
Tuijin Jishu/Journal of Propulsion Technology 

ISSN: 1001-4055 

Vol. 45 No. 02 (2024) 

__________________________________________________________________________________ 

2513 

 

“A Hybrid Model Integrating Feature 

Selection Methodologies” 

Sanjeet Choudhary 1*, Prof. (Dr.) Ritu Sindhu2 

1,2 Department of Computer Science & Engineering, 

Lingayas Vidyapeeth (A Deemed-to-be –University), Faridabad, Haryana, India 

Abstract 

The steel sector has had difficulties in finding solutions for quality control of goods using data mining methods, 

notwithstanding recent progress. This study presents a steel quality prediction system that integrates real-world 

data with in-depth data analysis conclusions. The main process is carefully designed as a regression problem, 

which is therefore best handled by integrating various learning algorithms with their huge repository of 

historical production data. A comprehensive examination and comparison of the characteristics of the most 

often utilized learning models in regression problem analysis has been conducted. The efficacy of our steel 

quality control prediction system, which utilizes an ensemble machine learning model, showcases promising 

outcomes. This system offers great usability for local businesses in addressing production problems via the use 

of machine learning methods. Moreover, the practical implementation of this system is shown and analyzed. 

The proposed method attained high accuracy, precision, recall and f1 score, mean absolute error, root mean 

square error as compared to other different technique. Lastly, this study highlights the future prospects and sets 

out the anticipated level of performance. 
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Introduction 

In the last ten years, there has been a notable increase in the use of artificial intelligence (AI) applications. This 

may be attributed to the growing popularity of emerging machine learning algorithms and technologies, 

particularly deep learning (DL). Since that time, machine learning has reached a level of development 

that allows it to be used in a wide range of disciplines, including computer vision and machine-type 

communications. The capacity of this technology to effectively address intricate, multi- dimensional challenges 

across several domains has positioned it as a significant catalyst within the Industry 4.0 movement, alongside 

the industrial Internet of Things [1]. With the growing implementation of digitalization in the industry, there is 

a shift towards converting traditional manufacturing into advanced smart factories that are highly automated. In 

this context, machine learning techniques play a crucial role in automating various aspects such as product 

manufacturing, maintenance tasks, logistical processes throughout the supply chain, warehouse management, 

automated quality management, and production control. These applications are widely recognised and widely 

adopted within the industry [2]. Numerous multinational corporations with substantial technological and 

financial expertise have successfully used machine learning-driven solutions to automate certain operations 

inside warehouses or shop-floors. Notably, these solutions include the deployment of autonomous trucks 

capable of moving assets without requiring any human intervention from operators. 

The steel sector is well recognised for its extensive utilisation as a green material because to its high 

accessibility, cost-effectiveness in manufacturing, and broad application. These factors contribute significantly 

to its pivotal position in both everyday life and industrial production within contemporary civilization [3]. As an 

integral component of the domestic economy, it serves as a crucial source of essential resources for several 

sectors like construction, transportation, infrastructure, automotive industry, maritime operations, home goods, 

electrical power, 
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and marine engineering, among others, therefore significantly impacting our everyday existence [4]. 

Concurrently, the steel sector is confronted with significant carbon dioxide emissions, substandard working 

conditions, environmental contamination, safety challenges arising from elevated temperatures and toxic gases, 

labor-intensive demands on workers, and repetitive tasks [5]. In response to the aforementioned concerns, 

prominent steel corporations have undertaken significant measures such as automation, information alteration, 

and updating during the last several decades. These initiatives have significantly impacted the steel industry's 

production efficiency and degree of automation [6]. 

1.1 Smart manufacturing system 

The Smart Manufacturing System (SMS) is the complete digitalization of the manufacturing process, allowing 

for increased efficiency via such features as interoperability, real-time control and monitoring, flexible 

production, rapid reaction to market shifts, cutting-edge sensors, and big data 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Component of smart manufacturing system 

analytics. The SMS may function in either a semi- or completely autonomous mode. The production engineer in 

a semi-autonomous system establishes the system's objectives and controls its variables. In a completely 

automated system, the SMS determines the best settings for operation and applies them mechanically across all 

of the connected machines. Cost-effectiveness, optimum production and delivery time, product quality, and 

customization flexibility   are of paramount importance to manufacturers for survival in today's highly 

competitive market [8]. The second issue is whether or not a production system can keep its performance at a 

high level in the face of new data and shifting conditions. Numerous technologies have been created to facilitate 

the establishment of an intelligent production system. To transform an existing system into a smart 

manufacturing system, technology selection may be a major challenge. 

The breadth of smart manufacturing technologies has expanded as a consequence of the integration of several 

technologies, leading to cost efficiency, time savings, simplified configuration, enhanced comprehension, 

prompt responsiveness to market needs, increased flexibility, and remote monitoring capabilities. Figure 1 

depicts the foundational framework of the intelligent manufacturing system. 

The smart manufacturing ecosystem, as seen in Figure 2, is offered by the National Institute of Standards and 

Technology (NIST). This diagram illustrates the interconnectedness of many domains within the realm of smart 

manufacturing and delineates their respective functionalities. The presented schematic diagram illustrates the  

interrelationship  among  the  enterprise's  product 
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(represented by the green arrow), production process (represented by the blue arrow), and business operations 

(represented by the orange arrow) within the context of their lifetime in the ecosystem. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. NIST’s smart manufacturing eco-system model 

The integration of digital transformation and smart technologies, which connect physical things through the 

internet, is emerging as a fundamental aspect of future industries. The key technological initiatives announced 

by prominent nations are Industry 4.0 by Germany, Made in China 2025 by China, Industrial Internet by the 

USA, and Society 5.0 by Japan. These technologies vary in terms of their implementation methods, target 

industry group, and expected timescale for attainment. However, they have a similar goal of using smart and 

digital technology to enhance existing production processes globally [9][10]. 

