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Abstract

The steel sector has had difficulties in finding solutions for quality control of goods using data mining methods,
notwithstanding recent progress. This study presents a steel quality prediction system that integrates real-world
data with in-depth data analysis conclusions. The main process is carefully designed as a regression problem,
which is therefore best handled by integrating various learning algorithms with their huge repository of
historical production data. A comprehensive examination and comparison of the characteristics of the most
often utilized learning models in regression problem analysis has been conducted. The efficacy of our steel
quality control prediction system, which utilizes an ensemble machine learning model, showcases promising
outcomes. This system offers great usability for local businesses in addressing production problems via the use
of machine learning methods. Moreover, the practical implementation of this system is shown and analyzed.
The proposed method attained high accuracy, precision, recall and f1 score, mean absolute error, root mean
square error as compared to other different technique. Lastly, this study highlights the future prospects and sets
out the anticipated level of performance.
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Introduction

In the last ten years, there has been a notable increase in the use of artificial intelligence (Al) applications. This
may be attributed to the growing popularity of emerging machine learning algorithms and technologies,
particularly deep learning (DL). Since that time, machine learning has reached a level of development
that allows it to be used in a wide range of disciplines, including computer vision and machine-type
communications. The capacity of this technology to effectively address intricate, multi- dimensional challenges
across several domains has positioned it as a significant catalyst within the Industry 4.0 movement, alongside
the industrial Internet of Things [1]. With the growing implementation of digitalization in the industry, there is
a shift towards converting traditional manufacturing into advanced smart factories that are highly automated. In
this context, machine learning techniques play a crucial role in automating various aspects such as product
manufacturing, maintenance tasks, logistical processes throughout the supply chain, warehouse management,
automated quality management, and production control. These applications are widely recognised and widely
adopted within the industry [2]. Numerous multinational corporations with substantial technological and
financial expertise have successfully used machine learning-driven solutions to automate certain operations
inside warehouses or shop-floors. Notably, these solutions include the deployment of autonomous trucks
capable of moving assets without requiring any human intervention from operators.

The steel sector is well recognised for its extensive utilisation as a green material because to its high
accessibility, cost-effectiveness in manufacturing, and broad application. These factors contribute significantly
to its pivotal position in both everyday life and industrial production within contemporary civilization [3]. As an
integral component of the domestic economy, it serves as a crucial source of essential resources for several
sectors like construction, transportation, infrastructure, automotive industry, maritime operations, home goods,
electrical power,
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and marine engineering, among others, therefore significantly impacting our everyday existence [4].
Concurrently, the steel sector is confronted with significant carbon dioxide emissions, substandard working
conditions, environmental contamination, safety challenges arising from elevated temperatures and toxic gases,
labor-intensive demands on workers, and repetitive tasks [5]. In response to the aforementioned concerns,
prominent steel corporations have undertaken significant measures such as automation, information alteration,
and updating during the last several decades. These initiatives have significantly impacted the steel industry's
production efficiency and degree of automation [6].

11 Smart manufacturing system

The Smart Manufacturing System (SMS) is the complete digitalization of the manufacturing process, allowing
for increased efficiency via such features as interoperability, real-time control and monitoring, flexible
production, rapid reaction to market shifts, cutting-edge sensors, and big data
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Figure 1. Component of smart manufacturing system

analytics. The SMS may function in either a semi- or completely autonomous mode. The production engineer in
a semi-autonomous system establishes the system's objectives and controls its variables. In a completely
automated system, the SMS determines the best settings for operation and applies them mechanically across all
of the connected machines. Cost-effectiveness, optimum production and delivery time, product quality, and
customization flexibility — are of paramount importance to manufacturers for survival in today's highly
competitive market [8]. The second issue is whether or not a production system can keep its performance at a
high level in the face of new data and shifting conditions. Numerous technologies have been created to facilitate
the establishment of an intelligent production system. To transform an existing system into a smart
manufacturing system, technology selection may be a major challenge.

The breadth of smart manufacturing technologies has expanded as a consequence of the integration of several
technologies, leading to cost efficiency, time savings, simplified configuration, enhanced comprehension,
prompt responsiveness to market needs, increased flexibility, and remote monitoring capabilities. Figure 1
depicts the foundational framework of the intelligent manufacturing system.

The smart manufacturing ecosystem, as seen in Figure 2, is offered by the National Institute of Standards and
Technology (NIST). This diagram illustrates the interconnectedness of many domains within the realm of smart
manufacturing and delineates their respective functionalities. The presented schematic diagram illustrates the
interrelationship among the enterprise's product
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(represented by the green arrow), production process (represented by the blue arrow), and business operations
(represented by the orange arrow) within the context of their lifetime in the ecosystem.
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Figure 2. NIST’s smart manufacturing eco-system model

The integration of digital transformation and smart technologies, which connect physical things through the
internet, is emerging as a fundamental aspect of future industries. The key technological initiatives announced
by prominent nations are Industry 4.0 by Germany, Made in China 2025 by China, Industrial Internet by the
USA, and Society 5.0 by Japan. These technologies vary in terms of their implementation methods, target
industry group, and expected timescale for attainment. However, they have a similar goal of using smart and
digital technology to enhance existing production processes globally [9][10].

111 Machine learning in smart maintenance

Maintenance is a crucial activity inside every sector of the business. Unforeseen failures have the potential to
result in unfavourable outcomes, such as the interruption of assemblylines or the need to rearrange logistical
activities. These effects might lead to direct or indirect economic losses, such as delays in operations. The
process of maintenance seems to be straightforward; nonetheless, effective and efficient maintenance
encompasses a multitude of jobs, each of which contributes to enhancing the overall efficiency of the
mechanism. Maintenance, in its most fundamental state, is primarily characterised by a reactive approach.
Consequently, the act of preserving the optimal condition of certain tools, machinery, or equipment does not fall
within the realm of maintenance. In the context of reactive maintenance, the repair of machinery and tools
occurs only in response to a failure, rather than being beforehand addressed. However, there are instances when
defects may not be readily apparent, resulting in the ongoing deterioration of equipment. Consequently, the use
of fault detection systems becomes necessary to identify the need for maintenance. Furthermore, the use of
diagnostic techniques and root cause analysis has the potential to augment the overall quality of maintenance
procedures, particularly in cases when the underlying reason of failure remains unidentified and necessitates
further investigation.
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Contemporary maintenance paradigms, including preventive, predictive, and proactive maintenance, use
distinct methodologies in contrast to the reactive maintenance approach. Preventive maintenance, as its name
implies, is a maintenance strategy that prioritises the preservation of equipment and machines by regularly
assessing their state of wear and tear. The optimisation of efficiency in this paradigm is accomplished by the use
of telemetry, external sensors, and other condition monitoring systems to gather diagnostic data, hence
minimising superfluous inspection and repairs. Predictive maintenance likewise leverages the aforementioned
techniques; yet, it serves a distinct objective, namely, to forecast the occurrence of a machinery failure and so
facilitate comprehensive planning of the repair process. To get accurate estimates, specific models of the
monitored asset are used in order to assess its remaining useful life (RUL) [11]. The integration of proactive
maintenance has resulted in the convergence of two paradigms, namely predictive and preventive maintenance.
Alongside this development, the toolsets used in both approaches have also been merged. urthermore, the
emergence of machine learning and the Industrial Internet of Things (I11oT) has transformed this method into a
dynamic and data-centric approach.

