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Abstract:- The present investigation deals with the study of temperature and thermal profile of a functionally
graded (FG) rectangular plate using thermosensitive material properties and internal heat source. The material
properties are graded along x-direction in accordance with exponential law functions. Kirchhoff’transformation
and integral transform methodology is used to solve the heat conduction equation. The plane stress and strain have
been obtained using displacement and harmonic functions. The temperature distribution and stresses have been
obtained for temperature independent as well as dependent material. A mathematical model is prepared for a FG
composite material of ceramic and metal and numerical computations are performed.
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1. Introduction

FG Materials (FGMs) are nonhomogeneous materials that are portrayed by the variety in creation and design
progressively over volume, bringing about relating changes in the properties of the material. Inhomogeneity in
material structure in many cases occurs due to high- and low-level temperatures. Engineering application gives
preference to the construction of solution of thermosensitive problems which is useful in production of stress
bearing materials under high temperature heating. Therefore theeffect of thermosensitivity should be considered
for investigation of thermoelastic behavior of different solids.

Noda [1] briefly described the thermoelastic behaviour of various solids with material properties depending on
temperature. Bending moments of plates was analyzed by Tanigawa [2]. Popovych and Fedai [3] discussed the
thermoelasticity of a multilayered tube. Morishita and Tanigawa [4] studied the three-dimensional elastic problem
for nonhomogeneous medium for semi-infinite body. Popovych and Makhorkin [5] solved the heat conduction
problems of thermosensitive bodies. Kawamura et al. [6] discussed the stress analyses of nonhomogeneous plate.
Awaji et al. [7] evaluated the stresses of and FGM plate. The heat transfer and the corresponding thermal behavior
of different solids were investigated by [8-18]. [19, 20] presented buckling FGM plates. Thermoelastic behavior
of FGM solids was presented by [21, 22]. Yildirim et al. [23] considered an FGM fin and studied its thermal
behavior by considering the FGM properties. Manthena and Kedar [24] considered an FG plate with internal heat
source and obtained the temperature and thermal stresses. Manthena [25] studied the effects of plane stress and
strain field in an FG plate. Heat transfer in different solids was investigated by [26-31]. Following [25], here we
studied the effect of heat source on heat conduction (HC) of a thermosensitive FG rectangular plate (FGRP) and
obtained the plane stress and plane strain subjected to convective heating along x-direction.

2. Problem Formulation

2.1 Heat Conduction Equation and its Solution:

The transient HC equation (HCE) of a rectangular plate with initial and boundary conditions is:
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where A(x,0) is the thermal conductivity, C (x,0) is the specific heat capacity and Q(x, y, t) is the internal heat
generation, p is the density which is a constant, 60 is the temperature of the surrounding medium, and k1, k2 , k3
, k4 are the heat transfer coefficients. The following dimensionless parameters are used.
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Specifications of the material A(x,0), C(x,0) , heat generation Q(x, y, t) , and heat flow f (y, t) are taken as:

A(x.6) = Ay A * (xF,6%)
C(x.6) = C,p C*(x*.6%)
O(x.3.1) = gy O * (x*.y*.1%)
fr.0)=quf *(y*.1%)
where Om0 , Am0 , CmO , pm0 , GmO , amO represent the temperature, thermal conductivity, specific heat capacity,
density, shear modulus, coefficient of linear thermal expansion of the metal with dimensions, @, rl ,nQ are the
frequency, K =Am0 /(Cm0 pm0), is the thermal diffusivity, u, v,0,Q,¥ are the displacement, and q0 , q1 are the

strength of heat flow with dimensions, and A* (x*,0%), C * (x*,0%), Q * (x*, y*,t*), f * (y*,t*) are the
dimensionless quantities.

4

Using equations (3-4), equations (1-2) reduce to the following dimensionless form (ignoring asterisks for
convenience).
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where By = (qoa”)/(Amo Omo)is the dimensionless Pomerantsev reference number, Xi = (g @)/(Ay0 6,,0) i the
dimensionless Kirpichev reference number., Bi, =(k, @)/(4,,0). e=12.3.4 is the Biot criteria.