1.1.1 Machine learning in smart maintenance 

Maintenance is a crucial activity inside every sector of the business. Unforeseen failures have the potential to 

result in unfavourable outcomes, such as the interruption of assemblylines or the need to rearrange logistical 

activities. These effects might lead to direct or indirect economic losses, such as delays in operations. The 

process of maintenance seems to be straightforward; nonetheless, effective and efficient maintenance 

encompasses a multitude of jobs, each of which contributes to enhancing the overall efficiency of the 

mechanism. Maintenance, in its most fundamental state, is primarily characterised by a reactive approach. 

Consequently, the act of preserving the optimal condition of certain tools, machinery, or equipment does not fall 

within the realm of maintenance. In the context of reactive maintenance, the repair of machinery and tools 

occurs only in response to a failure, rather than being beforehand addressed. However, there are instances when 

defects may not be readily apparent, resulting in the ongoing deterioration of equipment. Consequently, the use 

of fault detection systems becomes necessary to identify the need for maintenance. Furthermore, the use of 

diagnostic techniques and root cause analysis has the potential to augment the overall quality of maintenance 

procedures, particularly in cases when the underlying reason of failure remains unidentified and necessitates 

further investigation. 
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Contemporary maintenance paradigms, including preventive, predictive, and proactive maintenance, use 

distinct methodologies in contrast to the reactive maintenance approach. Preventive maintenance, as its name 

implies, is a maintenance strategy that prioritises the preservation of equipment and machines by regularly 

assessing their state of wear and tear. The optimisation of efficiency in this paradigm is accomplished by the use 

of telemetry, external sensors, and other condition monitoring systems to gather diagnostic data, hence 

minimising superfluous inspection and repairs. Predictive maintenance likewise leverages the aforementioned 

techniques; yet, it serves a distinct objective, namely, to forecast the occurrence of a machinery failure and so 

facilitate comprehensive planning of the repair process. To get accurate estimates, specific models of the 

monitored asset are used in order to assess its remaining useful life (RUL) [11]. The integration of proactive 

maintenance has resulted in the convergence of two paradigms, namely predictive and preventive maintenance. 

Alongside this development, the toolsets used in both approaches have also been merged. urthermore, the 

emergence of machine learning and the Industrial Internet of Things (IIoT) has transformed this method into a 

dynamic and data-centric approach. 

The concept of being data-driven entails the utilisation of a substantial volume of data, which is often sourced 

through interconnected intelligent activities, processes, systems, or records. An illustration of this phenomenon 

may be seen in the increasing inclination towards the use of technologies such as Manufacturing Execution 

Systems (MES) like Plant floor automation and information systems (PES). This adoption has the potential to 

significantly enhance prognostics-based maintenance by creating a substantial volume of data [12]. The Digital 

Twin, a fundamental component of smart manufacturing, serves as a sophisticated, data-centric, and abstract 

representation of systems, hence facilitating the process of data collection and analytics. Additionally, it 

enhances the overall efficiency of preventative maintenance, hence reducing the risk of failure [13]. Figure 3 

illustrates the significance of including smart maintenance and smart quality control inside a data-driven smart 

manufacturing system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. The role of smart maintenance and smart quality control in a data-driven smart manufacturing 

ecosystem 
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1.2 Steel rolling 

Steel rolling is a metalworking process that involves reducing the thickness or changing the cross-sectional 

shape of a metal sheet or plate by passing it through a pair of rotating rolls. This process is commonly used to 

produce various forms of steel products, including sheets, plates, bars, and structural shapes. Steel rolling is 

essential in manufacturing industries, construction, automotive, aerospace, and more. The primary goals of steel 

rolling are to improve material properties, achieve precise dimensions, and enhance surface finish [14]. 

1.2.1 Challenges in Steel Rolling 

Energy Efficiency: Steel rolling is an energy-intensive process, and optimizing energy consumption while 

maintaining product quality is a significant challenge. 

Material Variability: Variations in raw material quality can impact the rolling process, leading to defects or 

inconsistencies in the finished product. 

Maintenance and Downtime: Rolling mills require regular maintenance, and unexpected downtime can disrupt 

production schedules and increase costs. 

Quality Control: Ensuring product quality and detecting defects during rolling is critical but challenging due to 

the high-speed nature of the process. 

1.2.2 Recent Trends in Steel Rolling: 

Automation and Industry 4.0: Integration of automation, IoT devices, and data analytics is transforming steel 

rolling plants into smart factories. Real-time monitoring and predictive maintenance help reduce downtime and 

improve efficiency. 

Advanced Materials: The demand for high-strength, lightweight steel for automotive and aerospace applications 

is driving the development of advanced steel alloys and rolling techniques.Energy Efficiency: Steel 

manufacturers are adopting more energy-efficient processes and technologies, such as electric arc furnaces and 

regenerative heating systems, to reduce carbon emissions. 

Digital Twins: Digital twin technology allows manufacturers to create virtual models of their rolling processes, 

enabling better simulation, optimization, and predictive maintenance. 