The concept of being data-driven entails the utilisation of a substantial volume of data, which is often sourced
through interconnected intelligent activities, processes, systems, or records. An illustration of this phenomenon
may be seen in the increasing inclination towards the use of technologies such as Manufacturing Execution
Systems (MES) like Plant floor automation and information systems (PES). This adoption has the potential to
significantly enhance prognostics-based maintenance by creating a substantial volume of data [12]. The Digital
Twin, a fundamental component of smart manufacturing, serves as a sophisticated, data-centric, and abstract
representation of systems, hence facilitating the process of data collection and analytics. Additionally, it
enhances the overall efficiency of preventative maintenance, hence reducing the risk of failure [13]. Figure 3
illustrates the significance of including smart maintenance and smart quality control inside a data-driven smart
manufacturing system.
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Figure 3. The role of smart maintenance and smart quality control in a data-driven smart manufacturing
ecosystem
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1.2 Steel rolling

Steel rolling is a metalworking process that involves reducing the thickness or changing the cross-sectional
shape of a metal sheet or plate by passing it through a pair of rotating rolls. This process is commonly used to
produce various forms of steel products, including sheets, plates, bars, and structural shapes. Steel rolling is
essential in manufacturing industries, construction, automotive, aerospace, and more. The primary goals of steel
rolling are to improve material properties, achieve precise dimensions, and enhance surface finish [14].

121 Challenges in Steel Rolling

Energy Efficiency: Steel rolling is an energy-intensive process, and optimizing energy consumption while
maintaining product quality is a significant challenge.

Material Variability: Variations in raw material quality can impact the rolling process, leading to defects or
inconsistencies in the finished product.

Maintenance and Downtime: Rolling mills require regular maintenance, and unexpected downtime can disrupt
production schedules and increase costs.

Quality Control: Ensuring product quality and detecting defects during rolling is critical but challenging due to
the high-speed nature of the process.

122 Recent Trends in Steel Rolling:

Automation and Industry 4.0: Integration of automation, 10T devices, and data analytics is transforming steel
rolling plants into smart factories. Real-time monitoring and predictive maintenance help reduce downtime and
improve efficiency.

Advanced Materials: The demand for high-strength, lightweight steel for automotive and aerospace applications
is driving the development of advanced steel alloys and rolling techniques.Energy Efficiency: Steel
manufacturers are adopting more energy-efficient processes and technologies, such as electric arc furnaces and
regenerative heating systems, to reduce carbon emissions.

Digital Twins: Digital twin technology allows manufacturers to create virtual models of their rolling processes,
enabling better simulation, optimization, and predictive maintenance.

Hybrid and Additive Manufacturing: Hybrid manufacturing combines traditional steel rolling with additive
manufacturing techniques, allowing for the creation of complex and customized steel products.

Environmental Sustainability: Steel rolling plants are focusing on reducing their environmental footprint by
implementing eco-friendly practices and recycling materials.

1.2.3 Future of Steel Rolling:
The future of steel rolling holds several exciting possibilities:

Advanced Automation: Further automation and robotics will increase efficiency, reduce labor costs, and enhance
safety in steel rolling plants.

Materials Innovation: Continued research into high-strength, lightweight steel alloys will lead to the
development of innovative products for industries like automotive, aerospace, and renewable energy.

Green Technologies: Adoption of green and sustainable technologies, such as hydrogen-based steel production,
will help reduce the environmental impact of steel rolling.

Digitalization: The use of Al, machine learning, and big data analytics will become more prominent in
optimizing steel rolling processes and improving quality control.

Customization: Steel rolling plants may offer more customization options for clients, enabling the production of
tailored steel products for specific applications.
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Circular Economy: The steel industry will increasingly focus on recycling and reusing steel products to
minimize waste and energy consumption.

In conclusion, the steel rolling industry is undergoing significant changes driven by technology, sustainability
concerns, and the need for innovation. These changes are expected to result in more efficient, environmentally
friendly, and customized steel products in the future.

124 Steel rolling smart factor using machine learning

Steel rolling is a critical process in the manufacturing industry, used to transform raw steel into various shapes
and sizes, such as sheets, bars, and coils. The efficiency and quality of this process are essential for the final
product's performance and cost-effectiveness. Implementing machine learning (ML) and data-driven approaches
can enhance the steel rolling process by creating a "Smart Factory.” In this context, a Smart Factory leverages
real-time data, automation, and ML to optimize production, reduce waste, and improve overall efficiency
[15][16].

Here's a detailed explanation of how machine learning can be applied to create a Smart Factory for steel rolling:

Data Collection: The first step is to gather data from various sources within the steel rolling facility. This data
can include temperature sensors, pressure sensors, speed sensors, motor data, operator logs, and more. Historical
data is also essential, as it provides insights into past process performance and can be used for training ML
models.

Data Preprocessing: Raw data collected from sensors may contain noise, outliers, and missing values. Data
preprocessing techniques are applied to clean and prepare the data for analysis. Feature engineering can be
performed to extract relevant features from the raw data, such as rolling speed, temperature differentials, and
hydraulic pressure.

Anomaly Detection: Machine learning models can be trained to detect anomalies in real-time sensor data.
Anomalies might indicate equipment malfunctions, deviations from optimal conditions, or potential quality
issues. Algorithms like Isolation Forests, One-Class SVMs, or deep learning-based approaches can be used for
anomaly detection.

Predictive Maintenance: ML models can predict when machinery is likely to fail or require maintenance by
analyzing historical maintenance records and real-time sensor data. Predictive maintenance can help reduce
downtime, extend equipment lifespan, and prevent costly breakdowns.

Quality Control: Machine learning models can be trained to monitor and control product quality by analyzing
sensor data during the rolling process. For instance, image recognition techniques can be used to detect surface
defects in the steel, and predictive models can adjust rolling parameters to minimize defects.

Process Optimization: ML models can optimize the steel rolling process by adjusting parameters like
temperature, pressure, and rolling speed in real-time to maximize efficiency and minimize energy consumption.
Reinforcement learning algorithms can be employed to find the best control policies.

Energy Efficiency: Smart factories can reduce energy consumption by using ML models to optimize equipment
operation, reduce waste, and schedule energy-intensive tasks during off-peak hours.

Human-Machine Collaboration: While ML automates many tasks, human operators still play a crucial role in
a Smart Factory. ML can provide real-time recommendations and alerts to operators, helping them make
informed decisions.

Continuous Improvement: Data collected from the steel rolling process and the performance of ML models
can be used for continuous improvement. Feedback loops ensure that the system gets better over time.

Integration: ML models and data-driven insights should be seamlessly integrated into the existing
manufacturing process, with proper communication and control systems in place.
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Security: Given the importance of data in a Smart Factory, robust cybersecurity measures are essential to
protect against potential threats and breaches.

