—dropout and activation functions—are employed 

to enhance the CNN's performance. Table 1 illustrates the functionality of each layer within the CNN architecture. 

Table 1: CNN layers and its Functionality 

Sl.No CNN Layers Functions 

1 Convolutional Layers 
Feature Extraction (mathematical operation of convolution is 

performed) 

2 Pooling Layers 
Decrease the size of the convolved feature map to reduce the 

computational cost 

3 Fully-Connected Layers Connect the neurons between two different layers. 

4 Droupout Dropping few neurons to avoid overfitting in the training dataset 

5 Activation Functions 
Decides which information should fire in forward direction and also 

adds non-linearity to the network. 

VGG19 

VGG19 stands as a deep convolutional neural network featuring 19 layers in its architecture. To adapt VGG19 to 

our dataset, the existing pretrained weights are initialized as false, enabling training with our specific data. Figure 

9 illustrates the model architecture of VGG19, while Table 2 delineates the functionality of each layer within the 

network. 

 

Fig-9 The Model Architecture of VGG19 

Table 2: VGG19 layers and its Functionality 

Sl.No Functions Descriptions 

1 Input Matrix of shape (224,224,3)-A fixed size of (224*224) RGB Image 

2 Preprocessing 
Subtracted the mean RGB value from each pixel, computed from the overall 

training set. 

3 Kernels 3*3 size with stride size of 1 pixel 

4 Padding Spatial padding to preserve the spatial resolution 

5 Pooling Max pooling over a 2*2 pixels windows with stride 2 

6 ReLu 
To introduce non-linearity to make the model classify better and improve 

computational time as the previous model 
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Sl.No Functions Descriptions 

7 
Fully Connected 

layers 

The first two layers of size 4096 and with 1000 channels for 1000-way 

ILSVRC classification 

8 Final Layer Softmax functions 

CNN-VGG19: 

The hybrid CNN and VGG-19 model were trained using the underwater naval mine dataset. Initially, the VGG-

19 model underwent training with the dataset. Subsequently, the trained VGG-19 model was integrated as a base 

layer into the underlying CNN model. In Figure 10, the functional layer of Model 2 is depicted as added to the 

base CNN model. 

MobileNet: 

MobileNet employs depth-wise separable convolution as its core building block. Figure 11 illustrates the two 

layers of depth-wise separable convolution: depth-wise convolution and point convolution. 

CNN-MobileNet: 

Similarly, the hybrid CNN and MobileNet model were trained on the underwater naval mine dataset. Here, the 

MobileNet layers serve as additional layers to the base CNN model. Notably, MobileNet exhibited favorable 

performance in terms of accuracy and loss, achieving a test accuracy of 99%. The summary of the CNN-

MobileNet hybrid model is presented in Figure 12. 

 

 

Fig-12 CNN-MobileNet Model Summary 
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YOLOv5: 

For YOLOv5, the underwater naval mine dataset underwent annotation using the makesense.ai tool, an open-

source platform designed for image annotation. Subsequently, the yolov5 model was trained using 173 annotated 

images, with 143 allocated for training and 30 for validation purposes. The architectural diagram of YOLOv5 is 

illustrated in Figure 13. 

 

Fig-13 Yolov5 Model Architecture 

The programming language utilized in this study is Python 3.0, along with a suite of tools and libraries including 

MakeSense.ai, Scikit-image, Labelimg, Keras, various augmentation libraries, Panda Library, TensorFlow 2.9, 

and Scikit-learn for evaluation metrics. 

Dataset: 

The dataset utilized in this study comprises a curated collection of images sourced from diverse online platforms. 

It encompasses a total of 3441 images depicting underwater naval mines, with 2941 images allocated for training 

and 668 images for testing. These images represent 13 distinct classes of naval mines. 

 

Fig-14 Naval Mines Dataset 

4. Result and Analysis 

CNN Binary Classification Model 

This CNN model serves as a binary classifier, tasked with determining whether an input image contains a naval 

mine or not. With an achieved accuracy of 60%, it successfully categorizes images into the two classes. A 

comprehensive summary of the CNN Binary classification Model's performance metrics, including accuracy, the 

confusion matrix, sample output, accuracy and loss graph, as well as precision, recall, and F1-score, are presented 

in Table 3, Figure 15, Figure 16, Figure 17, and Table 4, respectively. 
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Table 4 CNN Precision, recall and f1-score for binary classification 

Algorithm Label Accuracy metric Results 

CNN 

Mine 

precision 0.552 

recall 0.577 

F1-score 0.559 

Not mine 

precision 0.552 

recall 0.577 

F1-score 0.559 

CNN Multi Class Classification Model 

This multi-class CNN classification model is designed to process input images, detect mines, and classify them 

among 13 distinct classes. With an impressive accuracy score of 98%, the model effectively categorizes images 

into the specified classes. Figure 18 illustrates the Confusion Matrix of the CNN Multi-classification model, while 

sample outputs, including correct and incorrect predictions, are depicted in Figure 19 and Figure 20, respectively. 