Hybrid and Additive Manufacturing: Hybrid manufacturing combines traditional steel rolling with additive 

manufacturing techniques, allowing for the creation of complex and customized steel products. 

Environmental Sustainability: Steel rolling plants are focusing on reducing their environmental footprint by 

implementing eco-friendly practices and recycling materials. 

1.2.3 Future of Steel Rolling: 

The future of steel rolling holds several exciting possibilities: 

Advanced Automation: Further automation and robotics will increase efficiency, reduce labor costs, and enhance 

safety in steel rolling plants. 

Materials Innovation: Continued research into high-strength, lightweight steel alloys will lead to the 

development of innovative products for industries like automotive, aerospace, and renewable energy. 

Green Technologies: Adoption of green and sustainable technologies, such as hydrogen-based steel production, 

will help reduce the environmental impact of steel rolling. 

Digitalization: The use of AI, machine learning, and big data analytics will become more prominent in 

optimizing steel rolling processes and improving quality control. 

Customization: Steel rolling plants may offer more customization options for clients, enabling the production of 

tailored steel products for specific applications. 
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Circular Economy: The steel industry will increasingly focus on recycling and reusing steel products to 

minimize waste and energy consumption. 

In conclusion, the steel rolling industry is undergoing significant changes driven by technology, sustainability 

concerns, and the need for innovation. These changes are expected to result in more efficient, environmentally 

friendly, and customized steel products in the future. 

1.2.4 Steel rolling smart factor using machine learning 

Steel rolling is a critical process in the manufacturing industry, used to transform raw steel into various shapes 

and sizes, such as sheets, bars, and coils. The efficiency and quality of this process are essential for the final 

product's performance and cost-effectiveness. Implementing machine learning (ML) and data-driven approaches 

can enhance the steel rolling process by creating a "Smart Factory." In this context, a Smart Factory leverages 

real-time data, automation, and ML to optimize production, reduce waste, and improve overall efficiency 

[15][16]. 

Here's a detailed explanation of how machine learning can be applied to create a Smart Factory for steel rolling: 

Data Collection: The first step is to gather data from various sources within the steel rolling facility. This data 

can include temperature sensors, pressure sensors, speed sensors, motor data, operator logs, and more. Historical 

data is also essential, as it provides insights into past process performance and can be used for training ML 

models. 

Data Preprocessing: Raw data collected from sensors may contain noise, outliers, and missing values. Data 

preprocessing techniques are applied to clean and prepare the data for analysis. Feature engineering can be 

performed to extract relevant features from the raw data, such as rolling speed, temperature differentials, and 

hydraulic pressure. 

Anomaly Detection: Machine learning models can be trained to detect anomalies in real-time sensor data. 

Anomalies might indicate equipment malfunctions, deviations from optimal conditions, or potential quality 

issues. Algorithms like Isolation Forests, One-Class SVMs, or deep learning-based approaches can be used for 

anomaly detection. 

Predictive Maintenance: ML models can predict when machinery is likely to fail or require maintenance by 

analyzing historical maintenance records and real-time sensor data. Predictive maintenance can help reduce 

downtime, extend equipment lifespan, and prevent costly breakdowns. 

Quality Control: Machine learning models can be trained to monitor and control product quality by analyzing 

sensor data during the rolling process. For instance, image recognition techniques can be used to detect surface 

defects in the steel, and predictive models can adjust rolling parameters to minimize defects. 

Process Optimization: ML models can optimize the steel rolling process by adjusting parameters like 

temperature, pressure, and rolling speed in real-time to maximize efficiency and minimize energy consumption. 

Reinforcement learning algorithms can be employed to find the best control policies. 

Energy Efficiency: Smart factories can reduce energy consumption by using ML models to optimize equipment 

operation, reduce waste, and schedule energy-intensive tasks during off-peak hours. 

Human-Machine Collaboration: While ML automates many tasks, human operators still play a crucial role in 

a Smart Factory. ML can provide real-time recommendations and alerts to operators, helping them make 

informed decisions. 

Continuous Improvement: Data collected from the steel rolling process and the performance of ML models 

can be used for continuous improvement. Feedback loops ensure that the system gets better over time. 

Integration: ML models and data-driven insights should be seamlessly integrated into the existing 

manufacturing process, with proper communication and control systems in place. 
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Security: Given the importance of data in a Smart Factory, robust cybersecurity measures are essential to 

protect against potential threats and breaches. 

Creating a Smart Factory for steel rolling using machine learning is a complex endeavor that requires 

interdisciplinary collaboration between engineers, data scientists, and domain experts. It can lead to significant 

improvements in productivity, product quality, and resource efficiency in the steel manufacturing industry. 

However, it's crucial to carefully plan and implement these technologies to ensure they meet safety, quality, and 

regulatory standards. 

1.2.5 Problem statement 

The steel industry operates within a dynamic and highly competitive market, where accurate demand forecasting 

is crucial for optimizing production, inventory management, and overall operational efficiency. However, 

existing forecasting methods often struggle to capture the complex patterns and fluctuations in demand, leading 

to suboptimal resource allocation, excess inventory, and potential revenue loss. Traditional forecasting 

techniques, such as time series analysis and regression models, often fall short in accurately predicting demand 

due to their inability to capture non- linear relationships, seasonal variations, and sudden market shifts. 