Creating a Smart Factory for steel rolling using machine learning is a complex endeavor that requires
interdisciplinary collaboration between engineers, data scientists, and domain experts. It can lead to significant
improvements in productivity, product quality, and resource efficiency in the steel manufacturing industry.
However, it's crucial to carefully plan and implement these technologies to ensure they meet safety, quality, and
regulatory standards.

1.25 Problem statement

The steel industry operates within a dynamic and highly competitive market, where accurate demand forecasting
is crucial for optimizing production, inventory management, and overall operational efficiency. However,
existing forecasting methods often struggle to capture the complex patterns and fluctuations in demand, leading
to suboptimal resource allocation, excess inventory, and potential revenue loss. Traditional forecasting
techniques, such as time series analysis and regression models, often fall short in accurately predicting demand
due to their inability to capture non- linear relationships, seasonal variations, and sudden market shifts.
Additionally, the inherent uncertainties and volatility in steel demand, influenced by factors like economic
conditions, geopolitical events, and technological advancements, pose significant challenges for accurate
forecasting. Therefore, there is a pressing need to develop a robust and adaptive forecasting framework tailored
to the specific requirements of the steel industry. This framework should leverage the power of ensemble
learning, a machine learning technique that combines multiple models to improve predictive accuracy and
robustness. By integrating diverse forecasting algorithms, such as decision trees, random forests, gradient
boosting, and neural networks, an ensemble approach can effectively capture the complex patterns and
dependencies in steel demand data. Furthermore, the ensemble learning approach offers the flexibility to adapt
and evolve with changing market dynamics, incorporating new data sources, and refining prediction models
over time. By harnessing the collective intelligence of multiple models, the proposed framework aims to
enhance the accuracy, reliability, and actionableinsights derived from demand forecasts in the steel industry.
Overall, the development of an ensemble learning approach for demand forecasting in the steel industry
represents a critical step towards addressing the challenges of uncertainty, volatility, and complexity inherent in
predicting demand patterns. By leveraging advanced machine learning techniques, this framework has the
potential to revolutionize demand forecasting practices, enabling steel manufacturers to make informed
decisions, optimize resource allocation, and maintain a competitive edge in the market.

1.2.6 Research methodology

This section provides a brief overview of the materials and methodology used. No information provided. The
proposed framework is shown in Figure 4. These are the main stages in our proposed framework: 1. Gathering
industrial environmental data for the framework. 2. Preprocessing the data by filling missing values, and
standardization. 3. Removing irrelevant and redundant features to prevent overfitting. 4. Using grid search
algorithm with cross validation to tune hyperparameters for each machine learning model. 5. Creating a two-
level stacking ensemble method using machine learning models with optimal hyperparameters as the baseline. 6.
Utilising evaluation metrics to assess the proposed framework. The blocks will be detailed in the subsequent
sections.
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Figure 4. Proposed framework
1.3 Typical models for Intelligent manufacturing of steel industry
13.1 Rolling Process Intelligent Manufacturing Model

The presence of information islands in the country's rolling steel production lines is primarily attributed to the
inadequate implementation of big data technologies and the absence of a comprehensive big data control system
that encompasses the entire production process. This deficiency can be attributed to the lack of inspection and
testing technology, automation, and intelligent manufacturing equipment. Consequently, the rolling process
exhibits little automation and intelligence, leading to elevated labour expenses and reduced labour productivity.
Additionally, the guality control, testing, and traceability systems are inefficient, contributing to a significant
number of defective products.

Taking consideration of the aforementioned problems, the following aspects are prioritised in intelligent
manufacturing for the rolling process. To begin, the rolling mode uses cutting-edge tools like intelligent robotics
and data integration from the industrial Internet's hybrid model and data analysis. Then, they used technologies
like robots, unmanned storage for slabs, and sophisticated inspection and monitoring of the whole process. The
major goal was to maximise material and energy efficiency, process control, and employee output. An increase
in the use of intelligent control, predictive and early-warning forward-looking reaction, and multi-objective
optimisation in business cooperation has led to improved manufacturing stability and flexibility of the hot-rolled
production line, as well as decreased manufacturing costs.

1.3.2 Steelmaking and Rolling Process Intelligent Manufacturing Model

A smart manufacturing model for steelmaking and rolling encompasses not just the rolling procedure but also
the smelting and refining of steel as well as continuous casting. Currently, the primary concerns that require
resolution in relation to the country's steelmaking and rolling processesare outlined below. Insufficient
automation, informatization, and intelligence are seen in the steelmaking system due to the presence of an
inaccurate regulating model throughout the smelting process. In addition, it should be noted that several crucial
operational parameters, including the composition of flue gas, temperature of molten steel, billet temperature,
composition of molten steel and slag, and presence of internal impurities in the casting blank, are not promptly
and accurately detected in real-time. As a result, the refining models fail to establish an effective closed-loop
control system.

The online detection of essential operational parameters and the quality of hot and cold rolled components is
currently inadequate, which poses challenges for unmanned or less humanised equipment and workshops. The
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lack of intelligent packing, smart grind roller room, intelligent slab storage, and intelligent final product storage
systems is the main contributing factor to this issue. Furthermore, the achievement of intelligent robot operation
in situations characterised by high repeatability, high risk, and labour loss has not yet been realised.
Furthermore, it should be noted that the process of product development is characterised by its extensive
duration and substantial expenses. A significant portion of these endeavours heavily relies on trial-and-error
methodologies. Additionally, it is worth mentioning that there is a limited availability of simulation systems and
tools that effectively integrate various simulation techniques. In summary, the equipment management
information system encompasses many date islands and exhibits a degree of data and function overlap among its
various systems.

The implementation of the intelligent manufacturing project is recommended for the steelmaking and rolling
model in order to facilitate industrial structure adjustment. This approach emphasises innovation-driven
development and aims to achieve the seamless integration of informatization and industrialization. By
addressing the issue of data isolation among different procedures, it is anticipated that the project will enhance
the global standard of quality control and production management. Intelligent sensing system: The surveillance
of crucial process parameters, such as those pertaining to steelmaking converters, refining furnaces, continuous
casting ladles, and continuous casting machines, plays a vital role in enhancing the control model's optimisation
and augmenting its level of intelligence. Commonly utilised in manufacturing processes are sensors, intelligent
cameras, radio-frequency identification, and gateways. These technologies are integrated with key
advancements such as high-temperature heat pipes, image recognition, and voice recognition. This integration
enables the creation of a comprehensive compilation of production data, encompassing equipment data, product
identification data, and factory environmental data. The purpose of this compilation is to fulfil the need for real-
time awareness of the manufacturing process, operating data, and the status of critical equipment. In order to
enhance the transmission of real-time sensor data, it is imperative to equip the system with high-performance
network equipment that possesses a substantial system capacity, a high transmission rate, multiple fault-tolerant
mechanisms, and low latency. Additionally, the utilisation of decentralised industrial control networks, the
establishment of software-defined agile networks, and the achievement of network optimised resource allocation
are crucial steps towards achieving this object.