Additionally, the accuracy and loss graph of the model are presented in Figure 21. 
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Fig-18 Confusion matrix for CNN multi class classification 
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VGG-19 Model 

The VGG-19 model operates by analyzing input images to detect and classify mines among the 13 predefined 

classes, achieving an impressive accuracy score of 98%. Detailed insights into the VGG-19 model's performance 

are provided through its Confusion Matrix, sample outputs, including correct and incorrect predictions, and the 

accuracy and loss graph, which are respectively showcased in Figure 22, Figure 23, Figure 24, and Figure 25. 

 

Fig-22 VGG-19 Confusion Matrix for multiple classification 
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CNN-VGG-19 

The CNN-VGG-19 hybrid model, a fusion of CNN and VGG-19 architectures, is engineered to process input 

images, detect mines, and categorize them among the 13 predefined classes. Demonstrating a commendable 

accuracy score of 86%, this hybrid classification model provides valuable insights into its performance through 

its Confusion Matrix, sample output for incorrect predictions, and accuracy and loss graph, depicted respectively 

in Figure 26, Figure 27, and Figure 28. 

 

 

CNN-Mobilenet 

The CNN-Mobilenet model operates by analyzing input images to detect and classify mines among the 13 

designated classes, achieving an exceptional accuracy score of 99% on a test dataset comprising 668 samples. 

This hybrid classification model provides comprehensive insights into its performance through various metrics. 

Specifically, its Confusion Matrix, sample output for incorrect predictions, and accuracy and loss graph are 

respectively depicted in Figure 29, Figure 30, and Figure 31. 
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YOLOV5 

For YOLOv5, an annotated dataset comprising 173 naval mine images was prepared using the annotation tool 

makesense.ai, facilitating multiple classification. Within this dataset, five distinct classes of sea mine images were 

categorized, with the model achieving an impressive mean average precision (mAP) of 97%. Training the 

YOLOv5 model involved utilizing 143 images, while the model's performance was evaluated on the remaining 

30 images. Figure 32 provides a visual representation of the sample output depicting the detection and 

classification of naval mines by YOLOv5. 
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Table 5: Accuracy Results of Multiple classification 

Algorithm Accuracy Score 

CNN 98 

YOLOV5 97 

VGG-19 98 

CNN-VGG-19 86 

CNN-MobileNet 99 

 

Fig-33 Accuracy graph of different deep learning and hybrid model 
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Table 5 provides a comprehensive overview of the results obtained for multiple classifications across various deep 

learning models and hybrid models, showcasing their respective accuracies. Additionally, Figure 33 illustrates the 

accuracy graph depicting the performance of different deep learning models and hybrid models. Upon analysis of 

Table 5, it is evident that CNN-MobileNet emerges as the top-performing hybrid model for detecting naval mine 

objects, achieving the highest accuracy score among all models considered. 

5. Conclusion 

The proposed system effectively identifies and classifies underwater naval mine objects. However, the dataset's 

size is a crucial factor in model performance. Since our dataset is relatively small, comprising self-combined 

images from diverse sources, the risk of overfitting increases. This occurs because outlier features may 

disproportionately influence the model's weights. To address this issue, data augmentation techniques are 

employed to expand the dataset's size. Additionally, attention is directed towards implementing dropout layers in 

each CNN architecture, including hybrid CNN models like CNN-VGG-19 and CNN-MobileNet. 

Upon evaluating the metrics, it becomes apparent that the CNN-MobileNet hybrid model yields superior accuracy 

compared to other models utilized in this study. Furthermore, the inclusion of the yolov5 model, particularly 

noteworthy for its robust performance in processing video input, achieves a remarkable accuracy rate of 98%.  

6. Future Work 

The potential enhancements for the proposed system are numerous. For instance, upon detecting a mine, the 

system could provide additional information such as its depth, angle, and distance from the detection point. 

Currently, the model is tailored for identifying stationary, sphere-shaped underwater mines. However, 

contemporary mines come in diverse shapes. Therefore, expanding the training dataset to encompass images of 

mines with varying shapes and properties—such as different colors, depths, and configurations—is imperative for 

enhancing the model's robustness and adaptability. 
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