Additionally, the inherent uncertainties and volatility in steel demand, influenced by factors like economic 

conditions, geopolitical events, and technological advancements, pose significant challenges for accurate 

forecasting. Therefore, there is a pressing need to develop a robust and adaptive forecasting framework tailored 

to the specific requirements of the steel industry. This framework should leverage the power of ensemble 

learning, a machine learning technique that combines multiple models to improve predictive accuracy and 

robustness. By integrating diverse forecasting algorithms, such as decision trees, random forests, gradient 

boosting, and neural networks, an ensemble approach can effectively capture the complex patterns and 

dependencies in steel demand data. Furthermore, the ensemble learning approach offers the flexibility to adapt 

and evolve with changing market dynamics, incorporating new data sources, and refining prediction models 

over time. By harnessing the collective intelligence of multiple models, the proposed framework aims to 

enhance the accuracy, reliability, and actionableinsights derived from demand forecasts in the steel industry. 

Overall, the development of an ensemble learning approach for demand forecasting in the steel industry 

represents a critical step towards addressing the challenges of uncertainty, volatility, and complexity inherent in 

predicting demand patterns. By leveraging advanced machine learning techniques, this framework has the 

potential to revolutionize demand forecasting practices, enabling steel manufacturers to make informed 

decisions, optimize resource allocation, and maintain a competitive edge in the market. 

1.2.6 Research methodology 

This section provides a brief overview of the materials and methodology used. No information provided. The 

proposed framework is shown in Figure 4. These are the main stages in our proposed framework: 1. Gathering 

industrial environmental data for the framework. 2. Preprocessing the data by filling missing values, and 

standardization. 3. Removing irrelevant and redundant features to prevent overfitting. 4. Using grid search 

algorithm with cross validation to tune hyperparameters for each machine learning model. 5. Creating a two-

level stacking ensemble method using machine learning models with optimal hyperparameters as the baseline. 6. 

Utilising evaluation metrics to assess the proposed framework. The blocks will be detailed in the subsequent 

sections. 
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Figure 4. Proposed framework 

1.3  Typical models for Intelligent manufacturing of steel industry 

1.3.1 Rolling Process Intelligent Manufacturing Model 

The presence of information islands in the country's rolling steel production lines is primarily attributed to the 

inadequate implementation of big data technologies and the absence of a comprehensive big data control system 

that encompasses the entire production process. This deficiency can be attributed to the lack of inspection and 

testing technology, automation, and intelligent manufacturing equipment. Consequently, the rolling process 

exhibits little automation and intelligence, leading to elevated labour expenses and reduced labour productivity. 

Additionally, the quality control, testing, and traceability systems are inefficient, contributing to a significant 

number of defective products. 

Taking consideration of the aforementioned problems, the following aspects are prioritised in intelligent 

manufacturing for the rolling process. To begin, the rolling mode uses cutting-edge tools like intelligent robotics 

and data integration from the industrial Internet's hybrid model and data analysis. Then, they used technologies 

like robots, unmanned storage for slabs, and sophisticated inspection and monitoring of the whole process. The 

major goal was to maximise material and energy efficiency, process control, and employee output. An increase 

in the use of intelligent control, predictive and early-warning forward-looking reaction, and multi-objective 

optimisation in business cooperation has led to improved manufacturing stability and flexibility of the hot-rolled 

production line, as well as decreased manufacturing costs. 

1.3.2 Steelmaking and Rolling Process Intelligent Manufacturing Model 

A smart manufacturing model for steelmaking and rolling encompasses not just the rolling procedure but also 

the smelting and refining of steel as well as continuous casting. Currently, the primary concerns that require 

resolution in relation to the country's steelmaking and rolling processesare outlined below. Insufficient 

automation, informatization, and intelligence are seen in the steelmaking system due to the presence of an 

inaccurate regulating model throughout the smelting process. In addition, it should be noted that several crucial 

operational parameters, including the composition of flue gas, temperature of molten steel, billet temperature, 

composition of molten steel and slag, and presence of internal impurities in the casting blank, are not promptly 

and accurately detected in real-time. As a result, the refining models fail to establish an effective closed-loop 

control system. 

The online detection of essential operational parameters and the quality of hot and cold rolled components is 

currently inadequate, which poses challenges for unmanned or less humanised equipment and workshops. The 
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lack of intelligent packing, smart grind roller room, intelligent slab storage, and intelligent final product storage 

systems is the main contributing factor to this issue. Furthermore, the achievement of intelligent robot operation 

in situations characterised by high repeatability, high risk, and labour loss has not yet been realised. 

Furthermore, it should be noted that the process of product development is characterised by its extensive 

duration and substantial expenses. A significant portion of these endeavours heavily relies on trial-and-error 

methodologies. Additionally, it is worth mentioning that there is a limited availability of simulation systems and 

tools that effectively integrate various simulation techniques. In summary, the equipment management 

information system encompasses many date islands and exhibits a degree of data and function overlap among its 

various systems. 