A. Centralized monitoring and controlling system: The aim of this study is to develop a complete
monitoring system for the production line by combining the control systems of crucial stages in the steelmaking
and continuous casting processes. These stages include the converter area, refining area, continuously casting
area, heating furnace region, and rolling area. This system will be built upon data collecting and analysis. This
system offers the capability to monitor the production process in real-time, enabling remote centralised control
of equipment and providing alerts for abnormal situations. As a result, it reduces the need for on-
siteoperators and inspection employees, therefore decreasing labour intensity and ensuring product safety.

B. Production management and intelligent scheduling system: In order to achieve real-time monitoring,
balance cooperation, and decision-making capabilities, it is necessary to establish a production organisation
and intelligent scheduling system. This system should be based on factors such as raw and fuel conditions,
equipment status, and field-of-view requirements. It should encompass various functions including plan
execution, resource utilisation, statistical analysis of output and quality, optimal scheduling of stable operating
conditions, dynamic scheduling of abnormal operating conditions, as well as additional scheduling of production
and decision-making functions.

C. Intelligent device administration system: The monitoring, tracking, and maintenance of equipment
life-cycle states should be initiated from the outset of equipment planning, design, manufacture, procurement,
installation, operation, maintenance, upgrading, transformation, and scrapping phases. Subsequently, a
comprehensive database pertaining to equipment status should be established by the use of advanced
technologies such as big data analysis, artificial intelligence, and virtual reality. The primary objective of this
endeavour is to develop a simulation model centred on the core equipment, enabling the timely detection,
alerting, and prediction of equipment failures. In conclusion, it is imperative to establish a universally
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standardised system for gathering and managing information, as well as implementing an automated diagnostic
system. Additionally, the development of a fault prediction model, using an expert system, and the creation of a
comprehensive knowledge base consisting of fault indexes are essential components of this endeavour. The
proposed system aims to achieve remote unmanned control, early detection of hazardous working conditions,
monitoring of operational status, fault analysis, and self-repair capabilities.

D. Quality controlling system: The concept of quality management pertains to handling of information,
necessitating the establishment of a quality management system that encompasses the maintenance of quality
standards, monitoring of quality, conducting inspections and laboratory testing, doing statistical analysis, and
optimising quality. The integration of product quality and operation parameters across the whole product
production process is achieved via the use of big data analysis and machine-learning techniques. This enables
the online assessment of product quality and facilitates the study of quality traceability throughout the entire
process. This study aims to examine the key quality features in the steelmaking and rolling processes. By using
online statistics, diagnosis, prediction, analysis, and optimisation techniques, it is possible to enhance the
stability of the final product quality.

E. Process simulation and prediction system: The substantial output variation and challenging exact
control make it hard to coordinate this process, which is already complicated by the current state of the
steelmaking technique. First and foremost, when paired with experienced knowledge of the smelting process
and on-site operating experiences, the value of the production database is profoundly dug. Statistical analysis,
machine learning, big data analysis, and other technical means are used to establish an empirical model of the
metallurgical process; the model generalisation ability is continuously improved through model training; the
smelting production experience is mathematically expressed; and the artificial intelligence ingredients related to
the decision optimisation system are built to achieve the operation guidance and prediction of the actual
production. The equipment involved in the converter method of steelmaking is then subjected to extensive
simulation calculations including fluid mechanics, chemical reaction, heat and mass transport, and other
simulation calculations utilising a combination of a mechanism model and a data model. Similar attention
should be paid to developingsimulation models for the melting, continuous casting, and rolling stages of
production. Finally, the real-world steel process communicates with the virtual system in real time, which has
the potential to optimise the parameters of production operations throughout steelmaking and rolling.

F. An early warning system for employee safety: The comprehensive procedure for monitoring and
overseeing workers' visits to the production regions should be established via the utilisation of satellite location,
Wi-Fi, 5G, and other communication technologies, alongside intelligent wearable devices. A personnel
management system ought to be developed with the capability to autonomously perceive and acquire
fundamental personnel information, personnel whereabouts, safety status, operational details of the surrounding
environment, statistical analysis of operational data, and real-time monitoring of personnel location trajectory
and position status. The system may run without human intervention and show alarm data and related
monitoring panels. As soon as it detects that you've entered a potentially dangerous region, it may send a
notification to your phone or any predetermined locations. With online monitoring, intelligent analysis, and
linked alerts, it may also identify irregularities in critical equipment, significant danger sources, and other
scenarios, helping to keep workers safe.

1.4 Key technologies for intelligent manufacturing in steel industry
141 Online Detection Technologies

Online detection in steel firms has an impact on accuracy and intelligence control [17]. One primary concern is
to the timely identification of essential parameters within the production process, necessitating a dependence on
expert knowledge and occasional reliance on batch-quality occurrences for smelting control. One of the primary
concerns is to the absence or outdated nature of terminal product quality detection systems. Consequently, this
inadequacy leads to diminished productivity and challenges

in effectively guaranteeing the quality of intermediate or semi-finished steel products [18][19]. One notable
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concern is to the timeliness or absence of fundamental data detection for the purpose of intelligent
transformation. This deficiency leads to a dearth of essential parameters inside both the quality control system
and the big data platform.

The identification of crucial characteristics within the steel industry is essential for steel manufacturers to ensure
the quality of their products and enhance the efficiency of production processes. At now, the existing detection
methods are limited to assessing the aesthetic attributes of steel goods, namely their dimensional accuracy, plate
form, and surface imperfections. The analysis of hot metal and slag compositions in ironmaking and
steelmaking processes has traditionally been conducted offline. However, the evaluation of tissue performance
and internal quality of steel products has been challenging due to the absence of a complete cycle of quality
control. Simultaneously, several crucial characteristics within the steel industry elude online detection, including
the particle size and compositions of raw materials, the temperature and compositions of high- temperature
liquid slag, and temperature measurements [20], surface and internal defects of high-temperature plate strip,
gas composition, automated detection of billet spraynumber characters, and product size. Moreover, a
significant portion of detection tests lack standardization, and the steel sector, like other domestic steel
industries, has the challenge of meeting specific production standards and ensuring product quality
characteristics in relation to testing technology.

Figure 5 depicts the various online detection systems that are used within the steel sector. The current trend in
the development of detection technology involves the utilisation of sophisticated modern detection technologies,
such as machine vision [21][22][23], laser-induced breakdown spectroscopy (LIBS), ultrasonic microscopy
technology, and others. These technologies are combined with deep-learning algorithms and statistical
modelling theory to enable the application or advancement of intelligent perception technology in the
production line. This allows for the online or rapid detect [24][25]. The primary objectives of online detection
technologies in the steel industry are to facilitate intelligent management and optimise processes, enhance the of
end products, augment labour productivity, minimise labour expenses, and furnish essential foundational data
for quality control and big data platforms.