Using Kirchhoff’s variable [3. 5. 9. 10. 11, 12]
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K* = K/ Kmo is the dimensionless thermal diffusivity (asterisk is ignored for convenience).
For the sake of simplicity, the internal heat generation Q(x, y, t) and heat supply f (y, t) are assumed as (x0,y0

being dimensionless constants)

O(x.7.1) = 5(x — x0)S(y — ¥9) 5(1).

F(w)=36(v —vg)sinh(er).

Applying integral transform method as per [24, 25, 32], Laplace transform and their inversion over the variable

X, Y, t, we obtain
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Applying inverse Kirchhoff’s variable transformation as per [7, 24, 25], we obtain
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Whete p(x) = [fy, ()0ig — g )+ g Fon (1) =1-5.
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3. THERMOELASTIC EQUATIONS

The equilibrium equations, stress-strain components are given by [8].
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where G(x,0), a(x,0),v(x,0) are respectively the shear modulus of elasticity, coefficient of linear thermal expansion

and Poisson’sratio.
3.1 Plane Stress Field
Using (1) and (3) in (2), we get
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3.2 Plane Strain Field
Similarly using equations (1) and (4) in (2), we obtain
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On using equation (7) in equations (3) and (4), one obtains the stress functions as
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The traction free conditions are

o= Ty

ez o =0 (22)

"7"|I=D - xx|x=(1 - J.V}' v=b

Using equation (11) in equation (19), we get
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The Boussinesq harmonic functions Q and ¥ satisfying equation (19) are assumed as
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where B, , Dy are dimensionless constants.

The displacement components from equation (18) are obtained using equations (23) and (24) as
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where G(0), a(8), v(0) are assumed according to exponential law as follows [1]:
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Using equations (23-27) in equations (20) and (21), stresses are obtained.
4. Numerical Results and Discussions

The values of alumina (ceramic) and nickel (metal) are used from [7]. Figures (1 to 6) represent the graphs of
temperature and stresses. Left side figures represent spatial variable and temperature independent case (TIC),
while right figures represent spatial variable and temperature dependent case (TDC). Figs. 1 and 2 represent
temperature along x andy axes. In both TIC and TDC sudden hike in the temperature is seen due to heat source.
Figs. 3 and 4 represent plane stress field along both axes. In TIC, oxy , Gyy are tensile from the outer to middle
part of the plate and compressive at the other end. In TDC, they are tensile near the outer region and zero towards
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the origin. Figs. 5 and 6 represent plane strain. In TIC, stresses are tensile. In TDC, oxx changes its nature from
tensile to compressive.

5. Graphical Results

FA., -}
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-]

-

Fig. 3: Variation of dimensionless stresses (plane stress field) along x-axis

Fig. 4: Variation of dimensionless stresses (plane stress field) along y-axis
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Fig. 5: Variation of dimensionless stresses (plane strain field) along x—axis

all
|

Fig. 6: Variation of dimensionless stresses (plane strain field) along y—axis
6. Conclusion

The temperature profile of a thermosensitive FGRP with heat source subjected to convective heat exchange has
been obtained. The thermal profile is studied using plane stress strain field. The findings indicate significant
effects on the behaviour of the transient temperature distribution due to the heat source. The temperature
distribution of the FGRP is suddenly changing in TDC as compared to TDC along x direction. Due to convective
heat exchange along x-axis, the stress profile is having tremendous change in the nonhomogenous case. Crest and
trough are observed for the stress components oxx , oxy in the plane stress field. Since the material properties are
dependent on temperature, the internal heat generation shows significant effect on the heat conduction of the FG
rectangular plate. The proposed mathematical model may be useful for material physical characterization for the
use of materials at high temperatures in advanced technology applications
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