The implementation of the intelligent manufacturing project is recommended for the steelmaking and rolling 

model in order to facilitate industrial structure adjustment. This approach emphasises innovation-driven 

development and aims to achieve the seamless integration of informatization and industrialization. By 

addressing the issue of data isolation among different procedures, it is anticipated that the project will enhance 

the global standard of quality control and production management.Intelligent sensing system: The surveillance 

of crucial process parameters, such as those pertaining to steelmaking converters, refining furnaces, continuous 

casting ladles, and continuous casting machines, plays a vital role in enhancing the control model's optimisation 

and augmenting its level of intelligence. Commonly utilised in manufacturing processes are sensors, intelligent 

cameras, radio-frequency identification, and gateways. These technologies are integrated with key 

advancements such as high-temperature heat pipes, image recognition, and voice recognition. This integration 

enables the creation of a comprehensive compilation of production data, encompassing equipment data, product 

identification data, and factory environmental data. The purpose of this compilation is to fulfil the need for real-

time awareness of the manufacturing process, operating data, and the status of critical equipment. In order to 

enhance the transmission of real-time sensor data, it is imperative to equip the system with high-performance 

network equipment that possesses a substantial system capacity, a high transmission rate, multiple fault-tolerant 

mechanisms, and low latency. Additionally, the utilisation of decentralised industrial control networks, the 

establishment of software-defined agile networks, and the achievement of network optimised resource allocation 

are crucial steps towards achieving this object. 

A. Centralized monitoring and controlling system: The aim of this study is to develop a complete 

monitoring system for the production line by combining the control systems of crucial stages in the steelmaking 

and continuous casting processes. These stages include the converter area, refining area, continuously casting 

area, heating furnace region, and rolling area. This system will be built upon data collecting and analysis. This 

system offers the capability to monitor the production process in real-time, enabling remote centralised control 

of equipment and providing alerts for abnormal situations. As a result, it reduces the need for on-

siteoperators and inspection employees, therefore decreasing labour intensity and ensuring product safety. 

B. Production management and intelligent scheduling system: In order to achieve real-time monitoring, 

balance cooperation, and decision-making capabilities, it is necessary to establish a production organisation 

and intelligent scheduling system. This system should be based on factors such as raw and fuel conditions, 

equipment status, and field-of-view requirements. It should encompass various functions including plan 

execution, resource utilisation, statistical analysis of output and quality, optimal scheduling of stable operating 

conditions, dynamic scheduling of abnormal operating conditions, as well as additional scheduling of production 

and decision-making functions. 

C. Intelligent device administration system: The monitoring, tracking, and maintenance of equipment 

life-cycle states should be initiated from the outset of equipment planning, design, manufacture, procurement, 

installation, operation, maintenance, upgrading, transformation, and scrapping phases. Subsequently, a 

comprehensive database pertaining to equipment status should be established by the use of advanced 

technologies such as big data analysis, artificial intelligence, and virtual reality. The primary objective of this 

endeavour is to develop a simulation model centred on the core equipment, enabling the timely detection, 

alerting, and prediction of equipment failures. In conclusion, it is imperative to establish a universally 
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standardised system for gathering and managing information, as well as implementing an automated diagnostic 

system. Additionally, the development of a fault prediction model, using an expert system, and the creation of a 

comprehensive knowledge base consisting of fault indexes are essential components of this endeavour. The 

proposed system aims to achieve remote unmanned control, early detection of hazardous working conditions, 

monitoring of operational status, fault analysis, and self-repair capabilities. 

D. Quality controlling system: The concept of quality management pertains to handling of information, 

necessitating the establishment of a quality management system that encompasses the maintenance of quality 

standards, monitoring of quality, conducting inspections and laboratory testing, doing statistical analysis, and 

optimising quality. The integration of product quality and operation parameters across the whole product 

production process is achieved via the use of big data analysis and machine-learning techniques. This enables 

the online assessment of product quality and facilitates the study of quality traceability throughout the entire 

process. This study aims to examine the key quality features in the steelmaking and rolling processes. By using 

online statistics, diagnosis, prediction, analysis, and optimisation techniques, it is possible to enhance the 

stability of the final product quality. 

E. Process simulation and prediction system: The substantial output variation and challenging exact 

control make it hard to coordinate this process, which is already complicated by the current state of the 

steelmaking technique. First and foremost, when paired with experienced knowledge of the smelting process 

and on-site operating experiences, the value of the production database is profoundly dug. Statistical analysis, 

machine learning, big data analysis, and other technical means are used to establish an empirical model of the 

metallurgical process; the model generalisation ability is continuously improved through model training; the 

smelting production experience is mathematically expressed; and the artificial intelligence ingredients related to 

the decision optimisation system are built to achieve the operation guidance and prediction of the actual 

production. The equipment involved in the converter method of steelmaking is then subjected to extensive 

simulation calculations including fluid mechanics, chemical reaction, heat and mass transport, and other 

simulation calculations utilising a combination of a mechanism model and a data model. Similar  attention  

should  be  paid  to  developingsimulation models for the melting, continuous casting, and rolling stages of 

production. Finally, the real-world steel process communicates with the virtual system in real time, which has 

the potential to optimise the parameters of production operations throughout steelmaking and rolling. 

F. An early warning system for employee safety: The comprehensive procedure for monitoring and 

overseeing workers' visits to the production regions should be established via the utilisation of satellite location, 

Wi-Fi, 5G, and other communication technologies, alongside intelligent wearable devices. A personnel 

management system ought to be developed with the capability to autonomously perceive and acquire 

fundamental personnel information, personnel whereabouts, safety status, operational details of the surrounding 

environment, statistical analysis of operational data, and real-time monitoring of personnel location trajectory 

and position status. The system may run without human intervention and show alarm data and related 

monitoring panels. As soon as it detects that you've entered a potentially dangerous region, it may send a 

notification to your phone or any predetermined locations. With online monitoring, intelligent analysis, and 

linked alerts, it may also identify irregularities in critical equipment, significant danger sources, and other 

scenarios, helping to keep workers safe. 