Figure 5. Online detection technologies used in steel industry
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1.4.2 Quality Controlling Technology for the Entire Procedure of Steel Industry

The quality control system in the steel sector serves as a platform for enhancing quality, design, research, and
optimisation. It effectively integrates various processes involved in steel production, captures comprehensive
data throughout the manufacturing process, and performs other functions. The achievement of capturing
production process data in a high-precision and real-time manner is facilitated, ensuring that the data collection
variables and frequency requirements align with the expectations set by the corporate entity. This is made
possible via the integration of the firm's current data acquisition system. The following are some of the most
important advantages of quality control technologies across the board in modern steel production [26]. To begin,
the steel sector will have access to online product quality grading, digital scoring values, and product quality
grades, as well as a crucial production process parameter and product quality monitoring [27]. By developing a
model for predicting product quality, it becomes conceivable to notice and get notifications about prospective
quality issues that may be difficult to uncover using online means. Additionally, this enables the timely
implementation of pre-control measures. In addition, it is imperative to promptly propose flow control
recommendations for steel goods exhibiting potential quality issues or procedural deficiencies. This proactive
approach is crucial in preventing the inclusion of substandard products in subsequent production lines, thereby
ensuring consistent product quality throughout each production phase via effective quality control measures
[28]. The present system is capable of gathering data from many stages of themanufacturing process, as
well as collecting different process data from related processes. Furthermore, it has the ability to automatically
identify and recognise such data. Ultimately, it is essential to initiate data analysis and process improvement
efforts, using sophisticated algorithms to evaluate the efficacy of both the method and the quality of the final
output. This approach enables the identification of vulnerable areas within the control and process, thus
establishing a comprehensive framework for optimising and enhancing the whole process.

Figure 6 illustrates a schematic representation of the architectural framework used for quality control systems
within the steel sector. The comprehensive architectural layout of the system entails the division of the full
process quality control system into online and offline applications. The web programme mainly serves the
purpose of collecting, monitoring, issuing early warnings, and doing analysis, with specific features tailored
towards on-site quality inspectors and process personnel. This highlights the significance of the system's ability
to analyse data in real- time and its timeliness. It offers near real-time manufacturing process parameters,
determination of quality parameters, and early warning information to operators and quality inspectors present
on-site, hence enhancing operational efficiency. In contrast, offline application entails the utilisation of
sophisticated analysis and application methods that are rooted in the product manufacturing process. This
approach places emphasis on comprehensively integrating and analysing quality data throughout the
manufacturing process, taking into account various factors such as product manufacturing procedure parameters,
quality target parameters, quality inspection, and traceability. The ultimate goal is to address challenges related
to cross-process issues, product manufacturing process systems, and technical specifications.
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i i
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Figure 6. Architecture of quality control technologies in steel industry
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1.4.3 Intelligent machinery

The widespread adoption of intelligent machinery, equipped with self-detection, self-diagnosis, and self-
regulation capabilities, is highly recommended [29][30][31]. This is particularly crucial in hazardous positions
characterised by high temperature, high coal gas, and repetitive labour, in order to ensure precise control during
ironmaking and steelmaking processes. By doing so, it is possible to reduce the physical strain on workers,
enhance production efficiency, and maintain consistent quality. The intelligent equipment used in the steel
sector primarily focuses on four key factors [32].

A Intelligent logistics equipment, such as an AGV (automated guided transport vehicle), unmanned
elevators, intelligent roller rooms, intelligent three- dimensional factories, and flat storage facilities;

B. Industrial robots including automatic slag fishing robots, automatic slag cleaning robots, intelligent
temperature measurement robots, intelligent inspection robots, automatic baling robots, automatic coding robots,
automatic alignment devices, automatic loading and unloading devices, and automatic welding
devices;Intelligent detection equipment, which includes, in addition to the previously mentioned key component
detection technology, intelligent monitoring of personnel safety, intelligent monitoring of safety facilities, and
intelligent monitoring of equipment operational status; eddy current flaw detector; particle detector; thickness
gauge; convexity meter; plate roller; and product contour detection device;

C. Advanced control technology, one-key intelligent control technology of steelmaking, converter
automatic steel production technology, refining process automatic control system, plate-type intelligent control

Technology and other process intelligence and refined control technology.
2. Feature selection

Feature selection or reduction eliminates unnecessary, redundant, or partly significant information that might
lead to inaccurate model predictions, since the performance of a machine learning model is influenced by the
features it has been trained on. Feature reduction decreases the risk of over fitting by eliminating duplicate
features and simplifying the model. Various feature selection or reduction approaches are available. We used
PCA, ICA, and correlation-based feature selection methods in our strategy to eliminate irrelevant characteristics
[44]. PCA is often used because of its

versatility and simple implementation. PCA operates by transforming data into an orthogonal space where the
eigenvectors with the highest eigenvalues retain the most data variance. PCA is a method that emphasises the
covariance matrix and second-order statistics. ICA breaks down observed data into linearly independent
components.

Algorithm 1: Steps for the implementation of principal component analysis (PCA).

Input: m- dimensional input data matrix X € R™ with number of samples N, and variance threshold T,

Output: reduced L- dimensional data matrix Y € RLL<m,

Load X € R", and calculate mean for each feature, y i=1IN Z;Yl X,-j for j =1,2,...,m: subtract the mean from each corresponding
dimension, X;i= X,»;«—yj for j=1,2,...,mand i =12,...,N:

| + Make each signal uncorrelated to each other #/

Calculate covariance matrix of X', ¥, J/N - 1[X']" = X";
Solve the ¥,m a5 Yn = V" 'DV, where V € R™ is the matrix of eigenvector and D,,,, is the diagonal matrix containing
eigenvalues on both sides of the diagonal matrix ;

Sort the eigenvector matrix V' in the descending order to the first L- eigenvector that have variance >T, and form a projection
matrix P,,;:

Finally, project on the PCA space, Y = P'X;

Algorithm 2: Steps for the implementation of independent component analysis (ICA).
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Input: m- dimensional input data matrix X € R" with number of samples N, and variance threshold T
Output: reduced L- dimensional data matrix Y € R*L<m,

Select a nonquadratic nonlinear function g;

Initialize W as X = WH, where W ratio of source during mixing, He matrix contains different components, and X mixed

var

output;
Perform PCA on X, as X~PCA (X) as in Algorithm 1;
while W changes do
Update XE{Xg(W'X)} - E{g' (W"X)};
Normalize XW/|W]:

Derive the new dataset by taking Y = W' X, where ¥ € R";

2.1 Hyperparameter determination

Hyperparameters are variables that directly influence the learning process of machine learning algorithms and
may be changed by the user before training begins. Choosing the right values is crucial for creating the optimal
and high- quality model. Optimizing the model by selecting the appropriate values is referred to as
hyperparameter

optimization or hyperparameter tuning. Grid search and random search are popular methods for optimizing the
hyperparameters of an estimator. The research used the grid search approach with cross-validation to get very
accurate predictions [45]. The method divides the range of parameter values to be updated into a grid and
calculates the best parameters at each location. Various parameter combinations were assessed for each model,
and they were separated into training and test sets using the cross-

validation technique.
2.2 Cross-validation in time series

Cross-validation is a commonly used method for optimizing hyperparameters and evaluating the performance of
machine learning algorithms [46]. Various parameters need to be specified for each scenario based on the
dataset. Utilizing a grid search strategy together with cross-validation is efficient in  determining the
best  hyperparameter

combination for each model. Therefore, reducing forecasting errors in test samples may help identify the
optimal set of hyperparameters that improve predictive accuracy while reducing model overfitting [47]. Leave-
one- out cross-validation is suitable for handling time series data in this context. This approach may also be seen
as a sequential block cross-validation process, which is a subset of K-fold cross-validation. The training set is
incrementally built while using both the training and validation sets simultaneously, a technique referred to as
rolling cross- validation. The technique is repeated several times, with each iteration including an increase in the
number of observations in the training set and a decrease in the validation set. The training set consists of
observations that occurred before to the observation in the test set. The dataset is divided into training and test
sets, with 70% of the data allocated for training and model validation. The time series split involves dividing the
training set in half at each iteration, with the validation set positioned ahead of the training split. The model is
first trained on a small portion of data to predict the next data point. The predicted data points are added to the
next training dataset, and then more data points are forecasted. This technique is iterated until the whole training
set has been used. Estimate the training result by evaluating iteration performance evaluations.