1.4 Key technologies for intelligent manufacturing in steel industry 

1.4.1 Online Detection Technologies 

Online detection in steel firms has an impact on accuracy and intelligence control [17]. One primary concern is 

to the timely identification of essential parameters within the production process, necessitating a dependence on 

expert knowledge and occasional reliance on batch-quality occurrences for smelting control. One of the primary 

concerns is to the absence or outdated nature of terminal product quality detection systems. Consequently, this 

inadequacy leads to diminished productivity and challenges 

in effectively guaranteeing the quality of intermediate or semi-finished steel products [18][19]. One notable 
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concern is to the timeliness or absence of fundamental data detection for the purpose of intelligent 

transformation. This deficiency leads to a dearth of essential parameters inside both the quality control system 

and the big data platform. 

The identification of crucial characteristics within the steel industry is essential for steel manufacturers to ensure 

the quality of their products and enhance the efficiency of production processes. At now, the existing detection 

methods are limited to assessing the aesthetic attributes of steel goods, namely their dimensional accuracy, plate 

form, and surface imperfections. The analysis of hot metal and slag compositions in ironmaking and 

steelmaking processes has traditionally been conducted offline. However, the evaluation of tissue performance 

and internal quality of steel products has been challenging due to the absence of a complete cycle of quality 

control. Simultaneously, several crucial characteristics within the steel industry elude online detection, including 

the particle size and compositions of raw materials, the temperature and compositions of high- temperature 

liquid slag, and temperature measurements [20], surface and internal defects of high-temperature plate strip, 

gas composition, automated detection of billet spraynumber characters, and product size. Moreover, a 

significant portion of detection tests lack standardization, and the steel sector, like other domestic steel 

industries, has the challenge of meeting specific production standards and ensuring product quality 

characteristics in relation to testing technology. 

Figure 5 depicts the various online detection systems that are used within the steel sector. The current trend in 

the development of detection technology involves the utilisation of sophisticated modern detection technologies, 

such as machine vision [21][22][23], laser-induced breakdown spectroscopy (LIBS), ultrasonic microscopy 

technology, and others. These technologies are combined with deep-learning algorithms and statistical 

modelling theory to enable the application or advancement of intelligent perception technology in the 

production line. This allows for the online or rapid detect [24][25]. The primary objectives of online detection 

technologies in the steel industry are to facilitate intelligent management and optimise processes, enhance the of 

end products, augment labour productivity, minimise labour expenses, and furnish essential foundational data 

for quality control and big data platforms. 

Figure 5. Online detection technologies used in steel industry 
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1.4.2 Quality Controlling Technology for the Entire Procedure of Steel Industry 

The quality control system in the steel sector serves as a platform for enhancing quality, design, research, and 

optimisation. It effectively integrates various processes involved in steel production, captures comprehensive 

data throughout the manufacturing process, and performs other functions. The achievement of capturing 

production process data in a high-precision and real-time manner is facilitated, ensuring that the data collection 

variables and frequency requirements align with the expectations set by the corporate entity. This is made 

possible via the integration of the firm's current data acquisition system. The following are some of the most 

important advantages of quality control technologies across the board in modern steel production [26]. To begin, 

the steel sector will have access to online product quality grading, digital scoring values, and product quality 

grades, as well as a crucial production process parameter and product quality monitoring [27]. By developing a 

model for predicting product quality, it becomes conceivable to notice and get notifications about prospective 

quality issues that may be difficult to uncover using online means. Additionally, this enables the timely 

implementation of pre-control measures. In addition, it is imperative to promptly propose flow control 

recommendations for steel goods exhibiting potential quality issues or procedural deficiencies. This proactive 

approach is crucial in preventing the inclusion of substandard products in subsequent production lines, thereby 

ensuring consistent product quality throughout each production phase via effective quality control measures 

[28]. The present system is capable of gathering data from many stages of themanufacturing process, as 

well as collecting different process data from related processes. Furthermore, it has the ability to automatically 

identify and recognise such data. Ultimately, it is essential to initiate data analysis and process improvement 

efforts, using sophisticated algorithms to evaluate the efficacy of both the method and the quality of the final 

output. This approach enables the identification of vulnerable areas within the control and process, thus 

establishing a comprehensive framework for optimising and enhancing the whole process. 

Figure 6 illustrates a schematic representation of the architectural framework used for quality control systems 

within the steel sector. The comprehensive architectural layout of the system entails the division of the full 

process quality control system into online and offline applications. The web programme mainly serves the 

purpose of collecting, monitoring, issuing early warnings, and doing analysis, with specific features tailored 

towards on-site quality inspectors and process personnel. This highlights the significance of the system's ability 

to analyse data in real- time and its timeliness. It offers near real-time manufacturing process parameters, 

determination of quality parameters, and early warning information to operators and quality inspectors present 

on-site, hence enhancing operational efficiency. In contrast, offline application entails the utilisation of 

sophisticated analysis and application methods that are rooted in the product manufacturing process. This 

approach places emphasis on comprehensively integrating and analysing quality data throughout the 

manufacturing process, taking into account various factors such as product manufacturing procedure parameters, 

quality target parameters, quality inspection, and traceability. The ultimate goal is to address challenges related 

to cross-process issues, product manufacturing process systems, and technical specifications. 

 

Figure 6. Architecture of quality control technologies in steel industry 
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1.4.3 Intelligent machinery 

The widespread adoption of intelligent machinery, equipped with self-detection, self-diagnosis, and self-

regulation capabilities, is highly recommended [29][30][31]. This is particularly crucial in hazardous positions 

characterised by high temperature, high coal gas, and repetitive labour, in order to ensure precise control during 

ironmaking and steelmaking processes. By doing so, it is possible to reduce the physical strain on workers, 

enhance production efficiency, and maintain consistent quality. The intelligent equipment used in the steel 

sector primarily focuses on four key factors [32]. 

A. Intelligent logistics equipment, such as an AGV (automated guided transport vehicle), unmanned 

elevators, intelligent roller rooms, intelligent three- dimensional factories, and flat storage facilities; 

B. Industrial robots including automatic slag fishing robots, automatic slag cleaning robots, intelligent 

temperature measurement robots, intelligent inspection robots, automatic baling robots, automatic coding robots, 

automatic alignment devices, automatic loading and unloading devices, and automatic welding 

devices;Intelligent detection equipment, which includes, in addition to the previously mentioned key component 

detection technology, intelligent monitoring of personnel safety, intelligent monitoring of safety facilities, and 

intelligent monitoring of equipment operational status; eddy current flaw detector; particle detector; thickness 

gauge; convexity meter; plate roller; and product contour detection device; 

C. Advanced control technology, one-key intelligent control technology of steelmaking, converter 

automatic steel production technology, refining process automatic control system, plate-type intelligent control 

Technology and other process intelligence and refined control technology. 

2. Feature selection 

Feature selection or reduction eliminates unnecessary, redundant, or partly significant information that might 

lead to inaccurate model predictions, since the performance of a machine learning model is influenced by the 

features it has been trained on. Feature reduction decreases the risk of over fitting by eliminating duplicate 

features and simplifying the model. Various feature selection or reduction approaches are available. We used 

PCA, ICA, and correlation-based feature selection methods in our strategy to eliminate irrelevant characteristics 

[44]. PCA is often used because of its 

versatility and simple implementation. PCA operates by transforming data into an orthogonal space where the 

eigenvectors with the highest eigenvalues retain the most data variance. PCA is a method that emphasises the 

covariance matrix and second-order statistics. ICA breaks down observed data into linearly independent 

components. 

Algorithm 1: Steps for the implementation of principal component analysis (PCA). 

 

 

 

 

 

 

 

 

 

Algorithm 2: Steps for the implementation of independent component analysis (ICA). 
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2.1 Hyperparameter determination 

Hyperparameters are variables that directly influence the learning process of machine learning algorithms and 

may be changed by the user before training begins. Choosing the right values is crucial for creating the optimal 

and high- quality model. Optimizing the model by selecting the appropriate  values  is  referred  to  as  

hyperparameter 

optimization or hyperparameter tuning. Grid search and random search are popular methods for optimizing the 

hyperparameters of an estimator. The research used the grid search approach with cross-validation to get very 

accurate predictions [45]. The method divides the range of parameter values to be updated into a grid and 

calculates the best parameters at each location. Various parameter combinations were assessed for each model, 

and they were separated into training and test sets using the cross- 

validation technique. 

2.2 Cross-validation in time series 

Cross-validation is a commonly used method for optimizing hyperparameters and evaluating the performance of 

machine learning algorithms [46]. Various parameters need to be specified for each scenario based on the 

dataset. Utilizing a grid search strategy together with cross-validation is efficient  in  determining  the  

best  hyperparameter 

combination for each model. Therefore, reducing forecasting errors in test samples may help identify the 

optimal set of hyperparameters that improve predictive accuracy while reducing model overfitting [47]. Leave-

one- out cross-validation is suitable for handling time series data in this context. This approach may also be seen 

as a sequential block cross-validation process, which is a subset of K-fold cross-validation. The training set is 

incrementally built while using both the training and validation sets simultaneously, a technique referred to as 

rolling cross- validation. The technique is repeated several times, with each iteration including an increase in the 

number of observations in the training set and a decrease in the validation set. The training set consists of 

observations that occurred before to the observation in the test set. The dataset is divided into training and test 

sets, with 70% of the data allocated for training and model validation. The time series split involves dividing the 

training set in half at each iteration, with the validation set positioned ahead of the training split. The model is 

first trained on a small portion of data to predict the next data point. The predicted data points are added to the 

next training dataset, and then more data points are forecasted. This technique is iterated until the whole training 

set has been used. Estimate the training result by evaluating iteration performance evaluations. 

2.3 STACK Ensemble method 

STACK modelling included two stages: level 0 where predictions from the base learner are made, and level 1 

where these predictions are coupled with the meta-learner. Previous research have shown the usage of support 
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vector regression (SVR) and selection operator (LASSO) regression as the meta-learner. SVR, particularly 

layer-1 in 

he STACK approach, offers significant benefits by detectingpredictor nonlinearities and using them to enhance 

demand projections. We used a Support Vector Regression (SVR) model with a linear kernel and the selection 

operator LASSO for meta-learning in our experiment at level 1. 

Support vector regression (SVR) method 

SVR is a machine learning algorithm used for regression tasks, particularly in cases where traditional linear 

regression models may not be effective due to non-linear relationships between variables or noisy data [48]. 

SVR is an extension of Support Vector Machines (SVM) and is mostly used for classification purposes. SVR 

aims to identify a hyperplane (or several hyperplanes in higher dimensions) that optimally fits the data by 

maximising the margin between the hyperplane(s) and the data points. SVR differs from standard regression 

models by focusing on minimising the departure of predicted values from a given margin, rather than 

minimising the error between predicted and actual values. 