2.3 STACK Ensemble method

STACK modelling included two stages: level 0 where predictions from the base learner are made, and level 1
where these predictions are coupled with the meta-learner. Previous research have shown the usage of support
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vector regression (SVR) and selection operator (LASSO) regression as the meta-learner. SVR, particularly
layer-1in

he STACK approach, offers significant benefits by detectingpredictor nonlinearities and using them to enhance
demand projections. We used a Support Vector Regression (SVR) model with a linear kernel and the selection
operator LASSO for meta-learning in our experiment at level 1.

Support vector regression (SVR) method

SVR is a machine learning algorithm used for regression tasks, particularly in cases where traditional linear
regression models may not be effective due to non-linear relationships between variables or noisy data [48].
SVR is an extension of Support Vector Machines (SVM) and is mostly used for classification purposes. SVR
aims to identify a hyperplane (or several hyperplanes in higher dimensions) that optimally fits the data by
maximising the margin between the hyperplane(s) and the data points. SVR differs from standard regression
models by focusing on minimising the departure of predicted values from a given margin, rather than
minimising the error between predicted and actual values.

Extreme learning machine (ELM)

ELM is a machine learning method designed as a rapid and effective learning procedure for single-hidden layer
feedforward neural networks (SLFNs). ELM differs from conventional neural networks by randomly setting the
weights between input and hidden layers and then determining the weights between hidden and output layers by
analytical calculations, instead of adjusting them repeatedly using techniques like backpropagation [49]. This
unique approach makes ELM particularly fast and efficient for training, as it does not involve iterative
optimization processes.

The working procedure of the stacking ensemble in this

Input: Input dataset ID = {X,, y,}/”, , where (X € R, y € Y),®_, is the set of optimal hyperparameter for each based regression
model, M is number of based model, T".
Output: final forecast demand level ¥, and performance indices.
Step 1: learn first-level base regression models;
/ = Loop for train and evaluate the first-level individual /regressor =
for t~—1to7 do

Divide the dataset ID into D" and D"

/ = 70% data for training d validation, 30% for test set =/

ave-One-Out Cross-Validation =/

n) do

Dtrain oyal
Train M, with optimal hyperparameter set @, on D}™";
Predict the demand level for M, with Dy I« M, (Dy*):
Step 2: create a new dataset from IJ;
for t«1to7 do
Create a new dataset D, | = {X], y,} for meta-regressor,
Where X| = {l,.ha.. ...}, h« output of i'™ model, I«+— number of based model;
Step 3: learn second-level regressor model;
/ = Loop for train and evaluate the final-level meta-regressor model
K (K« size of D) do
(2 Yme DD m DT el
Train the meta-model H, . with D' using ©,:
Predict the demand level for F,, ., with D'
Test set D''“*" are used for the prediction and performance measure (Pj,..) using ..

1to
e

return Pryens

paper is described in algorithm 3.
Algorithm 3: Demand forecasting using Stacking Ensemble techniques using cross-validation.
24  Performance metrics

Assessing the accuracy of a model is essential in developing machine learning models to determine the
effectiveness of the model's predictions. The study's performance indicators, including MAE, RMSE, R2, and
MAPE, are outlined below.

Mean absolute error (MAE)

MAE stands for mean absolute error. Because the prediction error can be positive or negative, the average total
value of the error is used to avoid the cancellation of positive and negative mistakes.variable. R? is used to
evaluate the scattered data about a fitted regression line.
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R*=1-
3)

As shown in Equation (3), where &3y, is the sum of squares of residuals, 55;.:x: is the total sum of the square,
¥; is the true value, ¥ is the prediction value, and g is the mean.

Mean Absolute percentage error (MAPE)

The accuracy is often expressed as a ratio using the formula: At/Ft, where At is the actual value and Ft is the
prediction value. Their discrepancy is calculated by dividing the difference by the actual value At. Calculate the
total of the absolute values of this ratio for each projected time point and then divide by the number of fitted
pOIntS,MAEr = E}L;‘:ﬂﬂﬁ, _ .A:‘,*

@)

A~

1
M==%0_
n <=L A

As can been seen in Eq.1, where n is the number of observations, xi represent the true value, while x,: represent
the prediction value.

3. Result and discussion(4)
Root mean square error (RMSE)

In order to predict performance more accurately, we use the root-mean-square error (RMSE) evaluation model
determine the standard error through the prediction results as shown in Eq. 2:

——
@ RMSE = |Zi=®”
Generally, RMSE is commonly used for evaluating the quality of predictions. As we can see in Eq.2, where n is
the number of the participating samples, %1 is the real value while & is the predicted value.

RZ score

It is also known as the coefficient of determination which expresses the amount of variance in the
dependentTable 1 outlines each model's ability to achieve the greatest R2 utilizing the recommended pipeline, as
well as shown in Figure 2. Table 1 displays the optimized hyperparameters determined by grid search. SVR
method attained the R2 is 0.934, RFR method achieved R2 is 0.976, MLP method obtained R2 is 0.961, which
is higher than to SVR, but STACK (SVR)1 and STACK(LASSO)2 achieved maximum R2 is 0.982 and it is
higher than to other methods.

Table 1. Performing ML model and preprocessing with the highest possible accuracy (R2).

Models R2
SVR 0.934
RFR 0.976
MLP 0.961
ELM 0.942
STACK (SVR)1 0.982
STACK (LASSO)2 0.982
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Figure 7 depict the comparison of various algorithms based on R2, as shown below. In Figure 7, the suggested

R2

STACK (LASSO0)2
STACK (SVR)1
ELM

MLP

RFR

SVR

0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99

technique achieved maximum an R2 of 0.988, as compared to all other methods.
Figure 7. Comparison of various method based on R2

Table 2 outlines the performance indicators, such as R2, MAE, RMSE, and MAPE, used to assess each model.
Table

2 indicates that the ensemble learning methodologies yielded results aligned with the goal of minimizing error
during the test phase.