Extreme learning machine (ELM) 

ELM is a machine learning method designed as a rapid and effective learning procedure for single-hidden layer 

feedforward neural networks (SLFNs). ELM differs from conventional neural networks by randomly setting the 

weights between input and hidden layers and then determining the weights between hidden and output layers by 

analytical calculations, instead of adjusting them repeatedly using techniques like backpropagation [49]. This 

unique approach makes ELM particularly fast and efficient for training, as it does not involve iterative 

optimization processes. 

The working procedure of the stacking ensemble in this 

 

 

paper is described in algorithm 3. 

Algorithm 3: Demand forecasting using Stacking Ensemble techniques using cross-validation. 

2.4 Performance metrics 

Assessing the accuracy of a model is essential in developing machine learning models to determine the 

effectiveness of the model's predictions. The study's performance indicators, including MAE, RMSE, R2, and 

MAPE, are outlined below. 

Mean absolute error (MAE) 

MAE stands for mean absolute error. Because the prediction error can be positive or negative, the average total 

value of the error is used to avoid the cancellation of positive and negative mistakes.variable. R2 is used to 

evaluate the scattered data about a fitted regression line. 
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(3) 

As shown in Equation (3), where  is the sum of squares of residuals,  is the total sum of the square, 

 is the true value,  is the prediction value, and  is the mean. 

Mean Absolute percentage error (MAPE) 

The accuracy is often expressed as a ratio using the formula: At/Ft, where At is the actual value and Ft is the 

prediction value. Their discrepancy is calculated by dividing the difference by the actual value At. Calculate the 

total of the absolute values of this ratio for each projected time point and then divide by the number of fitted 

points, n. 

(1) 

 

As can been seen in Eq.1, where n is the number of observations, 𝑥𝑖 represent the true value, while  represent 

the prediction value. 

3. Result and discussion(4) 

Root mean square error (RMSE) 

In order to predict performance more accurately, we use the root-mean-square error (RMSE) evaluation model 

determine the standard error through the prediction results as shown in Eq. 2: 

(2) 

Generally, RMSE is commonly used for evaluating the quality of predictions. As we can see in Eq.2, where n is 

the number of the participating samples,  is the real value while  is the predicted value. 

R2 score 

It is also known as the coefficient of determination which expresses the amount of variance in the 

dependentTable 1 outlines each model's ability to achieve the greatest R2 utilizing the recommended pipeline, as 

well as shown in Figure 2. Table 1 displays the optimized hyperparameters determined by grid search. SVR 

method attained the R2 is 0.934, RFR method achieved R2 is 0.976, MLP method obtained R2 is 0.961, which 

is higher than to SVR, but STACK (SVR)1 and STACK(LASSO)2 achieved maximum R2 is 0.982 and it is 

higher than to other methods. 

Table 1. Performing ML model and preprocessing with the highest possible accuracy (R2). 

Models R2 

SVR 0.934 

RFR 0.976 

MLP 0.961 

ELM 0.942 

STACK (SVR)1 0.982 

STACK (LASSO)2 0.982 
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Figure 7 depict the comparison of various algorithms based on R2, as shown below. In Figure 7, the suggested 

technique achieved maximum an R2 of 0.988, as compared to all other methods. 

Figure 7. Comparison of various method based on R2 

Table 2 outlines the performance indicators, such as R2, MAE, RMSE, and MAPE, used to assess each model. 

Table 

2 indicates that the ensemble learning methodologies yielded results aligned with the goal of minimizing error 

during the test phase. 

Table 2. Comparing stacking ensemble model with the best performing ML models 

 

 

 

  

 

 

 

 

Figure 8 illustrates the results of the suggested strategy, as shown below. In Figure 8, the suggested technique 

achieves an R2 of 0.988, MAE of 0.122, RMSE of 0.154, and an F1 MAPE of 0.446, as seen below 

Figure 8. Comparison of stacking methods 

Models R2 MAE RMSE MAPE 

SVR 0.931 0.202 0.246 0.902 

ELM 0.942 0.183 0.226 0.880 

MLP 0.963 0.149 0.193 0.579 

GBR 0.972 0.138 0.173 0.524 

 



Tuijin Jishu/Journal of Propulsion Technology 

ISSN: 1001-4055 

Vol. 45 No. 02 (2024) 

__________________________________________________________________________________ 

2530 

 

4. Conclusion 

This research concludes that an ensemble learning technique is beneficial for demand forecasting in the steel 

sector. Through ensemble approaches, we have enhanced accuracy and dependability by leveraging the 

capabilities of several forecasting models, surpassing the performance of individual models. The ensemble 

learning architecture adeptly captures the intricate and ever-changing demand patterns in the steel sector. This 

study provides steel makers with a valuable tool to enhance inventory management, production scheduling, and 

resource allocation by using more precise and dependable demand projections. The suggested preprocessing 

approach enhances the quality of the raw dataset by addressing missing values and standardizing the data. PCA 

and ICA reduce duplication between  features,  whereas  correlation-based  feature 

selection may increase correlation between features. Hyperparameters are fine-tuned to find the optimal 

configuration for each machine learning technique using a grid search algorithm. The best-performing models 

are combined in STACK1 to generate level 0. SVR with linear kernels and LASSO regressions are used as 

meta-learners in the first stage. Ensemble approaches, especially the STACK model, outperform individual 

models in forecasting steel industry demand, as shown by the test set outcomes. 
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