Table 2. Comparing stacking ensemble model with the best performing ML models

Models R2 MAE RMSE MAPE
SVR 0.931 0.202 0.246 0.902
ELM 0.942 0.183 0.226 0.880
MLP 0.963 0.149 0.193 0.579
GBR 0.972 0.138 0.173 0.524

STACK 1

STACK2

GBR

0 02 04 0.6 08 1 12

MAFE mRMSE mMAE mR2

Figure 8 illustrates the results of the suggested strategy, as shown below. In Figure 8, the suggested technique
achieves an R2 of 0.988, MAE of 0.122, RMSE of 0.154, and an F1 MAPE of 0.446, as seen below

Figure 8. Comparison of stacking methods
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4, Conclusion

This research concludes that an ensemble learning technique is beneficial for demand forecasting in the steel
sector. Through ensemble approaches, we have enhanced accuracy and dependability by leveraging the
capabilities of several forecasting models, surpassing the performance of individual models. The ensemble
learning architecture adeptly captures the intricate and ever-changing demand patterns in the steel sector. This
study provides steel makers with a valuable tool to enhance inventory management, production scheduling, and
resource allocation by using more precise and dependable demand projections. The suggested preprocessing
approach enhances the quality of the raw dataset by addressing missing values and standardizing the data. PCA
and ICA reduce duplication between features, whereas correlation-based feature

selection may increase correlation between features. Hyperparameters are fine-tuned to find the optimal
configuration for each machine learning technique using a grid search algorithm. The best-performing models
are combined in STACK1 to generate level 0. SVR with linear kernels and LASSO regressions are used as
meta-learners in the first stage. Ensemble approaches, especially the STACK model, outperform individual
models in forecasting steel industry demand, as shown by the test set outcomes.

References
[1]. DIN Std., Reference Architecture Model Industrie4.0 (RAMI4.0), DIN SPEC 91345, 04 2016

[2]. Usuga Cadavid, Juan Pablo, Samir Lamouri, Bernard Grabot, Robert Pellerin, and Arnaud Fortin.
"Machine learning applied in production planning and control: a state-of-the-art in the era of industry
4.0." Journal of Intelligent Manufacturing 31 (2020):1531-1558.

[3]. Guo, Zexuan, Chensheng Wang, Guang Yang, Zeyuan Huang, and Guo Li. "Msft-yolo: Improved
yolov5 based on transformer for detecting defects of steel surface.” Sensors 22, no. 9 (2022): 3467.

[4]. Word Steel Association. The White Book of Steel. Availableonline:
https://worldsteel.org/publications/bookshop/the-white-book-of-steel/ (accessed on 10 March 2022).

[5]. Shi, Meng, Lijian Yang, Songwei Gao, and Guoging Wang. "Metal surface defect detection method based
on TEO1 Mode Microwave." Sensors 22, no. 13 (2022): 4848.

[6]. Zhou, D. D., K. Xu, P. Zhou, and X. Jiang. "The production of large blast furnaces of China in 2018 and
thoughts of intelligent manufacturing in the ironmaking process.”" Ironmaking & Steelmaking 47, no. 6
(2020): 650-654. [7]. Lydon, Bill. "Industry 4.0: Intelligent and flexible production." International

Society of Automation (2016): 12-17.

[8]. Rodrique, Jean-Paul, Fadi Farra, Ni Jun, Jodo Carlos Ferraz, and Ludovico Alcorta. "The future of
manufacturing: driving capabilities, enabling investments.” In Geneva, Switzerland: World Economic
Forum. 2014.

[9]. Li, Ling. "China's manufacturing locus in 2025: With a comparison of “Made-in-China 2025 and
“Industry 4.0”." Technological forecasting and social change 135 (2018): 66-74.

[10]. Bichi, Giacomo, Monica Cugno, and Rebecca Castagnoli. "Smart factory performance and Industry 4.0."
Technological forecasting and social change 150 (2020): 119790.

[11]. Sikorska, Joanna Z., Melinda Hodkiewicz, and Lin Ma. "Prognostic modelling options for remaining
useful life estimation by industry." Mechanical systems and signal processing 25, no. 5 (2011): 1803-
1836.

[12]. Bukkapatnam, Satish TS, Kahkashan Afrin, Darpit Dave, and Soundar RT Kumara. "Machine learning
and Al for long-term fault prognosis in complex manufacturing systems.” Cirp Annals 68, no. 1 (2019):
459-462.

[13]. Oluwasegun, Adebena, and Jae-Cheon Jung. "The application of machine learning for the prognostics and

2530



Tuijin Jishu/Journal of Propulsion Technology
ISSN: 1001-4055
Vol. 45 No. 02 (2024)

[14].

[15].

[16].

[17].

[18].

[19].

[20].

[21].

[22].

[24].

[25].

[26].

[27].

[28].

health management of control element drive system." Nuclear Engineering and Technology 52, no. 10
(2020): 2262-2273.

Buchmayr, Bruno, Michael Degner, and Heinz Palkowski. "Future challenges in the steel industry and
consequences for rolling plant technologies." BHM 163, no. 3 (2018): 76-83.

Park, Cheol Young, Jin Woog Kim, Bosung Kim, and Joongyoon Lee. "Prediction for manufacturing
factors in a steel plate rolling smart factory using dataclustering-based machine learning." IEEE Access 8
(2020): 60890-60905.

Lepenioti, Katerina, Minas Pertselakis, Alexandros Bousdekis, Andreas Louca, Fenareti Lampathaki,
Dimitris Apostolou, Gregoris Mentzas, and Stathis Anastasiou. "Machine learning for predictive and
prescriptive analytics of operational data in smart manufacturing." In Advanced Information Systems
Engineering Workshops: CAISE 2020 International Workshops, Grenoble, France, June 8-12, 2020,
Proceedings 32, pp. 5-16. Springer InternationalPublishing, 2020.

Kartashov, Oleg O., Andrey V. Chernov, AlexanderA. Alexandrov, Dmitry S. Polyanichenko, Vladislav
S. lerusalimov, Semyon A. Petrov, and Maria A. Butakova. "Machine Learning and 3D Reconstruction of
Materials Surface for Nondestructive Inspection." Sensors 22, no. 16 (2022): 6201.

Chen, Xuechun, Jun Lv, Yulun Fang, and Shichang Du. "Online detection of surface defects based on
improved YOLOV3." Sensors 22, no. 3 (2022): 817.

Farag, E. "H.; Toyserkani, E.; Khamesee, MB Non- Destructive Testing Using Eddy Current Sensors for
Defect Detection in Additively Manufactured Titanium and Stainless-Steel Parts." Sensors 22 (2022):
5440.

Mostafa, Ahmed, Suk Jin Lee, and Yesem Kurt Peker. "Physical unclonable function and hashing are all
you need to mutually authenticate iot devices." Sensors 20, no. 16 (2020): 4361.

Liang, Ying, Ke Xu, and Peng Zhou. "Mask gradient response-based threshold segmentation for surface
defect detection of milled aluminum ingot.” Sensors 20, no. 16 (2020): 4519.

Zhou, Dongdong, Feng Gao, Junjian Wang, and Ke Xu. "Study of Surface Temperature Distribution for
High-Temperature U75V Rail Steel Plates in Rolling Process by Colorimetry Thermometry." Metals 12,
no. 5 (2022): 860.[23]. Liang, Ying, Ke Xu, Peng Zhou, and Dongdong Zhou. "Automatic defect
detection of texture surface with an efficient texture removal network." Advanced Engineering
Informatics 53 (2022): 101672.

Grinberger, Stefan, Simon Eschlbéck-Fuchs, Josef Hofstadler, Andreas Pissenberger, Hubert Duchaczek,
Stefan Trautner, and Johannes D. Pedarnig. "Analysis of minor elements in steel and chemical imaging of
micro-patterned polymer by laser ablation-spark discharge-optical emission spectroscopy and laser-
induced breakdown spectroscopy.” Spectrochimica Acta Part B: Atomic Spectroscopy 169 (2020):
105884.

Lin, Lu, and Jia-qing Zeng. "Consideration of green intelligent steel processes and narrow window
stability ~ control  technology on  steel quality." International Journal of Minerals, Metallurgy
and Materials 28 (2021): 1264-1273.

Lin, Lu, and Jia-qing Zeng. "Consideration of green intelligent steel processes and narrow window
stability ~ control  technology on  steel quality." International Journal of Minerals, Metallurgy
and Materials 28 (2021): 1264-1273.

Zhou, Dongdong, Yujie Zhou, Xuemin Zhang, and Ke Xu. "Surface Quality Evaluation of Heavy and
Medium Plate Using an Analytic Hierarchy Process Based on Defects Online Detection.” 1SI1J
International 62, no. 7 (2022): 1461-1468.

Li, Hongbo, Zhenwei Zhao, Jie Zhang, Ning Kong, Renren Bao, Shenghui Jia, and Fei He. "Analysis of

2531



Tuijin Jishu/Journal of Propulsion Technology
ISSN: 1001-4055
Vol. 45 No. 02 (2024)

[29].

[30].

[31]

[32].

[33].

[34].

[35].

[36]
[37]

[39]

[40].

[41].

[42]

[43].

[44]

flatness control capability based on the effect function and roll contour optimization for 6-h CVC cold
rolling mill." The International Journal of Advanced Manufacturing Technology 100 (2019) 2387-
2399.

Ma, Yiming, Guojun Wen, Siyi Cheng, Xin He, and Shuang Mei. "Multimodal convolutional neural
network model with information fusion for intelligentfault diagnosis in rotating machinery." Measurement
Science and Technology 33, no. 12 (2022): 125109.

Xia, Min, Haidong Shao, Darren Williams, Siliang Lu, Lei Shu, and Clarence W. de Silva. "Intelligent
fault diagnosis of machinery using digital twin- assisted deep transfer learning.” Reliability Engineering
& System Safety 215 (2021): 107938.

. Thomas, Gabriel, Simone Balocco, Danny Mann, Avery Simundsson, and Nioosha Khorasani. "Intelligent

agricultural machinery using deep learning.” IEEE Instrumentation & Measurement Magazine 24, no. 2
(2021): 93-100.

Cai, Hanying. "Building Construction Operation Simulation Based on BIM Technology and Intelligent
Robots." Journal of Interconnection Networks 22, no. 03 (2022): 2145005.

Liu, Qiang, Pan Li, Wentao Zhao, Wei Cai, Shui Yu, and Victor CM Leung. "A survey on security threats
and defensive techniques of machine learning: A data-driven view." IEEE Access 6 (2018): 12103
12117

Sarma, M. Subrahmanya, Y. Srinivas, N. Ramesh, and M. Abhiram. "Improving the performance of
secure cloud infrastructure with machine learning techniques.” In 2016 IEEE International Conference on
Cloud Computing in Emerging Markets (CCEM), pp. 78-83. IEEE, 2016

Ray, Susmita. "A quick review of machine learning algorithms.” In 2019 International conference on
machine learning, big data, cloud and parallel computing (COMITCon), pp. 35-39. IEEE, 2019

. Schapire, Rob. "Machine learning algorithms for classification." Princeton University 10 (2015)

. Saran, Munish, Rajan Kumar Yadav, and Upendra Nath Tripathi. "Machine Learning based Security for

Cloud Computing: A Survey." International Journal of Applied Engineering Research 17, no. 4
(2022):332-337[38]. Shamshirband, Shahab, Timon Rabczuk, and Kwok- Wing Chau. "A survey of deep
learning techniques: application in the wind and solar energy resources." IEEE Access 7 (2019):
164650-164666

. Aceto, Giuseppe, Domenico Ciuonzo, Antonio Montieri, Valerio Persico, and Antonio Pescapé. "Know

your big data trade-offs when classifying encrypted mobile traffic with deep learning.” In 2019 Network
traffic measurement and analysis conference (TMA), pp. 121-128. IEEE, 2019

Valero-Mas, Jose J., Antonio Javier Gallego, Pablo Alonso-Jiménez, and Xavier Serra. "Multilabel
Prototype Generation for data reduction in K-Nearest Neighbour classification." Pattern Recognition
135 (2023): 109190

Rawal, Atul, and Bechoo Lal. "Predictive model for admission uncertainty in high education using Naive
Bayes classifier." Journal of Indian Business Research ahead-of-print (2023)

. Usama, Muhammad, Junaid Qadir, Aunn Raza, Hunain Arif, Kok-Lim Alvin Yau, Yehia Elkhatib, Amir

Hussain, and Ala Al-Fugaha. "Unsupervised machine learning for networking: Techniques, applications,
and research challenges." IEEE Access 7 (2019): 65579-65615

Moerland, Thomas M., Joost Broekens, Aske Plaat, and Catholijn M. Jonker. "Model-based
reinforcement learning: A survey." Foundations and Trends® in Machine Learning 16, no. 1 (2023):
1-118.

. Ebtehaj, Isa, Hossein Bonakdari, and Shahaboddin Shamshirband. "Extreme learning machine assessment

2532



Tuijin Jishu/Journal of Propulsion Technology
ISSN: 1001-4055
Vol. 45 No. 02 (2024)

for estimating sediment transport in open channels.”" Engineering with Computers 32 (2016) 691-704.

[45]. Hyvarinen, Aapo, and Erkki Oja. "Independent component analysis: algorithms and
applications." Neural networks 13, no. 4-5 (2000):411-430.

[46]. Bergstra, James, and Yoshua Bengio. "Random search for hyper-parameter optimization.” Journal of
machine learning research 13, no. 2 (2012).

[47]. Yasin, Hasbi, Rezzy Eko Caraka, and Abdul Hoyyi. "Prediction of crude oil prices using support vector

regression (SVR) with grid search-Cross validation algorithm." Glob J Pure Appl Math 12, no. 4 (2016):
3009-3020.

[48]. Izonin, lvan, Roman Tkachenko, Nataliya Shakhovska, and Nataliia Lotoshynska. "The additive input-

doubling method based on the SVR with nonlinear kernels: Small data approach.” Symmetry 13,
no. 4 (2021): 612

[49]. Ding, Shifei, Xinzheng Xu, and Ru Nie. "Extreme learning machine and its applications.” Neural
Computing and Applications 25 (2014): 549-556.

2533



